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Abstract: As global climate change intensifies and human activities escalate, changes in vegetation
cover, an important ecological indicator, hold significant implications for ecosystem protection and
management. Shandong Province, a critical agricultural and economic zone in China, experiences
vegetation changes that crucially affect regional climate regulation and biodiversity conservation.
This study employed normalized difference vegetation index (NDVI) data, combined with climatic,
topographic, and anthropogenic activity data, utilizing trend analysis methods, partial correlation
analysis, and Geodetector to comprehensively analyze the spatiotemporal variations and primary
driving factors of vegetation cover in Shandong Province from 2001 to 2020. The findings indicate an
overall upward trend in vegetation cover, particularly in areas with concentrated human activities.
Climatic factors, such as precipitation and temperature, exhibit a positive correlation with vegetation
growth, while land use changes emerge as one of the key drivers influencing vegetation dynamics.
Additionally, topography also impacts the spatial distribution of vegetation to a certain extent. This
research provides a scientific basis for ecological protection and land management in Shandong
Province and similar regions, supporting the formulation of effective vegetation restoration and
ecological conservation strategies.

Keywords: climate change; geodetector; normalized difference vegetation index (NDVI); trend
analysis; vegetation cover change

1. Introduction

Since the Anthropocene, particularly with the progression of the Industrial Revolution,
human activities have had profound impacts on terrestrial ecosystems [1–3]. Vegetation,
a crucial component of terrestrial ecosystems, not only participates in the carbon cycle
through photosynthesis but also plays an essential role in regulating energy exchange [4].
It acts as a natural bridge between the lithosphere, atmosphere, and hydrosphere by
influencing surface albedo and surface roughness [5,6]. In recent decades, the global
climate has undergone unprecedented changes, significantly impacting vegetation growth
and distribution [7]. With the widespread recognition of global warming, the scientific
community has extensively studied the role of climate impacts on vegetation change as
a central component of current environmental challenges [8–10]. Thus, understanding
the impact of climate change on vegetation change, especially against the backdrop of
continually changing human activities, is crucial for predicting future ecosystem dynamics
and devising effective human intervention strategies. The dynamic evolution of vegetation
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is a complex and prolonged process [11,12]. High-resolution long-term data are vital
for exploring the spatiotemporal variations in vegetation cover. Satellite remote sensing
technology, known for its accuracy, extensive coverage, continuity, and comprehensiveness,
has been widely used in the fields of ecological conservation and climate change [13]. The
normalized difference vegetation index (NDVI), derived from the difference between red
and near-infrared reflectance relative to their sum, not only provides continuous long-
term data but has also been extensively utilized to study the response of vegetation to
environmental changes on seasonal, interannual, and interdecadal scales [14,15]. In recent
years, research utilizing NDVI data has proliferated. Bhuyan et al. [16] compared the ring
width index (RWI) time series of 69 forest sites worldwide with NDVI data at different time
scales, discovering that the sum of NDVI in summer had the strongest explanatory power
for RWI among all NDVI phenological indicators. Mao et al. [17] constructed monthly NDVI
series in Northeast China from 1982 to 2009 using a pixel-by-pixel linear regression model.
They found that, over the past 28 years, NDVI data at 95 meteorological stations were
significantly correlated with monthly average temperature and precipitation. The spatial
average value of summer NDVI exhibited a downward trend with rising temperatures
and significantly decreased precipitation. Lv et al. [18] determined that temperature is
the primary driving factor for NDVI changes and plays a key role in controlling NDVI
accumulation, as evidenced by partial correlation analysis results of the distribution of
NDVI and climatic factors on the Korean Peninsula.

The dynamics of vegetation and their driving factors have always been a focal point
in ecological research, both domestically and internationally. Numerous studies have
demonstrated that climatic factors such as precipitation and temperature significantly
influence vegetation dynamics, with regional variations in these driving forces [19]. For
instance, Jie Yang and colleagues explored the relationship between climate and vegetation
dynamics along the Hu Line [20], while Yating Ren and others used Pearson correlation
analysis to examine the relationship between vegetation dynamics and climatic factors in
Jilin Province [21]. However, the processes of vegetation change are complex and influenced
by a multitude of factors. Research also indicates that terrain, landforms, soil types, and
changes in land use types have significant impacts on vegetation [22–25]. Despite these
findings, the relative importance and interactions of these factors in the vegetation changes
of plain and hilly regions remain unclear. Therefore, investigating the impacts of multiple
driving factors on vegetation changes in these areas is a crucial research topic.

Additionally, traditional correlation and residual analysis methods that are commonly
used to explore the drivers of vegetation change often fail to reveal the complex nonlinear
relationships among multiple influencing factors, particularly the interactions between
anthropogenic factors and climate fluctuations [26]. To overcome these inherent limita-
tions, Geodetector [24], a nonlinear method, has been employed to elucidate the complex
mechanisms driving NDVI changes. In recent years, Geodetector has gained prominence.
Zhu et al. [27] employed the geographic detector method to quantify the impact of natural
and human factors on NDVI changes and found that both types of factors drive NDVI
variations. Land use type, annual average precipitation, and soil type were identified
as having the greatest impact. Similarly, Zhang et al. [28] investigated the temporal and
spatial changes and driving forces of NDVI in the Qinba Mountains of China from 1982 to
2015 using the geographic detector method. Their results indicated that the main factors
affecting NDVI included rainfall, soil type, and elevation, while human activities (including
population density) had a minimal impact on NDVI. Additionally, Yuan et al. [29] used
geographic detectors to study the spatial heterogeneity of NDVI in the Heihe region of
China. They found that precipitation was the primary factor influencing NDVI across the
entire basin, with elevation and precipitation being the dominant factors in the upper and
middle parts of the basin, respectively.

