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Abstract: Remote detection of forest disturbance remains a key area of interest for scientists and
land managers. Subtle disturbances such as drought, disease, insect activity, and thinning harvests
have a significant impact on carbon budgeting and forest productivity, but current change detection
algorithms struggle to accurately identify them, especially over decadal timeframes. We introduce
an algorithm called Edyn, which inputs a time series of residuals from harmonic regression into
a control chart to signal low-magnitude, consistent deviations from the curve as disturbances.
After signaling, Edyn retrains a new baseline curve. We compared Edyn with its parent algorithm
(EWMACD—Exponentially Weighted Moving Average Change Detection) on over 3500 visually
interpreted Landsat pixels from across the contiguous USA, with reference data for timing and type of
disturbance. For disturbed forested pixels, Edyn had a mean per-pixel commission error of 31.1% and
omission error of 70.0%, while commission and omission errors for EWMACD were 39.9% and 65.2%,
respectively. Edyn had significantly less overall error than EWMACD (F1 = 0.19 versus F1 = 0.13).
These patterns generally held for all of the reference data, including a direct comparison to other
contemporary change detection algorithms, wherein Edyn and EWMACD were found to have lower
omission error rates for a category of subtle changes over long periods.

Keywords: change detection; EWMACD; forest disturbance; Fourier; Landsat; quality control;
remote sensing

1. Introduction

Remote sensing, with Landsat in particular, has long been used to detect forest disturbance at a
wide variety of scales [1–4]. Since the Landsat archive was made freely available, numerous change
detection algorithms have been developed which use up to decades-long time series of observations to
signal, quantify, and attribute forest disturbance [5–11]. These time series algorithms improve on more
traditional bi-temporal, or image-to-image, approaches.

Disturbances that occur abruptly in the temporal domain such as clearcut harvests, fires and
land-use conversions tend to be easier to detect than more subtle changes brought on by thinning,
drought, insects and other within-class changes [12–15]. These subtle changes are harder to detect
but may still contribute significantly to the overall forest carbon budget [16–18]. For example,
Cohen et al. [13] found evidence of a more general forest decline, defined there as canopy loss
not associated with or attributable to other common classes (in the case of that study: fire, harvest,
wind, water, land use conversion, or debris), that has a wide extent and an increasingly sizable impact
on forest productivity and carbon flow. Given that these subtle changes can affect the structure and
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functioning of forests over large areas, there is a great need to identify them and other such within-class
changes (e.g., a thinned or drought-stressed forest) using remote sensing.

Exponentially Weighted Moving Average Change Detection (EWMACD) [5] is a freely available,
open-source [19] pixel-level time series change detection algorithm originally designed to detect a
wide variety of persistent changes to forested pixels. EWMACD uses exponentially weighted moving
average (EWMA) control charts to analyze residual values resulting from fitting the input time series
to harmonic (e.g., Fourier) curves to account for seasonal patterns. The result is a time series of signals
which convey not only the presence of a disturbance but also the magnitude and timing, up to the
temporal resolution of the input data. Part of the class of memory control charts, EWMA charts are
specifically designed to detect subtle shifts from the in-control state, the state in which a process (in this
case, forest status) continues to behave according to its historically observed or intended characteristics
(e.g., stable forest) [20–22]. This makes them ideally suited to detect not only acute changes, such as
harvests and fires, but also longer, slower periods of gradual forest decline.

EWMACD trains its harmonic curves on an initialization period, the training period, then compares
all subsequent data against this initial training. This results in it being a time series-based change
detection method that can be interpreted in a bi-temporal manner. Used this way, EWAMCD has
previously been shown to detect subtle forest disturbance, in particular thinning, at a sub-pixel spatial
scale using Landsat data [5].

However, EWMACD continues to measure departures from the initial curve even after signaling
a disturbance. While this can be helpful in comparing a pixel’s status from one time to the next, it does
not effectively monitor the pixel’s trajectory in a continuous fashion [5]. For analyses spanning decades,
a single training period is often insufficient to effectively capture forest change. Figure 1 offers an
example of this problem. In this example, the pixel covers a pine forest plantation in North Carolina,
USA, which exhibits a typical growth and harvest pattern. EWMACD is initialized during a condition
of forest maturity, and it correctly signals the disturbance in 1991. However, it continues to treat the
mature forest as the baseline for comparison, resulting in a consistent loss signal even when the forest
clearly recovers; the pattern repeats for the disturbance in 2003–2004. While this example is not of a
subtle disturbance, it does illustrate the problem associated with using a fixed reference curve.
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planted pine stand. The blue line represents the baseline fitted harmonic curve from which residuals 
are taken. Black and purple dashed vertical lines demarcate the beginning and ending of the curve’s 
training period, respectively. The algorithm successfully signals the disturbances in 1991 and 2003–
2004, but it is unable to detect the subsequent regrowth from either because it continues to use the 
original training curve. The disturbance magnitude represents the distance of the EWMACD signals 
from 0 (stable) in units of control limits (the signaling threshold for the underlying exponentially 
weighted moving average chart). 

Figure 1. EWMACD (Exponentially Weighted Moving Average Change Detection) outputs based on
an NDVI (Normalized Difference Vegetation Index) time series for an example pixel covering a planted
pine stand. The blue line represents the baseline fitted harmonic curve from which residuals are taken.
Black and purple dashed vertical lines demarcate the beginning and ending of the curve’s training
period, respectively. The algorithm successfully signals the disturbances in 1991 and 2003–2004, but it
is unable to detect the subsequent regrowth from either because it continues to use the original training
curve. The disturbance magnitude represents the distance of the EWMACD signals from 0 (stable)
in units of control limits (the signaling threshold for the underlying exponentially weighted moving
average chart).



