Treatment of Dry Eye Disease (DED) in Asia: Strategies for Short Tear Film Breakup Time-Type DED
Abstract
:1. Introduction
2. Literature Search
3. Major Therapy (New Generation Eye Drops)
3.1. Diquafosol
3.2. Cyclosporine
4. Adjunctive Therapy
4.1. Supplement
4.2. Therapeutic Contact Lens
4.3. Human Umbilical Cord Serum Eye Drops
4.4. Intense Pulsed Light
4.5. Lid Debris Debridement
4.6. Vectored Thermal Pulsation System
4.7. Intraductal Meibomian Gland Probing
5. Expected Future Therapy
5.1. Tacrolimus Ophthalmic Solution
5.2. Tanfanercept Ophthalmic Solution
5.3. Lifitegrast Ophthalmic Solution
5.4. Perfluorohexyloctane Ophthalmic Solution
5.5. Lactoferrin Ophthalmic Solution
5.6. Amniotic Membrane Extract Ophthalmic Solution
5.7. Lutein Supplement
5.8. Laser Acupuncture
6. Discussion and Conclusions
7. Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tangmonkongvoragul, C.; Chokesuwattanaskul, S.; Khankaeo, C.; Punyasevee, R.; Nakkara, L.; Moolsan, S.; Unruan, O. Prevalence of symptomatic dry eye disease with associated risk factors among medical students at Chiang Mai University due to increased screen time and stress during COVID-19 pandemic. PLoS ONE 2022, 17, e0265733. [Google Scholar] [CrossRef]
- The definition and classification of dry eye disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop. Ocul. Surf. 2007, 5, 75–92. [CrossRef] [PubMed]
- Şimşek, C.; Doğru, M.; Kojima, T.; Tsubota, K. Current Management and Treatment of Dry Eye Disease. Turk. J. Ophthalmol. 2018, 48, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, A.J.; Cruickshanks, K.J.; Fischer, M.E.; Huang, G.H.; Klein, B.E.; Klein, R.; Dalton, D.S. Dry eye in the beaver dam offspring study: Prevalence, risk factors, and health-related quality of life. Am. J. Ophthalmol. 2014, 157, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, Y.; Singer, J.M.; Ling, J.D.; Gregory, A.; Kohanim, S. A Comprehensive Review of Sex Disparities in Symptoms, Pathophysiology, and Epidemiology of Dry Eye Syndrome. Semin. Ophthalmol. 2016, 31, 325–336. [Google Scholar] [CrossRef]
- Rolando, M.; Barabino, S.; Giannaccare, G.; Aragona, P. Dealing with the Persistent Pathogenic Issues of Dry Eye Disease: The Importance of External and Internal Stimuli and Tissue Responses. J. Clin. Med. 2023, 12, 2205. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.A.; Eftimov, P.; Yokoi, N. Structure-function relationship of tear film lipid layer: A contemporary perspective. Exp. Eye Res. 2017, 163, 17–28. [Google Scholar] [CrossRef]
- Holopainen, J.M.; Rantamäki, A.H.; Wiedmer, S.K. Melting Points-The Key to the Anti-Evaporative Effect of the Tear Film Wax Esters. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5211–5217. [Google Scholar]
- Willcox, M.D.P.; Argüeso, P.; Georgiev, G.A.; Holopainen, J.M.; Laurie, G.W.; Millar, T.J.; Papas, E.B.; Rolland, J.P.; Schmidt, T.A.; Stahl, U.; et al. TFOS DEWS II Tear Film Report. Ocul. Surf. 2017, 15, 366–403. [Google Scholar] [CrossRef]
- Tsubota, K.; Yokoi, N.; Watanabe, H.; Dogru, M.; Kojima, T.; Yamada, M.; Kinoshita, S.; Kim, H.M.; Tchah, H.W.; Hyon, J.Y.; et al. A New Perspective on Dry Eye Classification: Proposal by the Asia Dry Eye Society. Eye Contact Lens 2020, 46, S2–S13. [Google Scholar] [CrossRef]
- Kim, M.; Lee, Y.; Mehra, D.; Sabater, A.L.; Galor, A. Dry eye: Why artificial tears are not always the answer. BMJ Open Ophthalmol. 2021, 6, e000697. [Google Scholar] [CrossRef]