Located at the lower reaches of the Yellow River and adjacent to the Bohai and Yellow
Seas, Shandong Province not only boasts rich vegetation resources [30] but also occupies a
strategic position in China’s economic landscape [31]. As an important agricultural produc-
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tion area in China, coupled with rapid urbanization, Shandong’s ecosystem is fragile and
highly sensitive to climate change. Therefore, understanding the vegetation dynamics in
Shandong Province is crucial for ecological protection, sustainable environmental develop-
ment, agricultural productivity forecasting, and the formulation of policies and land use
planning [32,33]. Although studies by Li et al. [34] and Yue et al. [35] have explored vegeta-
tion phenology and coverage changes in specific urban and delta regions, a comprehensive
analysis of vegetation changes in Shandong Province is still lacking. Moreover, traditional
linear methods such as those used by Shrestha et al. [36] often fall short in capturing the
intricate, nonlinear interactions between multiple environmental factors and vegetation
dynamics. Given these limitations, adopting advanced analytical methods like the Geode-
tector, as referenced in related literature [37–39] and considering regional characteristics, is
vital. This method can detect and quantify these complex relationships, providing deeper
insights into the driving factors behind vegetation changes in Shandong Province, which is
essential for crafting wise environmental policies and enhancing agricultural resilience.

In this study, we employed a framework that integrated NDVI data with climatic,
topographic, and anthropogenic activity data to examine the dynamics of vegetation
changes in Shandong Province through trend analysis, partial correlation analysis, and
Geodetector modeling. This study aims to analyze the spatio-temporal characteristics and
trends of NDVI in the region from 2001 to 2020, explore the correlations between climatic
factors and NDVI, and identify the key drivers affecting NDVI in Shandong. The results
of this study will provide theoretical references for assessing the sustainable management
and productivity of vegetation in Shandong.

2. Materials and Methods
2.1. General Situation of Study Area

Shandong Province is located in the eastern coastal region of China, in the lower
reaches of the Yellow River (Figure 1a), with a total area of 154,300 square kilometers.
The topography of Shandong is characterized by prominent central mountains, flat low-
lands in the southwest and northwest, and gently rolling hills in the east. The central
Tai–Lu–Yi Mountains serve as the provincial geographical center, with elevations gradually
decreasing towards the periphery. The highest peak, Mount Tai, located in the central
part of the province, reaches an elevation of 1518 m, while the lowest point lies within
the Yellow River Delta in the north. The fundamental geomorphological types in Shan-
dong include plains and mountainous hills (Figure 1c), with plains accounting for 55% of
the area, primarily located in the northwestern and southwestern parts of the province.
Mountainous and hilly areas constitute 29% of the terrain, predominantly found in the
south–central and eastern regions. The predominant vegetation types are warm–temperate
deciduous broadleaf forests, followed by coniferous forests and shrublands. Forested
areas cover 26,100 square kilometers, mainly distributed in the south–central mountainous
regions and the eastern low mountainous and hilly areas, with more scattered distri-
butions in the plains. Shandong has a warm–temperate semi-humid monsoon climate,
with an average annual temperature ranging from 11 to 14 ◦C, a frost-free period of
200–220 days, between 2400 and 2800 annual sunlight hours, and an average annual pre-
cipitation of 680 mm, which decreases from southeast to northwest. As of the end of 2020,
the population of Shandong exceeded 103 million, predominantly engaged in agriculture
and significantly influenced by human activities.
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Figure 1. (a) Location of the study area in China, (b) land use of the study area, and (c) topography of
the study area.

2.2. Data Sources and Preprocessing

All data used in this study and their sources are presented in Table 1. For investigating
the drivers of vegetation change in Shandong Province, twelve potential driving factors
were selected. These factors include precipitation, temperature, photosynthetically active
radiation, elevation, slope, aspect, soil type, land use type, population density, nighttime
light, distance to main rivers, and distance to roads. These influencing factors have been
categorized into three groups: climatic factors, fundamental natural environmental factors,
and human activities.

Table 1. Data description, source, and processing methods.

Categories Dataset Abbreviation Year Range and
Resolution

Time
Resolution Data Source

/ Normalized difference
vegetation index NDVI 2001–2020; 250 m 16d GEE

Climatic factors

Mean annual precipitation PRE 2001–2020; 1000 m 1a [40]
Mean annual temperature TEM 2001–2020; 1000 m 1a [41]

Photosynthetically
active radiation PAR 2001–2020; 0.05◦ 1a GEE

Fundamental
natural

environmental
factors

Elevation Elevation 2000; 30 m GEE
Slope Slope 2000; 30 m GEE

Aspect Aspect 2000; 30 m GEE

Soil type Soil 2023; 1000 m
Harmonized
World Soil

Database v2.0

Human activities

Land use type LAND 2001–2020; 30 m 1a [42]
Population density POP 2001–2020; 100 m 1a GEE