Forests 2017, 8, 304 3 of 18

Other contemporary change detection algorithms incorporate methods for long-term trend
analysis. LandTrendr [7], ITRA (Image Trends from Regression Analysis) [8], VCT (Vegetation Change
Tracker) [6], and VeRDET (Vegetation Regeneration and Disturbance Estimates through Time) [11]
automatically target multi-year disturbances, but they do not directly use all available data and are
constrained to an annual time step, which can reduce their ability to precisely identify disturbance
timing. The Continuous Change Detection and Classification algorithm (CCDC) [9], an algorithm
based on harmonic regression principles similar to those underlying EWMACD, has built-in methods
for retraining curves and does use the full time series. However, CCDC is specifically focused on
between-class changes and has difficulty signaling for “partially changed” pixels [9], the area in which
EWMACD specializes.

Thus, what is needed is a dynamic update to EWMACD: an algorithm which can detect subtle
forest disturbances in a long-term, flexible fashion. Accordingly, our objective is to present and
assess Edyn (dynamic EWMACD), an EWMACD-based change detection algorithm that retrains its
harmonic reference curves after a disturbance is registered. In this study we describe the differences
between Edyn and EWMACD, then compare the two algorithms in an agreement assessment on over
3500 forested pixels from across the contiguous United States (CONUS) using decades-long time spans.

2. Materials and Methods

2.1. Reference Data and Spectral Data

For reference data in our assessment, we used a collection of pixels interpreted by users of the
TimeSync software [23], a web application hosted by Oregon State University. (TimeSync version 2.0
was used for generating the reference data.) These pixels were randomly sampled from a collection
of 179 Landsat scenes covering a diverse subset of the CONUS ([13], Figure 1), with each scene
hosting different forest types and disturbance regimes. Figure 2 shows the same pixel from
Figure 1, when processed by TimeSync. All available Landsat images within the growing season
(approximately May through October) were acquired for a 200 × 200-pixel area around each sample
pixel. Each pixel’s time series was input into TimeSync and visually interpreted by a pair of expert
analysts, with disagreements adjudicated by a third interpreter. For further information about the
TimeSync process the reader is referred to [23]; for more on the reference dataset used in this study,
please refer to [13].

For our study, we selected a subset of these reference data which corresponded to time series
representing forested pixels. Typical timeframes ranged from 1985 to 2012, covering multiple Landsat
sensors and platforms. Spectral data for each pixel were provided, as were data regarding the TimeSync
disturbance interpretations. The dataset used in this study comprised 3751 pixels in total. We excluded
all data marked by the associated Fmask codes [24] as non-clear, then computed NDVI (Normalized
Difference Vegetation Index) values [25] for all remaining data to use as inputs to EWMACD and Edyn.
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2.2. Review and Updates to EWMACD

While developing Edyn, we also updated EWMACD to improve general performance. A brief
summary of the algorithm (Figure 3) and a description of these key modifications follows. For a full
description of the original version of EWMACD, please refer to [5]. Vectors and matrices are in bold
typeface; scalars are not.
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Given an image time series of length n, t = {t1, t2, . . . , tn}, and a corresponding Julian date time
series d = {d1, d2, . . . , dn}, we first estimate harmonic coefficients for the first ntrain < n elements by
ordinary least squares estimation using ks sine harmonics and kc cosine harmonics:

β̂ =
(
X′trainXtrain

)−1X′traintntrain , (1)

where Xtrain is the ntrain × (1 + ks + kc) design matrix consisting of a ones column and each harmonic
adjustment to d. In practice, we recompute β̂ after screening out all elements that have standardized
residual values greater than a global, user-specifiable threshold. We then compute residuals for the full
time series,

r = t−Xβ̂, (2)

where X is the full n× (1 + ks + kc) design matrix computed similarly. We then estimate the training
period variance,

s2 =
rntrainr′ntrain

ntrain − 1
. (3)

Next, we compute EWMA values for the full time series by setting EWMA1 = 0 and recursively
calculating:

EWMAi = (1− λ)EWMAi−1 + λri, i ∈ {2, 3, . . . , n}, (4)

where λ ∈ (0, 1] is the smoothing parameter which indicates the weight of the current observation
against the exponentially decayed weight of all prior observations. Note that we assume the mean
of the in-control residuals (based on stable, undisturbed forest) to be 0, since OLS is an unbiased
estimation technique.

At the same time, we compute signaling thresholds:

CLi = ±Ls

√(
λ

2− λ

)
[1− (1− λ)2i], i ∈ {2, 3, . . . , n}, (5)

where L (the control limit) determines how many standard deviations away from the in-control mean
of 0 are required to signal. Then, we record the EWMACD outputs in relative form by dividing the
EWMA values by the control limits and taking the floor of the absolute values multiplied by the
original signs:

EWMACD = sign(EWMA)

⌊
|EWMA|

CL

⌋
. (6)

When the EWMA values extend beyond the signaling thresholds, EWMACD signals a disturbance;
otherwise a value of 0 indicates no signaled disturbance. (The user can instead obtain an output of the
raw EWMA chart values, if desired). Note that using this rule, EWMACD signals for both negative
(e.g., removal) and positive (e.g., growth) deviations from the curve; EWMACD can be made to ignore
positive deviations by setting the positive value of CLi to infinity. EWMACD outputs correspond to
each element of the input time series; thus they may be post-processed and summarized to give annual
or similar summaries.

