Exploring the Transmission Process of Carbon Sequestration Services and Its Applications: A Case Study of Hainan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Defining Carbon Sequestration
2.4. Carbon Sequestration Quantification
2.4.1. Supply of Carbon Sequestration
2.4.2. Demand of Carbon Sequestration
2.5. Application of Gravity Modeling
3. Results
3.1. Supply Characteristics of Carbon Sequestration
3.2. Demand Characteristics of Carbon Sequestration
3.3. Spatially Linked Characteristics of Carbon Sequestration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 2016, 6, 1023–1027. [Google Scholar] [CrossRef]
- Keenan, T.F.; Prentice, I.C.; Canadell, J.G.; Williams, C.A.; Wang, H.; Raupach, M.; Collatz, G.J. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 2016, 7, 13428. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, C.A.; Richardson, A.E.; Wade, L.J.; Batten, G.D.; Blanchard, C.; Kirkegaard, J.A. Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biol. Biochem. 2013, 60, 77–86. [Google Scholar] [CrossRef]
- Ding, Z.L. Research on framework roadmap of China’s carbon neutrality. Chin. Ind. Inform. Technol. 2021, 8, 54–61. [Google Scholar]
- Xiao, Y.; Xiao, Q.; Xiong, Q.; Yang, Z. Effects of Ecological Restoration Measures on Soil Erosion Risk in the Three Gorges Reservoir Area Since the 1980s. Geo Health. 2020, 4, e2020GH000274. [Google Scholar] [CrossRef]
- Liu, H.; Xing, L.; Wang, C.; Zhang, H. Sustainability assessment of coupled human and natural systems from the perspective of the supply and demand of ecosystem services. Front. Earth Sci. 2022, 10, 1025787. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, Q.; Zhang, J. Balancing the international benefits and risks associated with implementation of ecological policy on the Qinghai-Tibet plateau, China. Gondwana Res. 2023, 115, 183–190. [Google Scholar] [CrossRef]
- Solomatova, N.V.; Caracas, R.; Manning, C.E. Carbon sequestration during core formation implied by complex carbon polymerization. Nat. Commun. 2019, 10, 789. [Google Scholar] [CrossRef]
- Barr, A.G.; Black, T.A.; Hogg, E.H.; Griffis, T.J.; Morgenstern, K.; Kljun, N.; Theede, A.; Nesic, Z. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob. Change Biol. 2007, 13, 561–576. [Google Scholar] [CrossRef]
- Zhao, J.F.; Liu, D.S.; Cao, Y.; Zhang, L.J.; Peng, H.W.; Wang, K.L.; Xie, H.F.; Wang, C.Z. An integrated remote sensing and model approach for assessing forest carbon fluxes in China. Sci. Total Environ. 2022, 811, 152480. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, K.J.; van Hoolst, R.; Balzarolo, M.; Janssens, I.A.; Vicca, S.; Ghent, D.; Prentice, I.C. Towards a general monitoring system for terrestrial primary production: A test spanning the european drought of 2018. Remote Sens. 2023, 15, 1693. [Google Scholar] [CrossRef]
- Wagle, P.; Gowda, P.H.; Billesbach, D.P.; Northup, B.K.; Torn, M.S.; Neel, J.P.S.; Biraud, S.C. Dynamics of CO2 and H2O fluxes in Johnson grass in the U.S. Southern Great Plains. Sci. Total Environ. 2020, 739, 140077. [Google Scholar] [CrossRef] [PubMed]
- Mašek, O.; Buss, W.; Brownsort, P.; Rovere, M.; Tagliaferro, A.; Zhao, L.; Cao, X.; Xu, G. Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement. Sci. Rep. 2019, 9, 5514. [Google Scholar] [CrossRef]
- Yarushina, V.M.; Bercovici, D. Mineral carbon sequestration and induced seismicity. Geophys. Res. Lett. 2013, 40, 814–818. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, Q. Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China. Environ. Monit. Assess. 2018, 190, 258. [Google Scholar] [CrossRef]
- Ren, H.; Li, L.; Liu, Q.; Wang, X.; Li, Y.; Hui, D.; Jian, S.; Wang, J.; Yang, H.; Lu, H.; et al. Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan island, southern China. PLoS ONE 2014, 9, e108163. [Google Scholar] [CrossRef]
- Yu, J.F. Monitoring and assessment of forests and their ecological functions in Hainan. J. South Chin. Univ. Trop. Agric. 2020, 11, 51–57. [Google Scholar]
- Pouderoux, H.; Lamarche, G.; Proust, J.N. Building an 18 000-year-long paleo-earthquake record from detailed deep-sea turbidite characterisation in Poverty Bay, New Zealand. Nat. Hazard. Earth Syst. Sci. 2012, 12, 2077–2101. [Google Scholar] [CrossRef]