Nighttime light Light 2001–2013; 1000 m 1a GEE
Light 2014–2020; 750 m 1a GEE

Distance to main rivers River 2020; 1000 m openstreetmap
Distance to road Road 2020; 1000 m openstreetmap

‘16d’ refers to a temporal resolution of 16 days, ‘1a’ indicates an annual temporal resolution, and ‘GEE’ stands for
Google Earth Engine, a cloud-based platform for earth observation and data analysis.
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2.2.1. NDVI Dataset

The NDVI dataset is based on the Google Earth Engine cloud (https://earthengine.
google.com/, accessed on 8 November 2023) computing platform, utilizing the MOD13Q1
V6.1 remote sensing imagery, which features a temporal resolution of 16 days and a spatial
resolution of 250 m. To further mitigate the effects of cloud cover and aerosol scattering, the
study selected qualified data products from the peak growing season (May to September)
and generated 20-year NDVI datasets using the maximum value compositing method.

2.2.2. Climatic Factors

Temperature and precipitation datasets were sourced from the National Tibetan
Plateau Scientific Data Center (http://data.tpdc.ac.cn, accessed on 8 November 2023),
with a spatial resolution of 0.008333◦ (approximately 1 km) [40]. These datasets were down-
scaled in the region of China using the Delta spatial downscaling scheme, based on the
global 0.5◦ climate dataset released by CRU and the global high-resolution climate dataset
from WorldClim (https://www.worldclim.org/, accessed on 8 November 2023). The data
include a 1 km resolution monthly precipitation dataset (0.1 mm) and a 1 km resolution
monthly mean temperature dataset (0.1 ◦C). These datasets were generated for China using
the Delta spatial downscaling scheme based on the global 0.5◦ climate dataset released by
CRU and the global high-resolution climate dataset from WorldClim. The datasets were
validated using data from 496 independent climate observation stations, ensuring their
reliability. Using this dataset, the average annual temperature and annual cumulative
precipitation for the study area were calculated. Photosynthetically active radiation (PAR)
data were obtained from the MCD18C2 Collection 6.1 (GEE/061/MCD18C2) product,
which provides daily PAR at 0.05◦ resolution [41]. The average PAR for each year was
calculated from this dataset.

2.2.3. Fundamental Natural Environmental Factors

The digital elevation model (DEM) data, describing the terrain conditions, were
sourced from Google Earth Engine (https://earthengine.google.com/, accessed on 8 Novem-
ber 2023). High-precision land use data were obtained from the China Land Cover Dataset
(CLCD) (https://www.globallandcover.com, accessed on 8 November 2023), with a spatial
resolution of 30 m. Slope, aspect, and elevation were derived from the DEM data.

2.2.4. Human Activities

Land use types were obtained from the China Land Cover Dataset (CLCD) (https://www.
globallandcover.com, accessed on 8 November 2023), which provides high-precision in-
sights with a spatial resolution of 30 m. Population density data were acquired from
WorldPop (https://www.worldpop.org/, accessed on 8 November 2023), with a res-
olution of 100 m. Nighttime light data for 2001–2013 were sourced from the United
States National Oceanic and Atmospheric Administration (NOAA) (GEE: NOAA/DMSP-
OLS/NIGHTTIME_LIGHTS), and from 2014 to 2020 from NOAA (GEE: NOAA/VIIRS/
DNB/MONTHLY_V1/VCMSLCFG). Basic road and river geographic information were
obtained from OpenStreetMap (https://openstreetmap.org, accessed on 8 November 2023).

For the use of Geodetector, this research utilized QGIS 3.30 to create a fishnet tool,
generating a grid of 2 km × 2 km across the entire study area, totaling 39,391 sampling
points. Spatial attributes corresponding to X and Y values were extracted, and different
influencing factors were categorized using natural break, geometric interval, and quantile
methods, among others. Geographic detector analysis was then conducted using the GD
package (version 10.3) in RStudio (version 2023.09.0 Build 463). All data were processed
using the WGS 1984 geographic coordinate system. To ensure consistent resolution across
the selected variables, bilinear resampling was employed, and the data were reprojected to
a resolution of 1000 m.

https://earthengine.google.com/
https://earthengine.google.com/
http://data.tpdc.ac.cn
https://www.worldclim.org/
https://earthengine.google.com/
https://www.globallandcover.com
https://www.globallandcover.com
https://www.globallandcover.com
https://www.worldpop.org/
https://openstreetmap.org
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2.3. Analysis of Methods

In this study, the dynamic characteristics, spatiotemporal evolution trends, driving
factors, and the contributions of these drivers to vegetation cover in Shandong Province are
examined. The research framework and specific tasks are illustrated in Figure 2. Utilizing
the Google Earth Engine (GEE) platform and referencing pertinent literature, regional
vegetation cover is characterized using the widely employed NDVI.
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and ‘SEN’ for the Theil–Sen median method.