Parameter Updates

Many of the pre- and post-processing subroutines in EWMACD rely on a measure of persistence,
defined here as a quantification of the number of consecutive elements in the time series that must
occur before some decision is made (e.g., recording a signal as opposed to treating it as anomalous).
This persistence was previously a global, user-specified parameter. However, due to inherently variable
conditions and differences in image availability as functions of both time and location, the density
of data for any given pixel or timeframe varies considerably. We therefore modified the persistence
parameter into a persistence per year parameter, pyear, allowing a user to specify what proportion of a
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year (or possibly multiple years) is considered to be “long enough” for the algorithm to act. Given this
value, EWMACD now takes the mean number of elements per year in the time series, then modifies
this value accordingly to obtain a per-pixel value for persistence. This value is thus data-driven yet
more consistent with user expectations.

The quality of fit for the initial harmonic curve has a strong impact on EWMACD’s accuracy in
general, making it important to have enough data to accurately and robustly fit this curve. Taking too
little data into the training period risks overfitting and allowing the otherwise-unconstrained curves
to deviate nonsensically [9,26,27], which can result in many false alarm signals when real data are
compared to the extrapolations. On the other hand, taking too much data into the training period
reduces the algorithm’s effectiveness by rendering a substantial portion of the time series unavailable
for change detection, and doing so also increases the likelihood that the algorithm will attempt to train
a curve on a disturbance. Thus, in an ideal situation EWMACD will take only the minimum amount of
data required for an accurate curve-fitting. We achieve this by first determining a minimum training
length of at least 3(1 + ks + kc), where ks and kc are the number of harmonics for the sine and cosine
terms being used in the Fourier expansion. Then, using a moving window starting at the beginning of
the time series, the algorithm fits successive harmonic curves until it either achieves a minimum fit
R2, denoted q f it, or reaches the maximum training date (by default the point in the time series twice
as large as the endpoint of the minimum training length), at which point it accepts the final curve.
This process reduces the likelihood of training on a disturbance while ensuring that a well-fitted curve
is found relatively early in the time series. Between specifying pyear and q f it, the user now has more
flexible control over how likely EWMACD is to inadvertently train on a disturbance.

2.3. Edyn

When only a single disturbance occurs over a time series, EWMACD generally signals it and tracks
the magnitude as it varies over time. This magnitude is valuable in its own right, as it is derived from
the pixel’s trajectory and variability during the training period and in some sense incorporates that
pixel’s unique characteristics as a result. Additionally, EWMACD is tuned to detect low-magnitude
disturbances, as described in Section 2.2. Therefore, when determining when and how to retrain the
harmonic curve after a signaled disturbance, we wanted to utilize this information and preserve the
subtle change detection as much as possible.

The workflow of the Edyn algorithm is given in Figure 4. Edyn initializes just as EWMACD
does, with a harmonic curve fitted and EWMA values calculated to produce an output time series of
signal values. However, when a disturbance is signaled, Edyn reinitializes on a subset of the original
time series, restarting after the disturbance is presumed stabilized and recording the original outputs
from the period before the new starting point. It then repeats the core EWMACD algorithm on the
subset, reinitializing on further signals and repeating until either no disturbances are signaled or
insufficient data remain. The resulting output is a spliced collection of EWMACD signal outputs,
yielding a dynamic disturbance trajectory based on last-known-stable conditions.

The crux of Edyn’s performance lies in accurately determining when a disturbance has stabilized.
To do this, we make use of the previous EWMACD output as well as the persistence parameter and
the training period demarcation, denoted here as ttrain, as follows. Given a time series of EWMACD
outputs that signals a disturbance after the training period, we note that the outputs for the training
period are assumed to be 0 (no change). Then, the first signaled disturbance represents a vertex in
the output. However, simply reinitializing at this point would (1) most likely cause training on the
continued disturbance or recovery thereof; or (2) cause the disturbance record to be overwritten as
“retraining”. Therefore, we make the simplifying assumption that the second vertex in the signal time
series represents the point at which the original disturbance has stabilized and the pixel has reached
a new equilibrium, and we choose this point to reinitialize. Figure 5 illustrates this approach, using
the same forested pixel shown in Figures 1 and 2. Note that like EWMACD, Edyn signals for both
negative and positive deviations from the curve by default.
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Figure 5. Edyn algorithm, step by step, using the same forested pine pixel from Figures 1 and 2. (a) The
first pass of the algorithm is identical to a normal EWMACD run (the blue curve is the harmonic fit
and the black and purple lines demarcate the beginning and end of the curve training period); (b) the
second pass retrains the harmonic curve after the initial disturbance (in this case in 1991) is determined
to have stabilized; (c–f) subsequent passes continue until no further signals are detected or insufficient
training data remain.

We determine vertices in a manner similar to the methods used in LandTrendr [7],
a segmentation-based change detection algorithm which inputs a time series (typically annual steps)
and uses a sequence of linear interpolations to identify vertices. The segments defined by these vertices
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are then classified into disturbance, stable, and growth trends according to their slopes. In the case of
Edyn, we find the line between the endpoints of a given segment, then find the point in the time series
with the highest squared deviation from the line and designate it a vertex. We use this new vertex
to partition the time series into two smaller ones and repeat, finding additional vertices. Candidate
vertices are only considered if they are far enough away from previously identified vertices, using half
the persistence value as the distance threshold (making a persistence-sized interval around a given
vertex). The process is repeated until no more viable candidates can be found, at which point we
identify the second vertex. Because EWMACD signals directly indicate observed changes, choosing
this point generally ensures that the initial disturbance event is no longer active when retraining begins.
Because EWMACD signals can capture subtle disturbances, they potentially offer more information
than raw spectral or vegetation index values.