- Christie, M.; Rayment, M. An economic assessment of the ecosystem service benefits derived from the SSSI biodiversity conservation policy in England and Wales. Ecosyst. Serv. 2012, 1, 70–84. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Zou, J.; Shi, Y.; Lu, Y.; Zhang, W.; Hu, Z. Interannual variability in soil respiration from terrestrial ecosystems in China and its response to climate change. Sci. China Earth Sci. 2012, 55, 2091–2098. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Lorilla, R.S.; Kalogirou, S.; Poirazidis, K.; Kefalas, G. Identifying spatial mismatches between the supply and demand of ecosystem services to achieve a sustainable management regime in the Ionian Islands (Western Greece). Land Use Pol. 2019, 88, 104171. [Google Scholar] [CrossRef]
- González-García, A.; Palomo, I.; González, J.A.; López, C.A.; Montes, C. Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Pol. 2020, 94, 104493. [Google Scholar] [CrossRef]
- Dong, J.; Li, C. Structure characteristics and influencing factors of China’s carbon emission spatial correlation network: A study based on the dimension of urban agglomerations. Sci. Total Environ. 2022, 853, 158613. [Google Scholar] [CrossRef]
- Linehan, J.; Gross, M.; Finn, J. Greenway planning: Developing a landscape ecological network approach. Landscape Urban Plan. 1995, 33, 179–193. [Google Scholar] [CrossRef]
- Lv, T.; Zhao, Q.; Fu, S.; Jin, G.; Zhang, X.; Hu, H.; Xu, G. Deciphering flows: Spatial correlation characteristics and factors influencing carbon emission intensity in the Yangtze River Delta. J. Clean. Prod. 2024, 483, 144290. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, W.; Zhang, C. Towards COP26 targets: Characteristics and influencing factors of spatial correlation network structure on US carbon emission. Resour. Policy 2023, 81, 103285. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.; Wang, Q. Magnitude, pattern and controls of carbon flux and carbon use efficiency in China’s typical forests. Global Planet. Change 2019, 172, 464–473. [Google Scholar] [CrossRef]
- Ye, X.; Chuai, X. Carbon sinks/sources’ spatiotemporal evolution in China and its response to built-up land expansion. J. Environ. Manag. 2022, 321, 115863. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, Y.; Wu, J. Assessment of carbon balance attribution and carbon storage potential in China’s terrestrial ecosystem. Resour. Conserv. Recycl. 2023, 189, 106748. [Google Scholar] [CrossRef]
- Gong, W.; Duan, X.; Sun, Y.; Zhang, Y.; Ji, P.; Tong, X.; Qiu, Z.; Liu, T. Multi-scenario simulation of land use/cover change and carbon storage assessment in Hainan coastal zone from perspective of free trade port construction. J. Clean. Prod. 2023, 385, 135630. [Google Scholar] [CrossRef]
- Wang, C.; Li, B.; Li, J.; Bai, J.; Zhang, Y. Adaptive management of mountain ecosystems based on carbon sequestration: Based on the “state-flow-utility” framework. Ecol. Indic. 2024, 168, 112703. [Google Scholar] [CrossRef]
- Saud, P.; Chhetri, S.G.; Pelkki, M. Not population density, but city size and per capita income influence the urban forest carbon sequestration: A case of growing cities in Arkansas, USA. Environ. Chall. 2024, 16, 101000. [Google Scholar] [CrossRef]
- Yang, M.; Luo, J.; Zhu, L.; Lu, P. Impact of land use change on the spatiotemporal evolution of ecosystem services in tropical islands: A case study of Hainan island, China. Land 2024, 13, 1244. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Díaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA. 2009, 106, 1305–1312. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Watson, K.B.; Koh, I.; Ellis, A.M.; Nicholson, C.C.; Posner, S.; Richardson, L.L.; Sonter, L.J. Disaggregating the evidence linking biodiversity and ecosystem services. Nat. Commun. 2016, 7, 13106. [Google Scholar] [CrossRef]
- Ferraro, P.J.; Hanauer, M.M. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure. Proc. Natl. Acad. Sci. USA 2014, 111, 4332–4337. [Google Scholar] [CrossRef]
- Ruhl, J.B.; Salzman, J.; Arnold, C.A.; Craig, R.; Hirokawa, K.; Olander, L.; Palmer, M.; Ricketts, T.H. Connecting ecosystem services science and policy in the field. Front. Ecol. Environ. 2021, 19, 519–525. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G.; et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 2019, 9, 306–312. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Anwar, M.R.; Cowie, A.; Li Liu, D.; Summers, D.; Paul, K.; Feng, P. Future climate impacts on forest growth and implications for carbon sequestration through reforestation in southeast Australia. J. Environ. Manag. 2022, 302, 113964. [Google Scholar] [CrossRef]