2.3.1. Analysis of Vegetation Variation Trends

The Theil–Sen median method, also known as the Sen’s slope estimator, is a non-
parametric statistical technique used to calculate trends [43]. This method is favored for its
computational efficiency and its insensitivity to outliers and measurement errors, making
it particularly suitable for analyzing long-term time series of vegetation growth. In this
study, the Theil–Sen median method combined with the Mann–Kendall trend test, both
widely utilized in meteorology and hydrology, are employed to analyze the characteristics
of NDVI changes in Shandong Province from 2001 to 2020. The formula for the Theil–Sen
estimator is as follows:

β = Median
( xj − xi

j − i

)
, 2001 ≤ i ≤ j ≤ 2020 (1)

where j and i represent data points in the time series and β represents Sen’s slope. A pos-
itive value of β suggests an upward trend in the series, while a negative value indicates
a downward trend. A value close to zero suggests that changes in the time series are
not significant.
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The Mann–Kendall significance test, also known as the M-K test, is employed to assess
the significance of trends over long-term time series data [44,45]. This method, along with
the Sen’s slope estimator, does not require the data to be normally distributed, thus making
the results less susceptible to outliers. Consequently, this study utilizes the Mann–Kendall
test to determine the significance of interannual changes in NDVI in Shandong Province.

The formula involves the following steps:

a. Calculation of the S statistic:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(2)

sgn
(
xj − xi

)
=


1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(3)

where S is the Mann–Kendall test statistic, n is the length of the time series, and xj and xi are
sequential data values in time series j and i. The statistic S is nearly a normal distribution
when sample sizes are larger than ten; the sgn denotes the sign function. The variance
Var(S) is calculated using Equation (3).

b. Calculation of variance:

Var(S) =
n(n − 1)(2n + 5)

18
(4)

c. Calculation of the Z statistic:

Z =


S−1√
var(S)

, S > 0

0 , S = 0
S+1√
var(S)

, S < 0
(5)

where Z is the statistic normalized by the Mann–Kendall test and follows a normal dis-
tribution, and Var(S) represents the variance. The test statistic Z is used to test the trend.
Maghsoodloo [46] proved that the statistic S roughly follows a normal distribution when
n ≥ 8, and Z is the standard normal distribution test statistic for S.

Combining the values of β and |Z|, the trends in NDVI are classified into five categories.
In this study, due to the practical absence of regions where β is exactly zero, the interval
ranging from −0.001 to 0.001 was defined as stable and constant [47]. The outcomes of
the Mann–Kendall test, conducted at a confidence level of 0.05, categorized the changes
as either significant (|Z| > 1.96) or not significant (|Z| ≤ 1.96) [48]. The method of
distinguishing the significance of the trends is shown in Table 2.

Table 2. Types of change trends in NDVI based on Theil–Sen median method and Mann–Kendall test.

β |Z| Trend Type Trend Features

β > 0.001 |Z| > 1.96 5 Significant improvement
β > 0.001 |Z| ≤ 1.96 4 Slight improvement
|β| ≤ 0.001 |Z| ≤ 1.96 3 Stable and unchanged
β < −0.001 |Z| ≤ 1.96 2 Slight degradation
β < −0.001 |Z| > 1.96 1 Severe degradation

β represents Sen’s slope. Z is the statistic normalized by the Mann–Kendall test and follows a normal distribution.

2.3.2. Partial Correlation Analysis

To precisely control for the influences of confounding variables and clearly delineate
the direct relationships between two variables, we employed partial correlation analysis.
This approach avoids the potential pitfalls of regression analysis, which may obscure
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indirect relationships through overfitting with multiple predictors, thus offering a more
accurate understanding than simple linear correlation analysis [37]. Prior to conducting
partial correlation analysis and in consideration of potential impacts from collinearity, we
executed the Lilliefors test to assess the normal distribution and performed a collinearity
analysis using the variance inflation factor (VIF) on the selected variables. The outcomes
of these analyses indicated that the variables were free from influences of collinearity and
distributional assumptions, thus validating the integrity of our statistical approach. The
partial correlation coefficient (PCC) is employed to assess the degree of association between
two variables, independent of the effects of other intervening variables. The formula for
calculating the partial correlation coefficient is as follows:

R12,3 =
r12 − r13r23√(

1 − r2
13
)(

1 − r2
23
) (6)

where R12,3 , R13,2, and R23,1 are the correlation coefficients among the variables; R12,3 is the
partial correlation coefficient between r1 and r2 after fixing the variable r3. The value range
of the partial correlation coefficient ranges from −1 to 1. When R12,3 > 0, the correlation
is positive, meaning that both factors correlate in the same direction. When R12,3 < 0 ,
the correlation is negative. The higher the partial correlation coefficient, the stronger the
correlation between the two elements at the pixel.

The larger the PCC value is, the greater the effect of the variable on the NDVI. A
smaller value indicates a weaker effect. The significance test for the partial correlation is
shown in Formula (7), as follows:

t =
r1·23√

1 − r2
1·23

√
n − m − 1 (7)

In this study, the partial correlations between the NDVI and climatic factors in Shan-
dong were classified as significant positive correlations (PCC > 0, p < 0.05), nonsignificant
positive correlations (PCC > 0, p > 0.05), significant negative correlations (PCC < 0, p < 0.05),
and nonsignificant negative correlations (PCC < 0, p > 0.05).

2.3.3. Geographic Detector

Geodetector is a popular geostatistical model that analyzes spatial variations and
reveals the driving factors behind them [24,49]. Geodetector consists of four subdetectors:
factor detector, interaction detector, risk detector, and ecological detector. In this study,
the former two detectors are used to investigate the driving mechanisms behind NDVI
change [50,51].