Figure 6 shows sample Edyn and EWMACD outputs for part of the study area of [5], a region of
Alabama, USA that is dense in industrial pine plantations. In both cases, there is spatial coherence,
indicating that both algorithms are likely capturing real change processes on the landscape, but note the
stand in the north-central area, indicated by the arrow. Both algorithms signal a disturbance beginning
in 2007. However, Edyn “resets” after a given time (the persistence: in this case, approximately one
year’s worth of images) and ultimately signals growth in 2010–2011. EWMACD consistently signals
the patch as a disturbance, although the degree does lessen from 2008 to 2011, as evidenced by the
color shifting from reds to yellows. In both cases, the algorithms observe the disturbance, but they
differ in how they quantify it.
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2.4. Strengths and Limitations of EWMACD/Edyn

Like any change detection algorithm, EWAMCD and Edyn have both strengths and limitations
that result from the underlying assumptions and model structure. Although it has not yet been
employed across wide spatial extents, Edyn is based on the same core algorithm and thus shares many
of the strengths and limitations of EWMACD, with the obvious exception being the ability to retrain
its harmonic curves in support of long-term monitoring.

The most apparent strength of the two algorithms is their ability to detect subtle changes.
EWMACD was shown to accurately detect forest thinning harvests in an industrial pine setting,
including canopy reductions of as low as 25% based on visual inspection of aerial photographs [5].
EWMACD also detected stand-replacing disturbances with high accuracy, and the use of signal strength
relative to pixel-specific control limits yielded maps which indicated both disturbance occurrence and
relative magnitude, as well as direction (e.g., growth or removal). Furthermore, by using all available
images instead of composites or annualized summaries, EWMACD signaled detected changes with
good temporal precision, often signaling only one or two images after the disturbance occurred [5].
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Finally, because the algorithms are defined generally, they can be employed on any remotely sensed
time series regardless of land cover, sensor platform, or image frequency—provided sufficient data
exist to train harmonic curves (two or three periods’ worth, as a rule of thumb).

However, this generality also underlies many of the algorithms’ limitations. EWMACD and
Edyn are intended to detect and monitor change, but they are not in themselves designed to
attribute such changes to particular causes (though their outputs could be used in an algorithm
that does, such as that of [10] or [28]). The algorithms also rely on the harmonic curves for both the
residual time series and the in-control statistics, so any pixel that normally exhibits non-harmonic
patterns through time (e.g., vegetation in very arid climates) could confound the algorithms’ outputs.
Similarly, a sparse time series for some pixels (e.g., from a cloud-covered rainforest) can lead to model
overspecification, causing the in-control standard deviation estimate to be so small that the algorithms
subsequently signal at the slightest fluctuation. In general, the algorithms’ focus on detecting subtle
disturbances results in their being prone to larger commission error rates, as was seen in [14]. Finally,
EWMACD/Edyn currently input a single spectral band or index at a time. While this may be sufficient
for detecting typical changes in forests [29], in general the availability of multiple spectral bands
represents a wealth of information that in many cases is already preprocessed and should be utilized.
While rigorously adapting EWMACD/Edyn to a multiband input is outside the scope of the current
study, we have already begun to do so.

2.5. Agreement Assessment

We used a simplified classification of disturbance to compare both EWMACD and Edyn against
the TimeSync reference dataset. In particular, we computed EWMACD and Edyn outputs for NDVI
time series derived from each of the 3751 forested pixels, using the full time series in each case and
using the same default parameters given in Table 1. Note that our choice of the control limit, L,
is slightly higher than the conventional value of L = 3 [21]. We did this to better reflect the choice of
parameters used in [14], as that study used similar reference data.

Table 1. Selected parameters for Edyn/EWMACD used in this study.

Parameter Description Value

λ Smoothing parameter; weight of current observation against prior history 0.3
L Control limit; number of standard deviations away from 0 required to signal 5

pyear Proportion of a typical year desired to designate “consistent” change 1
kc, ks Number of cosine and sine harmonics used in the curve-fitting, respectively 2, 2
q f it Minimum R2 required to accept harmonic curve 0.7

We summarized the Edyn/EWMACD outputs to an annual time step using a simple mean value
per year approach. We then reclassified the annualized outputs into −1 (removal/decline) for negative
values or 0 (no change/growth) for nonnegative values. Accordingly, any year in which a negative
signal was generated for a given date would be a year in which the signal value was automatically −1.
Similarly, we reclassified TimeSync segments into −1 and 0 and converted the TimeSync trajectories to
annual timesteps and assigned the status from the corresponding segment to each year. For example,
the pixel shown in Figure 2 had “Harvest” for 1990, “Growth/Recovery” for 1991–2003, and “Fire” for
2004, based on the corresponding TimeSync segment designations. We also preserved a simplified
listing of disturbance agents as designated by TimeSync: Fire (4.4% of all annualized disturbances),
Harvest (39.8%, including mechanical clearing), Stress (33.8%), and Other (21.9%, including wind,
debris, water, and other agents which could not be attributed to another cause).