- Hou, W.; Hu, T.; Yang, L.; Liu, X.; Zheng, X.; Pan, H.; Zhang, X.; Xiao, S.; Deng, S. Matching ecosystem services supply and demand in China’s urban agglomerations for multiple-scale management. J. Clean. Prod. 2023, 420, 138351. [Google Scholar] [CrossRef]
Type | Time | Source |
---|---|---|
LULC | 2000, 2005, 2010, 2015, 2020 | Resource and Environment Science and Data Center (http://www.resdc.cn (accessed on 9 January 2025)) |
NDVI | 2000–2020 (half-monthly) | Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov (accessed on 9 January 2025)) |
Precipitation | 2000–2020 (monthly) | Chinese National Metrological Information Center (http://data.cma.cn (accessed on 9 January 2025)) |
Temperature | 2000–2020 (monthly) | Chinese National Metrological Information Center (http://data.cma.cn (accessed on 9 January 2025)) |
Total solar radiation | 2000–2020 (monthly) | Chinese National Metrological Information Center (http://data.cma.cn (accessed on 9 January 2025)) |
Soil texture | / | Land–Atmosphere Interaction Research Group (http://globalchange.bnu.edu.cn/research/data (accessed on 9 January 2025)) |
Bulk density | / | Land–Atmosphere Interaction Research Group (http://globalchange.bnu.edu.cn/research/data (accessed on 9 January 2025)) |
Soil organic matter | / | Land–Atmosphere Interaction Research Group (http://globalchange.bnu.edu.cn/research/data (accessed on 9 January 2025)) |
Population | 100 m (yearly) | WorldPop (https://hub.worldpop.org/ (accessed on 9 January 2025)) |
CO2 emissions | County | figshare (https://doi.org/10.6084/m9.figshare.c.5136302.v2 (accessed on 9 January 2025)) |
Region | County | Supply–Demand Balance (105 tC) | ||||
---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | ||
Central mountains | Baisha | 3.89 (+) | 4.01 (+) | 3.89 (+) | 3.28 (+) | 3.13 (+) |
Baoting | 1.36 (+) | 1.16 (+) | 0.89 (+) | 0.59 (+) | 0.31 (+) | |
Changjiang | 1.18 (+) | 1.11 (+) | 0.84 (+) | 0.14 (+) | 0.04 (+) | |
Qiongzhong | 5.56 (+) | 5.68 (+) | 5.29 (+) | 5.1 (+) | 5.09 (+) | |
Wuzhishan | 2.82 (+) | 2.88 (+) | 2.69 (+) | 2.53 (+) | 2.42 (+) | |
Northern plains | Haikou | −7.02 (−) | −8.99 (−) | −13.98 (−) | −26.28 (−) | −35.28 (−) |
Chengmai | −0.91 (−) | −1.17 (−) | −1.78 (−) | −4.14 (−) | −5.08 (−) | |
Ding an | −0.89 (−) | −0.99 (−) | −1.45 (−) | −2.66 (−) | −3.17 (−) | |
Lin gao | −1.54 (−) | −1.73 (−) | −2.39 (−) | −4.35 (−) | −5.2 (−) | |
Qionghai | −1.67 (−) | −1.93 (−) | −2.83 (−) | −4.91 (−) | −5.86 (−) | |
Tunchang | 0.19 (+) | 0.11 (+) | −0.28 (−) | −1.45 (−) | −1.93 (−) | |
Wenchang | −2.19 (−) | −2.43 (−) | −3.49 (−) | −5.83 (−) | −6.88 (−) | |
Danzhou | −2.84 (−) | −3.32 (−) | −4.67 (−) | −9.02 (−) | −10.89 (−) | |
Southern coastal | Dongfang | 1.21 (+) | 0.98 (+) | 0.47 (+) | −1.21 (−) | −1.97 (−) |
Ledong | 2.53 (+) | 1.89 (+) | 1.31 (+) | −0.27 (−) | −1.21 (−) | |
Lingshui | −0.85 (−) | −1.06 (−) | −1.71 (−) | −2.92 (−) | −3.6 (−) | |
Wanning | −1.35 (−) | −1.74 (−) | −2.8 (−) | −4.89 (−) | −5.97 (−) | |
Sanya | 0.32 (+) | −0.71 (−) | −2.4 (−) | −6.29 (−) | −9.73 (−) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, B.; Xiao, Y.; Liu, B.; Geng, J.; Wu, W.; Qin, D. Exploring the Transmission Process of Carbon Sequestration Services and Its Applications: A Case Study of Hainan. Forests 2025, 16, 136. https://doi.org/10.3390/f16010136
Ren B, Xiao Y, Liu B, Geng J, Wu W, Qin D. Exploring the Transmission Process of Carbon Sequestration Services and Its Applications: A Case Study of Hainan. Forests. 2025; 16(1):136. https://doi.org/10.3390/f16010136
Chicago/Turabian StyleRen, Bingnan, Yang Xiao, Bin Liu, Jing Geng, Wenxiang Wu, and Dajun Qin. 2025. "Exploring the Transmission Process of Carbon Sequestration Services and Its Applications: A Case Study of Hainan" Forests 16, no. 1: 136. https://doi.org/10.3390/f16010136
APA StyleRen, B., Xiao, Y., Liu, B., Geng, J., Wu, W., & Qin, D. (2025). Exploring the Transmission Process of Carbon Sequestration Services and Its Applications: A Case Study of Hainan. Forests, 16(1), 136. https://doi.org/10.3390/f16010136