(1) Factor detector

The factor detector is calculated using the following q statistic:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 = 1 − SSW

SST
(8)

where 0 ≤ q ≤ 1, and the larger the value, the greater the explanatory power of the
factor. When the q value is 0, it means that the factor has no relationship with NDVI.
h is the number of strata for variables or factors, N represents the number of units in
stratum h, and σ2

h and σ2 denote the variance in the stratum h and the entire study area,
respectively. SSW and SST denote the sum of squares within the data and the total sum of
squares, respectively.

(2) Interaction detector

The interaction detector identifies the interactions between different risk factors, specifi-
cally evaluating whether the combined effect of factors X1 and X2 increases or decreases the
explanatory power for the dependent variable Y, or if their impacts on Y are independent. The
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evaluation method involves calculating the q-values for each factor independently and then cal-
culating the q-value for their interaction. The R software package is utilized to compute the in-
teraction detector, which can be accessed at https://cran.r-project.org/web/packages/GD/,
accessed on 8 November 2023.

3. Results
3.1. Temporal NDVI Analysis

Over the past two decades, the vegetation NDVI in Shandong Province has exhibited
significant interannual variability, as illustrated in Figure 3. The provincial average annual
NDVI value was 0.7252, indicating a relatively stable trend.
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indicates that approximately 20% of the variability in NDVI can be explained by the year,
reflecting a modest fit of the model. Despite the relatively low R2 value, the overall increase
in NDVI suggests a slight improvement in vegetation coverage over time. The trend line,
along with the 95% confidence interval, provides a visual representation of this increasing
trend and the associated uncertainty.

Monthly data (Figure 4) reveal that NDVI values from January to May are generally
lower, especially in January and February, where they range between 0.3 and 0.6. During
the summer months of July and August, NDVI values significantly increase, exceeding 0.8,
suggesting more vigorous vegetation growth in the warm season. In autumn and winter,
from September to December, NDVI values gradually decrease but remain between 0.4 and
0.6, showing a relatively stable condition. The lowest annual average NDVI value occurred
in 2002, at 0.659, while the highest values were recorded in 2011 and 2020, both at 0.751.

Figure 5 illustrates the sub-regional trends in NDVI changes in Shandong Province
from 2001 to 2020. The linear regression coefficients for all four sub-regions are greater than
0, indicating a slow growth in vegetation over the 20-year period. The NDVI in the north-
west region shows a higher average value of 0.806, indicating a relatively stable growth
trend. In contrast, the northern region has an average NDVI of 0.5705, slightly below

https://cran.r-project.org/web/packages/GD/


Forests 2024, 15, 1245 10 of 22

the provincial average, with a more pronounced change in its slope, suggesting relatively
unstable vegetation growth. The NDVI values in the eastern, south–cntral, and south-
western regions fluctuate between 0.6 and 0.8. However, the interannual slope changes
significantly between these areas, with the south–cntral region recording the highest slope
at 0.0023 and the eastern region recording the lowest at 0.0002. The ecological resources in
the south–cntral region, designated for soil conservation, water source conservation, and
ecological restoration, are relatively stable, yet the increase in NDVI there is notably higher
than in other areas. This may be closely associated with ecological restoration measures
such as optimizing forest resources and enhancing water conservation.
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3.2. Spatial Patterns of NDVI

Figure 6a,b show the spatial distribution of NDVI in Shandong Province from 2001 to
2020 and the area and proportion of NDVI distribution intervals, respectively. Figure 6a,b
reveal the heterogeneity of ecological vegetation coverage across the province. Areas with
NDVI values less than 0.5, constituting 9.36% of the total area, are primarily located in
the northern, northwestern, and southwestern parts of Shandong. The northern region
is characterized by coastal saline and alkaline soils, which support fewer plant species.
The northwestern region, a major grain-producing area, is prone to soil desertification
and salinization, making its vegetation growth sensitive. The southwestern region, also
a significant grain-producing area, includes wetlands such as the Nan Si Lake and is a
concentration area for mining subsidence. Areas with NDVI values greater than 0.7 account
for 14.28% of the total area, mainly distributed in the northern parts of south–cntral and
eastern Shandong. The northern part of south–cntral Shandong includes mountainous
regions such as Mount Tai, Mount Lu, Mount Meng, and Mount Yi, while the northern part
of eastern Shandong encompasses the Kunyu Mountain range. These areas, with varied
topography and rich plant types, are the richest in forest resources and biodiversity within
the province. They also serve as key zones for national and provincial conservation forests,
playing crucial roles in water conservation and soil preservation.
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As shown in Figure 6c, NDVI initially decreases with increasing altitude, with the
broadest distribution of NDVI occurring between elevations of 20 to 50 km, where veg-
etation is predominantly agricultural. Regions above 400 m constitute only 2.89% of the
area. Overall, the distribution of NDVI in Shandong Province exhibits distinctive regional
characteristics and ecological sensitivities.