In general, disturbance of any type is a rare event [30]: across all forested TimeSync pixels and
years, approximately 4% of the recorded values were disturbances, with 56% being no change and
40% being growth of some kind. This led us to use metrics which emphasize the algorithms’ ability to
detect disturbances’ occurrence and timing within the general time series. In particular, we wanted to
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compare the overall disturbance record on a per-pixel basis, assessing whether the Edyn or EWMACD
outputs successfully mimicked the TimeSync data in pattern as well as signal amounts. Thus, for each
pixel we generated an error matrix for Edyn against the TimeSync data by treating each available
year as a data point, then computed commission on disturbance (total false positive Edyn signals
over all Edyn positive signals) and omission on disturbance (total false negative Edyn signals over all
TimeSync positive signals). To assess general agreement between the time series, we also computed
overall error (the false positive and false negative Edyn signals over all years). We performed the
same process for EWMACD against TimeSync, generating in each case a collection of 3751 matched
commission error, omission error, and overall error rates: one set per forested pixel.

To illustrate the error-generation process, some example pixels are given in Figure 7. For the case
of low omission and high commission (Figure 7a), the NDVI series begins a decline circa 1990, with a
minimum circa 1992 followed by a rise through the remainder of the 1990s. Edyn signals the initial
decrease in 1990, one year ahead of TimeSync, but it continues to signal the disturbance through 2000
because the recovering NDVI trajectory does not level off sufficiently until that time. This results in
a high commission error (82%) and a 0% omission error (since TimeSync never signals disturbance
when Edyn does not). The failure of Edyn to retrain sooner in this example suggests a persistence
value that was too high to capture the dynamic; it is notable that this occurred in the pre-Landsat 7
era, when the data density was lower. In Figure 7b, the NDVI time series is relatively stable to visual
inspection, with a slight decrease over 2000–2006. TimeSync signals the beginning of this decrease but
not the end; Edyn signals the end (including 2007) but not the beginning, yielding a 100% commission
error and a 100% omission error. In the case of Figure 7c, both Edyn and TimeSync signal a single-year
disturbance in 2004 corresponding to a clear drop in the NDVI time series, resulting in 0% commission
and 0% omission errors for Edyn. Finally, in the case of high omission and low commission (Figure 7d),
the original training data from 1984 to 1986 are noisy. Due to its burn-in period, Edyn has no chance
to signal the disturbance registered by TimeSync in those years but fits a curve around the stable
portion of the data. However, the resultant high in-control SD dulls the algorithm’s sensitivity for the
remainder of the time series, causing it to also miss the slight decreases to NDVI in 1996 and 2001–2002.
These four examples, while by no means exhaustive, do illustrate possible causes of disagreement
between Edyn and the TimeSync data and highlight the need for caution when interpreting the results.
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Figure 7. Commission and omission errors for Edyn against the TimeSync reference data, for four
example pixels. NDVI (gray) time series and disturbance (red)/non-disturbance (black) signals are
given for each, with Edyn above the corresponding TimeSync signals. Error rates are given as well.
(a) High commission and low omission; (b) high commission and high omission; (c) low commission
and low omission; (d) low commission and high omission.
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This approach to calculating error did not allow for timing disagreements; however, it was not
uncommon to have pixels for which both Edyn and TimeSync were signaling the same disturbance
but disagreed on the exact timing and duration. Figure 8 provides an example of this case: under
the strict year-by-year method, the resultant 100% commission and omission error rates do not offer
any numerical evidence that the two time series were clearly signaling the same basic disturbance in
1995–1996. As such disagreements could be explained by noting that Edyn could begin signaling at
any date within the year (and thus a single-year signal could be stretched over two years, as seems
to be the case in mid-1995 through mid-1996), we additionally generated a set of more flexible signal
time series by allowing a potential one-year offset on signaled disturbances to improve matching.
Using this rule, the signal time series in Figure 8 would be adjusted so that the TimeSync signal in 1995
would count as an agreed disturbance with Edyn by virtue of the Edyn signal in 1996, while the Edyn
signal in 1997 would still count as commission error because there was no TimeSync signal recorded in
1996–1998. Similarly, the TimeSync signal in 2008 still generates an omission error for Edyn, as there
were no Edyn signals in 2007–2009. Using these “blurred” time series, we computed per-pixel error
matrices as before and generated collections of commission, omission, and overall error rates, noting
that such error rates may be biased to smaller values by virtue of “double-counting” overlapped years
of agreement.
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if there is a pre-existing disturbance signal from the other data source within one year.

We made the error comparison for all 3751 forested pixels in the reference data, but we were
also interested in particular subsets relating to Edyn’s ability to detect various types of disturbances.
In particular, we assessed agreement for pixels which included at least one TimeSync disturbance
(1620 pixels). We also partitioned this into the subset of forested pixels for which the disturbing agent
was not stress (1408 pixels) as well as considering the case where the disturbing agent was stress
(212 pixels), as Edyn and EWMACD are specifically designed to detect subtle, persistent changes.

In all cases, we considered the distributions of the errors of commission and omission on
disturbance, as well as overall error against the TimeSync data. To complement the commission,
omission and overall error rates, we also computed the F1 score (or balanced F score):

F1 = 2
(

precision× recall
precision + recall

)
, (7)
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where precision is the complement of commission error and recall is the complement of omission error.
This score is a single-number summary of accuracy that treats omission and commission as being
equally important. Finally, in each case we compared the error rates from Edyn and EWMACD using
paired t-tests to assess whether the difference in algorithm performance was statistically significant.
Results are presented separately for the no-offset and one-year temporal offset groups.