Figure 7 shows the percentages of NDVI under different levels during 2001–2020.
In this study, the natural breaks method is employed to classify annual NDVI into five
categories: high coverage, middle–high coverage, middle coverage, low coverage, and
extremely low coverage. Over the 20-year period, high-coverage areas (NDVI > 0.7) consis-
tently dominated, accounting for the largest proportion of the total area each year. These
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areas are predominantly located in the southern parts of Jinan, southern Zibo, northern
Linyi, southern Dezhou, northern Yantai, and central Jining. The dominant land covers
in these regions are forests and agricultural fields. This stable high vegetation coverage
highlights the ecological vitality and the effectiveness of land management practices in
these areas over the past two decades.
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3.3. Analysis of NDVI Trends

Figures 8 and 9 show the NDVI trends across Shandong Province using the Theil–Sen
slope method, validated by the Mann–Kendall trend test. We integrated the results of
the Theil–Sen slope method and the Mann–Kendall trend test to classify NDVI trends
into five categories, as presented in Table 2. Figure 8 shows the NDVI trends for four
five-year intervals: 2001–2005, 2006–2010, 2011–2015, and 2016–2020. From 2001 to 2005,
approximately 78% of the province showed slight improvement in NDVI, predominantly in
the eastern and central regions, with only 16.3% exhibiting slight degradation, primarily in
the northern areas. The average Sen’s slope for the increasing trend was 0.047. During the
2006–2010 interval, 46.7% of the province continued to show slight improvement, especially
in the central, eastern, and northern regions, whereas areas showing slight degradation rose
to 44.9%, affecting mainly the coastal eastern and southwestern regions, with an average
Sen’s slope for the increasing trend of 0.038. Between 2011 and 2015, slight degradation was
observed in 61% of the area, particularly in the northern and eastern regions, while 31.7%
demonstrated slight improvement, mainly in the northwest and southern areas, with an
average Sen’s slope for the increasing trend of 0.043. In the final interval, 2016–2020, 52.5%
of the province experienced slight degradation, especially in the northern regions, and
40% showed improvement, primarily in the eastern and central regions, with an average
Sen’s slope for the increasing trend of 0.039. Figure 9 shows the overall NDVI trend from
2000 to 2020, revealing significant improvement in 21.9% of the province, notably in the
north, and slight improvement in 30.4%, particularly in the eastern and central regions.
The average Sen’s slope for the upward trend over the two decades was 0.008, signifying a
steady increase in NDVI.
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3.4. The Relationship between NDVI and Driving Factors
3.4.1. Spatiotemporal Response of NDVI to Climatic Factors in Shandong Province

Figures 10a and 11a demonstrate that the overall average PCC between NDVI and
PRE is 0.203, indicating a significantly positive correlation in 1.4% of the area with no
significant negative correlations observed. Figure 11a reveals that 83.0% of the region
exhibits an overall positive correlation on average, while 17.0% shows negative correlations,
predominantly located in the southwestern, central, and eastern parts of Shandong.

Figures 10b and 11b show that the overall average PCC between NDVI and TEM is
0.283, with 1.4% of the area showing significant positive correlations and no significant
negative correlations noted. According to Figure 11b, 59.0% of the area exhibits an overall
positive correlation on average, whereas 41.0% shows negative correlations, primarily in
the eastern and south–cntral regions of Shandong.
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Figure 11. Sign and significance of partial correlations of normalized difference vegetation index
(NDVI) with annual precipitation (PRE) (a), annual mean temperature (TEM) (b), and photosyntheti-
cally active radiation (PAR) (c) in Shandong Province from 2001 to 2020.

Figures 10c and 11c indicate that the overall average PCC between NDVI and PAR is
0.159, with 1.4% of the area exhibiting significant positive correlations and no significant
negative correlations observed. Figure 11c shows that 24.4% of the area displays an overall
positive correlation on average, while 75.6% presents negative correlations, with positive
correlations mainly concentrated in the southern and central parts of Shandong.

3.4.2. The Relationship between Topography and NDVI in Shandong Province

As shown in Figure 12a, the highest NDVI values are observed on the northeast-facing
slopes, averaging 0.628, followed closely by the northwest-facing slopes at 0.627, while
the north-facing slopes exhibit the lowest NDVI, at 0.58. Overall, the NDVI is significantly
higher on sunlit slopes compared to shaded slopes. Figure 12b illustrates that the majority of
grid cells have a slope of less than four degrees. As the slope increases, NDVI in Shandong
Province also tends to increase. At a slope of 18 degrees, NDVI stabilizes. Beyond a
slope of 22 degrees, NDVI values become more variable. According to Figure 12c, NDVI
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increases with increasing digital elevation model (DEM) values from 0 to 42 m; however, as
DEM ranges from 40 to 60 m, NDVI decreases with increasing elevation; above 80 m, the
relationship between NDVI and DEM is not apparent.
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3.4.3. Comprehensive Response Analysis of NDVI to Climate, Topography, and Human
Activities in Shandong Province

In order to probe the impact of various geographical factors on NDVI dynamics in
Shandong Province, a total of 12 pertinent variables were selected for investigation across
39,391 sampling points in the province through Geodetector detection.

1. Data Processing for Geodetector

In this study, a Geodetector was employed to analyze twelve factors influencing the
NDVI in Shandong Province. Prior to utilizing the Geodetector, it was necessary to classify
the data. This classification was facilitated using R programming, applying five different
methods: “equal” (equal interval method), “natural” (natural breaks), “quantile” (quantile
method), “geometric” (geometric progression), and “sd” (standard deviation method). The
outcomes of these classifications are detailed in Table 3. LAND and Soil, being inherently
categorical variables, did not undergo further processing. For Aspect, which was divided
into eight categories based on compass directions, the “natural” method was selected
for classification.

2. Factor Detector

Spatiotemporal analysis has revealed that NDVI in Shandong Province exhibits sig-
nificant spatial heterogeneity. However, the presence of multicollinearity among the ex-
planatory variables could potentially hinder the model’s ability to effectively interpret
this heterogeneity. On the other hand, the Geodetector used in this study demonstrates
robustness against the effects of multicollinearity among the independent variables, en-
abling the accurate assessment of individual factors’ impacts on the spatial distribution
of vegetation cover. The higher the q-value obtained from the factor detector, the greater
the contribution of the factor to the response variable. Furthermore, the factor with the
highest q-value is defined as the dominant factor. As shown in Table 4, although all factors
significantly influenced the spatial variability of NDVI in the study years of 2005, 2010,
2015, and 2020 (p < 0.01), the extent to which each factor explained this variability varied.
Ordered by explanatory power, these factors are Land, Soil, Light, Elevation, Road, Pop-
ulation, Temperature, Slope, River, PAR, PRE, and Aspect. Among them, Land had the
highest p-value, reaching 0.313 in 2020, and explained more than 25% of the variability,
making it the primary influencing factor on the spatial heterogeneity of NDVI in Shandong
Province. This dominance is likely related to the impacts of human activities on land use
and ecosystem dynamics.

As indicated in Figure 13, the q-values for Aspect, River, and Population (POP) remain
consistently low with minimal variation, suggesting that their impact on NDVI changes is
relatively minor.
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Table 3. Number of breakpoints and methods of continuous variables to classification variables.

Year 2020 2015 2010 2005

Factors Methods Intervals
Num Methods Intervals

Num Methods Intervals
Num Methods Intervals

Num

PRE geometric 10 sd 10 equal 9 geometric 10
TEM natural 9 quantile 9 quantile 10 natural 10
PAR natural 10 natural 8 equal 10 equal 10

Elevation geometric 10 geometric 9 geometric 10 geometric 10
Slope sd 10 geometric 9 geometric 10 geometric 9

Aspect natural 8 natural 8 natural 8 natural 8
Soil 22 22 22 22

LAND 5 5 5 5
POP natural 10 natural 10 natural 10 natural 10
Light geometric 10 natural 10 geometric 10 natural 10
River equal 10 geometric 8 equal 9 geometric 10
Road quantile 10 equal 7 equal 7 equal 7

‘PRE’ stands for precipitation, ‘TEM’ for temperature, ‘PAR’ for photosynthetically active radiation, ‘LAND’ for
land use type, and ‘POP’ for population density. Classification methods include ‘geometric’ (dividing data based
on geometric progression), ‘natural’ (using natural breaks based on data distribution), ‘sd’ (standard deviation
intervals), ‘equal’ (creating equal intervals), and ‘quantile’ (distributing data based on quantiles).

Table 4. Drivers of normalized difference vegetation index (NDVI) q-values in Shandong Province in
2005, 2010, 2015, and 2020.

Year Factors PRE TEM PAR Elevation Slope Aspect Soil LAND POP Light River Road

2005
q-value 0.021 0.021 0.020 0.103 0.030 0.011 0.214 0.300 0.025 0.172 0.010 0.017

sig 0 0 0 0 0 0 0 0 0 0 0 0
2010 q-value 0.016 0.027 0.042 0.086 0.025 0.009 0.178 0.288 0.030 0.231 0.008 0.013

sig 0 0 0 0 0 0 0 0 0 0 0 0
2015 q-value 0.019 0.032 0.013 0.109 0.017 0.005 0.162 0.262 0.033 0.212 0.008 0.014

sig 0 0 0 0 0 0 0 0 0 0 0 0

2020
q-value 0.008 0.028 0.014 0.158 0.026 0.007 0.206 0.313 0.038 0.197 0.023 0.055

sig 0 0 0 0 0 0 0 0 0 0 0 0

‘PRE’ stands for precipitation, ‘TEM’ for temperature, ‘PAR’ for photosynthetically active radiation, ‘LAND’ for
land use type, and ‘POP’ for population density.

3. Interaction Detector

In the longitudinal analysis of the relationship between the NDVI and key driving
factors in Shandong Province, it was found that changes in NDVI are influenced not only by
individual factors but also exhibit more complex dynamics when multiple factors interact.
In particular, by comparing single-factor analysis and interaction detection, a deeper
understanding of how these factors collectively affect vegetation cover was achieved.

In the single-factor analysis, significant effects of land use type (LAND), light expo-
sure (LIGHT), and soil type on NDVI were observed. Changes in land use, such as the
transformation of forested areas into agricultural lands or urban territories, directly altered
the type and density of surface vegetation, subsequently affecting the NDVI values. Light
exposure, a critical factor for plant growth, also had significant impacts on NDVI across
different years.

However, through interaction detection, it was found that, when two or more factors
acted simultaneously, their impact on NDVI exhibited patterns of bivariate enhancement
and nonlinear strengthening, often exceeding the effects of individual factors. As shown
in Figure 14, the dual interaction between land use and elevation in the analysis of 2020
demonstrated significant explanatory power (q-value of 0.4), indicating substantial differ-
ences in the impact of these combined factors on the spatial distribution of NDVI. Similarly,
interactions involving light exposure and other factors also demonstrated variable trends,
although their explanatory power fluctuated across different years.
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The comprehensive analysis indicates that NDVI changes are influenced by a variety
of factors, with interactions playing a particularly crucial role. Data from 2005 to 2020
indicate that land type and light exposure are primary influencing factors, though the
extent of their impact varies over time. Furthermore, interaction analysis provides a more
complex yet comprehensive method to understand these dynamics, particularly when
assessing the long-term effects of environmental changes on ecosystems.