3. Results

The main results of the agreement assessment are shown in Table 2. Differences in the mean
error rates between Edyn and EWMACD were generally significant, with the only exceptions being
the commission and overall error rates for the stress-only subset, most likely due to a small relative
difference and a relatively small sample size.

Table 2. Mean error rates and F1 scores for Edyn and EWMACD outputs compared as time series
against various subsets of the TimeSync reference data. Mean error rates when allowing a one-year
offset are given in parentheses below the associated results. Pairings with significantly different mean
error rates are marked by an asterisk.

Pixel Subset Total
Pixels Commission Omission Overall Error F1 Score

Edyn EWMACD Edyn EWMACD Edyn EWMACD Edyn EWMACD

All Forested
Pixels 3751 20.6% *

(15.8% *)
24.0% *

(19.9% *)
34.6% *

(26.7%*)
32.5% *

(25.4% *)
7.8% *

(6.7% *)
11.1% *
(9.7% *)

0.54 *
(0.63 *)

0.52 *
(0.60 *)

Disturbed
Forested Pixels 1620 31.1% *

(19.9% *)
39.9% *

(30.4% *)
70.0% *

(61.9% *)
65.2% *

(58.7% *)
13.7% *

(11.4% *)
19.9% *

(17.1% *)
0.19 *

(0.30 *)
0.13 *

(0.23 *)

Disturbed
Forested Pixels

(No Stress)
1408 32.9% *

(20.6% *)
42.9% *

(32.6% *)
67.0% *

(58.2% *)
62.1% *

(55.1% *)
12.0% *
(9.6% *)

19.0% *
(16.0% *)

0.21 *
(0.33 *)

0.13 *
(0.25 *)

Disturbed
Forested Pixels
(Stress Only)

212 18.60%
−15.70%

19.80%
−16.30%

90.1% *
(86.5% *)

85.8% *
(82.8% *)

25.30%
−23.60%

26.30%
−24.40%

0.09
−0.12

0.1
−0.13

In general, Edyn had lower per-pixel rates of commission error than EWMACD, and in general
Edyn had higher per-pixel rates of omission error. Since Edyn retrains the harmonic curves after a
disturbance, it might reasonably be expected to have a lower commission error than EWMACD, as it
will no longer signal “outdated” disturbances (as in Figure 1). Similarly, because it removes data to
achieve retraining, it is reasonable to expect Edyn to also have a higher omission error rate, as years
during such retraining are treated as non-disturbed. Edyn also exhibited lower overall error rates than
EWMACD in every case (albeit less so for stressed forested pixels), which suggests that it is more
faithfully mimicking the TimeSync data by virtue of its retraining. Allowing for a one-year offset
in disturbance timing decreased the error rates in all cases and all subsets, but the overall pattern
remained the same.

Because disturbance-based error rates depend greatly on the number of disturbance signals in a
given time series, we also considered the distribution of the error rates, in this case the commission on
disturbance, omission on disturbance, and overall disagreement between the algorithm and TimeSync
data. Figure 9 shows such distributions in the form of violin plots, in this case for disturbed forests
pixels excluding stress and stressed forested pixels with no timing offset (Figure 9a,b) and the same
when allowing a one-year timing offset (Figure 9c,d). From the figures it is clear that the commission
and omission error rates are generally bimodally distributed, with distinct subsets of pixels for which
there were either very high or very low error rates. Given that a commission (or omission) error of
100% can easily be achieved by mismatching a single year in an otherwise stable trajectory, the plots
illustrate the importance of interpreting the error rates carefully. It is interesting to note that allowing
the one-year offset reduced the non-stress commission and omission errors more than for the stressed
forested pixels subset; this is most likely due to the acute nature of many such disturbances (e.g., harvest
or fire) and justifies the use of the offset to compensate for algorithmic differences in disturbance
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timing. Finally, the overall error rate in each plot is generally clustered around small values, suggesting
that per-time-series agreement between both Edyn and EWMACD, as compared to the TimeSync data,
was relatively good.
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Since Edyn and EWMACD offer signals for both disturbance timing and severity, we also further
analyzed the distribution of their disagreements with TimeSync by binning them into severity classes
(Severe, Moderate, Subtle, No Signal and Growth) based on the observed relative magnitude of NDVI
change (in signal thresholds) signaled by the algorithms (Table 3). We did this on an annualized basis,
not on a per-pixel basis, so there was no offset to consider here. We found that for both algorithms,
omission errors were higher in the Stress category than for all other types of disturbance, while the
magnitudes for correctly signaled stress were generally in the Subtle category, both of which are
to be expected given the low magnitude of change and general detection difficulty associated with
stress [12–15]. However, EWMACD misclassifies almost twice as many stressed years as being growth
years compared to Edyn (13.6% versus 7.8%), suggesting that the Edyn signals, when available,
are generally better at detecting stress than the EWMACD signals. Importantly, when excluding the
no-signal bin, Edyn had a general omission error rate of 19.2%, less than the omission error rate of
26.9% for EWMACD. While we did not explicitly filter out the exact years in which Edyn retrained,
this reversal of the usual omission rate pattern in Table 2 strongly suggests that when these retraining
periods are excluded, Edyn agrees with TimeSync more than EWMACD does.