4. Discussion
4.1. Trends in Vegetation by NDVI Changes

This study employs the NDVI to examine the trends in vegetation cover in Shandong
Province from 2001 to 2020. The findings indicate that vegetation cover in Shandong
Province has exhibited complex spatiotemporal variations over the past two decades,
with significant growth trends reflecting the success of regional vegetation restoration
and ecological rehabilitation efforts. Compared to traditional studies, such as the analysis
by Dong et al. [52], this research provides a more detailed description of spatiotemporal
dynamics, revealing variations in the intensity of vegetation restoration across different
regions. These variations may be related to the implementation intensity of regional
ecological policies and community participation, particularly in ecological reserves and
peri-urban areas where vegetation increases have been more significant.

4.2. The Relationship between Climatic Factors and Vegetation NDVI

According to the analysis in this study, there is a significant positive correlation
between NDVI and both precipitation and temperature in Shandong Province, supporting
the findings of Dong et al. [52] that climatic factors are key drivers of vegetation growth.
Moreover, our research indicates that PAR has a complex effect on NDVI, suggesting that
the role of sunlight may vary across different ecological zones due to limitations in moisture
conditions. These findings emphasize the importance of how changes in precipitation and
temperature, under the backdrop of global warming, can affect vegetation growth cycles
and biomass accumulation, thereby impacting regional vegetation cover. Therefore, future
models on the impact of climate factors on vegetation should consider these regional
differences more thoroughly.

4.3. The Impact of Human Activities on Vegetation NDVI

Similarly to other studies [37,50,53], this research finds that human activities, par-
ticularly changes in land use, have a significant impact on NDVI. Through Geodetector
analysis, we further confirm that changes in land cover type are a major human-driven
factor affecting NDVI, especially in regions with intense agricultural activity and rapid
urban expansion. Specifically, activities such as agricultural expansion, urbanization pro-
cesses, and deforestation directly alter the coverage and structure of natural vegetation,
impacting not only ecological functions but also potentially leading to biodiversity loss and
land degradation. Hence, effective land management and vegetation restoration strategies
are crucial for maintaining ecological balance and promoting sustainable development.

4.4. Limitations of the Study

Despite providing significant insights into the changes in vegetation cover in Shan-
dong Province, this study has limitations. For example, the spatial resolution of the NDVI
data used may not capture fine-scale vegetation dynamics adequately. Additionally, al-
though meteorological data like photosynthetically active radiation are useful in explaining
vegetation changes, limitations in the temporal coverage and resolution of the datasets
might not fully reflect actual surface conditions. Consequently, there is an increasing need
for high-precision and high-resolution remote sensing data to more accurately assess the
impacts of climatic factors and human activities on vegetation dynamics.
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4.5. Future Research Directions

In light of the findings and limitations of the current study, future research should
consider the following directions: Firstly, introduce higher resolution and longer time
series remote sensing data to enhance the precision and reliability of vegetation change
monitoring. Secondly, employ more complex statistical models and machine learning
techniques to analyze the nonlinear relationships and interactions between vegetation
and climatic factors, as well as human activities. Furthermore, future research should
consider biotic interactions and the time-lagged effects of abiotic factors. For example,
climate change has a significant impact on seedling survival at the community level [39].
Additionally, a significant rainfall event might have delayed effects on vegetation growth,
becoming evident only weeks or months later [40]. These factors are often subtle and
complex, yet they can greatly enhance our understanding of the spatiotemporal variations
in vegetation cover. Investigating these broader ecological variables can provide deeper
insights into the relationship between vegetation dynamics and climate.

5. Conclusions

This study used NDVI as an indicator to investigate the spatiotemporal changes and
driving forces of vegetation in Shandong Province from 2001 to 2020, employing trend
analysis, partial correlation analysis, and the Geodetector model.

Throughout the study period in Shandong Province, NDVI data indicated signs of
vegetation recovery, exhibiting an upward trend with a fluctuation rate of 0.0017. Initial
stability was observed in the majority of areas, with more than 70% stability in 2001–2005
and over 45% in 2006–2010. A notable transition to increased vegetation health was evident
in the later periods of 2011–2015 and 2016–2020. Partial correlation analysis showed NDVI
to generally have a positive correlation with precipitation (average coefficient of 0.203) and
a significant positive correlation with temperature (average of 0.283), but a predominantly
negative correlation with photosynthetically active radiation (average of −0.159). Geode-
tector analysis identified land use type as the most influential factor on vegetation changes,
followed by nighttime lighting, soil type, and elevation. The interaction between land
use type and soil type was particularly significant, explaining 42% of the NDVI variation
and highlighting the dominant influence of human activities on vegetation dynamics in
the province.

The findings of this study offer vital insights for the formulation and decision-making
processes concerning the ecological environment of Shandong Province, significantly con-
tributing to the maintenance of ecological security and sustainable development in the
region. In future work, we plan to incorporate diverse vegetation change indices, such as
net primary production (NPP) and remote sensing ecological indexes. Additionally, we
aim to examine the spatiotemporal variations in vegetation across Shandong Province by
considering a broader range of variables, including those related to air quality, to provide a
more comprehensive analysis.
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