Based on the consistency of the results, we conclude that Edyn generally performed better than
EWMACD in terms of overall agreement and lower commission error for forested pixels. EWMACD
still outperformed Edyn in terms of omission error rates, but this appears to be largely a reflection of
the opportunity costs of retraining the harmonic curves for Edyn. This cost may be compensated by
the generally higher accuracy Edyn exhibited in detecting disturbances while not retraining.
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Table 3. Edyn/EWMACD signal magnitudes for forested pixels by TimeSync disturbance class,
year-by-year. Note that an Edyn value of 0 can also indicate that it is retraining the reference curve.
Percentages sum to 100% row-wise, within reference disturbance classes: for example, omission error
rates may be derived for the disturbance classes by summing the No signal and Growth percentages
within each row (except for Stable and Recovery).

TimeSync Disturbance Class Severe [−20, −3) Moderate [−3, −1) Subtle [−1, 0) No signal [0, 1) Growth [1, 20]

Edyn

All Disturbances 172 (4.4%) 371 (9.5%) 393 (10.1%) 2734 (70.2%) 223 (5.7%)
Fire 13 (7.5%) 37 (21.4%) 24 (13.9%) 92 (53.2%) 7 (4.0%)

Harvest 89 (5.7%) 195 (12.5%) 200 (12.9%) 987 (63.6%) 80 (5.2%)
Other 67 (7.8%) 99 (11.6%) 91 (10.7%) 564 (66.0%) 33 (3.9%)
Stress 3 (0.2%) 40 (3.0%) 78 (5.9%) 1091 (83.0%) 103 (7.8%)
Stable 151 (0.2%) 735 (1.2%) 1715 (2.8%) 54,113 (89.1%) 4031 (6.6%)

Recovery 285 (0.7%) 952 (2.2%) 1623 (3.7%) 34,232 (78.9%) 6300 (14.5%)

EWMACD

All Disturbances 325 (8.3%) 464 (11.9%) 360 (9.2%) 2321 (59.6%) 423 (10.9%)
Fire 38 (22.0%) 44 (25.4%) 18 (10.4%) 56 (32.4%) 17 (9.8%)

Harvest 146 (9.4%) 210 (13.5%) 172 (11.1%) 838 (54.0%) 185 (11.9%)
Other 120 (14.1%) 122 (14.3%) 83 (9.7%) 487 (57.0%) 42 (4.9%)
Stress 21 (1.6%) 88 (6.7%) 87 (6.6%) 940 (71.5%) 179 (13.6%)
Stable 340 (0.6%) 1052 (1.7%) 2243 (3.7%) 50,608 (83.3%) 8103 (10.7%)

Recovery 934 (2.2%) 1755 (4.0%) 2825 (6.5%) 29,775 (68.6%) 6502 (18.7%)

4. Discussion

Several questions and caveats arise from the study presented here, some of which may prove
fruitful avenues for future work. A brief discussion of these points follows.

There are fundamental differences in the way TimeSync and Edyn handle spectral data.
Most importantly, the analysts developing the TimeSync reference data utilized all spectral bands and
numerous indices for the images. As currently designed, Edyn inputs one band or index. This increases
processing speed but fails to take full advantage of all available data. For example, in Figure 7d we
observed TimeSync signaling a disturbance where Edyn did not. Visual inspection of the NDVI
time series offers only vague intuition that a disturbance has occurred, but further inspection of the
short-wave infrared band time series revealed distinct vertices at the associated year. Without using
these other bands there is no way for Edyn to detect this disturbance, short of training a curve so
tightly that even the slightest deviation would trigger a signal. Thus, there is certainly incentive to
develop a multi-band approach based on the assumptions underlying Edyn; EWMACD could similarly
be modified.

Conversely, we must note that while the TimeSync data were used here as a reference, they are also
subject to error. Sun et al. [31] found that while mutual visual interpretation can produce consistent
results among the interpreters, that in itself is no guarantee of accuracy. In general, the relative
unavailability of ground truth data (which also contains errors, even discounting the differences due to
top-down and bottom-up perspectives), particularly historical ground truth data, continues to impact
the community’s ability to assess the accuracy of time series-based approaches. This can be alleviated
for more recent historical periods as the era of big data and frequent measurements begins, but the
issue will continue to remain a challenge for long-term studies.

Another important potential issue arises from the nature of the data set and the
persistence-per-year parameter, pyear. In computing it as the mean number of data points (available
images) per year for a given pixel, we are assuming a certain regularity in data frequency. However,
the data frequency doubled in 1999 with the establishment of Landsat 7. Thus, Edyn/EWMACD may
have treated the 1983–1999 period differently from the 1999–2012 period. We saw an example of this in
Figure 7a. It is possible that establishing two persistence parameters, or dividing a 1999-present value
by 2, could mitigate this if a user finds problems as a result of the divide.

The error rates reported in the agreement assessment are generally lower than those reported
in [14], which made a general comparison between seven change detection algorithms—CCDC [9],
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LandTrendr [7], ITRA [8], MIICA (Multi-Index Integrated Change Analysis) [32], VCT [6], VeRDET [11],
and the then-current version of EWMACD—across a sample of 1800 pixels drawn from six Landsat
scenes across the CONUS. There, EWMACD was seen to have commission and omission rates of
approximately 80% and 70%, respectively. The difference lies in part in the methods for computing
error. In [14], a generalized error matrix was created, summing all yearly agreements/disagreements
over all pixels before computing the error rates. In this study, we summed yearly disagreements for
each pixel independently and computed error on a per-pixel basis because we were also interested
in the algorithms’ ability to mimic the overall time series patterns observed in the TimeSync data,
including non-disturbance pattern and timing. Thus we also performed an agreement assessment using
such a generalized error matrix, finding that for all forested pixels Edyn had commission and omission
error rates of 86.1% and 77.0%, respectively, while EWMACD had error rates of 89.5% (commission)
and 71.9% (omission) when using no offset allowance. When a one-year offset was allowed, Edyn had
error rates of 72.0% commission and 57.6% omission, while EWMACD had 78.0% commission and
50.8% omission. This suggests again that a considerable number of omission errors were in actuality
one-year timing disagreements between Edyn/EWMACD and TimeSync. In any case, the pattern of
results—Edyn having fewer commission errors and better overall agreement with TimeSync while
having more omission errors than EWMACD—remained the same. Finally, we also made a direct
comparison with the algorithms in [14] by implementing Edyn and EWMACD using the same data and
methods from that study, where possible using the same input parameters as were used for EWMACD
there. Compared to the other algorithms, Edyn had the fourth lowest general commission rate and
the fourth lowest general omission rate; EWMACD had the fifth lowest commission rate and the
second lowest omission rate. Partitioning agreement by the disturbance agents used in [14] (Table 4),
we found that for the subset of forested pixels in decline, both Edyn and EWMACD had lower rates of
omission error than almost every other algorithm [14] (Table 3), with the exceptions of the previous
version of EWMACD and LandTrendr. The discrepancy in EWMACD results can be explained by new
parameters such as pyear; LandTrendr had the advantage of being similar in nature to the TimeSync
reference data with which it was being compared, as both rely on temporal segmentation of annual
time series [7,23].

Table 4. Annualized disturbance/non-disturbance Edyn/EWMACD agreement with TimeSync for
the 1800 pixels used in Cohen et al., 2017 [14], partitioned across TimeSync disturbance classes. Direct
comparison may be made to Table 3 of [14].

Algorithm Signal Not Disturbed Harvest Fire Decline Wind Other All Disturbances

Edyn

Not Disturbed 30,208 406 30 890 43 146 1515
Disturbed 1713 234 24 114 18 60 450
Omission N/A 63.4% 55.6% 88.6% 70.5% 70.9% 77.1%

EWMACD

Not Disturbed 28,388 401 19 823 42 132 1417
Disturbed 3533 239 35 181 19 74 548
Omission N/A 62.7% 35.2% 82.0% 68.9% 64.1% 72.1%

A natural question that arises from this study is whether there is a condition or circumstance in
which a user might prefer EWMACD over Edyn—or more generally, when an algorithm that uses a
fixed reference might be preferable to one that updates such references. To answer this, we note that
while Edyn had better overall agreement with TimeSync than EWMACD did, this agreement reflects the
time series-based approach to error calculation. This in turn places assumed value on the algorithms’
ability to mirror the full time series, including time steps with no disturbance. Reconsidering Figures 1
and 5, if the question of interest relied on comparing status between two points in time, EWMACD
might be the more appropriate choice between the two because it maintains the initial baseline. A user
could simply initialize EWMACD at the “before” time and run until the “after” time, as in [5]. In fact,
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based on the observed high omission error rates, using Edyn may cause the user to completely miss
changes of interest if it happens to be retraining during the second timeframe.

Ultimately, when discussing change detection and accuracy, one must be careful to precisely
define what “change” is. Current state-of-the-art change detection algorithms are tested according
to their creators’ and users’ needs, and a great many are specialized to particular use cases. These
algorithms can often be used on general image stacks, but it is essential to understand their intended
uses and keep their underlying assumptions in mind when doing so. For example, despite their
generality in accepting input data, Edyn and EWMACD were designed for use on vegetated pixels
assumed to exhibit some degree of harmonic variation throughout the year. The algorithms will yield
results for other types of pixels, but those results may be unintuitive or easily misinterpreted.

Given the sheer number of change detection algorithms available today, there is incentive and
potential benefit to designing algorithms to fill certain niches, not only to help distinguish them for the
end user but also to aid ensemble efforts that seek to leverage algorithm differences to improve results,
as in [33,34]. As an example, while the high omission error rates for stress in the agreement assessment
indicate ample remaining room for improvement, both Edyn and EWMACD returned lower omission
error rates for decline than all but one other algorithm from [14] in direct comparison. Thus, while they
by no means captured the subtle, persistent disturbances in the reference data as hoped for, they at
least were relatively good at doing so among contemporary change detection algorithms.

5. Conclusions

In this study we found that Edyn agreed better with the TimeSync reference data than
EWMACD did, with a mean disagreement rate of 13.7% (Table 2) when considering a binary
disturbance/non-disturbance case for disturbed forested pixels, compared to 19.9% for EWMACD.
When allowing a one-year offset for timing discrepancies on this subset, Edyn had a mean overall
disagreement rate of 8.2%, still smaller than 14.0% for EWMACD. We also found that Edyn generally
yielded lower rates of commission error on disturbances, while it yielded higher rates of omission error.

Edyn and EWMACD will continue to be freely available and open-source [19], and they will be
usable for any remotely sensed time series with sufficient temporal data. The results of this study show
that Edyn represents a small improvement over its parent algorithm, EWMACD, in terms of long-term
subtle disturbance detection, though we note that the relatively small sample size of 212 pixels is
insufficient to make a robust claim. Nevertheless, it is our hope that as end users continue to monitor
the landscape for long-term changes, they now have an additional tool to utilize.
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