- Sheppard, J.D.; Donnenfeld, E.D.; Holland, E.J.; Slonim, C.B.; Solomon, R.; Solomon, K.D.; McDonald, M.B.; Perry, H.D.; Lane, S.S.; Pflugfelder, S.C.; et al. Effect of loteprednol etabonate 0.5% on initiation of dry eye treatment with topical cyclosporine 0.05%. Eye Contact Lens 2014, 40, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Dong, F.; Chen, W.; Sun, X.; Deng, Y.; Hong, J.; Zhang, M.; Yang, W.; Liu, Z.; Xie, L. Clinical efficacy of 0.1% pranoprofen in treatment of dry eye patients: A multicenter, randomized, controlled clinical trial. Chin. Med. J. 2014, 127, 2407–2412. [Google Scholar] [PubMed]
- Liu, X.; Wang, S.; Kao, A.A.; Long, Q. The effect of topical pranoprofen 0.1% on the clinical evaluation and conjunctival HLA-DR expression in dry eyes. Cornea 2012, 31, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Coco, G.; Iannetta, D.; Febbraro, I.; Elmo, E.; Manni, G. Efficacy of Nonpreserved Sodium Hyaluronate Artificial Tears in Dry Eye Disease Patients Treated with Prostaglandin Analogs for Primary Open-Angle Glaucoma: A Prospective, Nonrandomized, Open-Label Pilot Study. J. Ophthalmol. 2022, 2022, 1320996. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Moon, C.H.; Kim, B.Y.; Jang, S.Y. Oral Hyaluronic Acid Supplementation for the Treatment of Dry Eye Disease: A Pilot Study. J. Ophthalmol. 2019, 2019, 5491626. [Google Scholar] [CrossRef] [PubMed]
- Uchino, M.; Yokoi, N.; Uchino, Y.; Dogru, M.; Kawashima, M.; Komuro, A.; Sonomura, Y.; Kato, H.; Kinoshita, S.; Schaumberg, D.A.; et al. Dry eye disease and work productivity loss in visual display users: The Osaka study. Am. J. Ophthalmol. 2014, 157, 294–300. [Google Scholar] [CrossRef]
- Tsubota, K.; Yokoi, N.; Shimazaki, J.; Watanabe, H.; Dogru, M.; Yamada, M.; Kinoshita, S.; Kim, H.M.; Tchah, H.W.; Hyon, J.Y.; et al. New Perspectives on Dry Eye Definition and Diagnosis: A Consensus Report by the Asia Dry Eye Society. Ocul. Surf. 2017, 15, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Labetoulle, M.; Benitez-Del-Castillo, J.M.; Barabino, S.; Herrero Vanrell, R.; Daull, P.; Garrigue, J.S.; Rolando, M. Artificial Tears: Biological Role of Their Ingredients in the Management of Dry Eye Disease. Int. J. Mol. Sci. 2022, 23, 2434. [Google Scholar] [CrossRef]
- Pena-Verdeal, H.; Garcia-Queiruga, J.; García-Resúa, C.; Yebra-Pimentel, E.; Giráldez, M.J. Osmolality and pH of commercially available contact lens care solutions and eye drops. Contact Lens Anterior Eye 2021, 44, 101379. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, S.; Awamura, S.; Nakamichi, N.; Suzuki, H.; Oshiden, K.; Yokoi, N. Rebamipide Ophthalmic Suspension Long-term Study Group. A multicenter, open-label, 52-week study of 2% rebamipide (OPC-12759) ophthalmic suspension in patients with dry eye. Am. J. Ophthalmol. 2014, 157, 576–583. [Google Scholar] [CrossRef] [PubMed]
- von Kügelgen, I. Molecular pharmacology of P2Y receptor subtypes. Biochem. Pharmacol. 2021, 187, 114361. [Google Scholar] [CrossRef] [PubMed]
- Tanioka, H.; Kuriki, Y.; Sakamoto, A.; Katsuta, O.; Kawazu, K.; Nakamura, M. Expression of the P2Y2 receptor on the rat ocular surface during a 1-year rearing period. Jpn. J. Ophthalmol. 2014, 58, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Hori, Y.; Kageyama, T.; Sakamoto, A.; Shiba, T.; Nakamura, M.; Maeno, T. Comparison of Short-Term Effects of Diquafosol and Rebamipide on Mucin 5AC Level on the Rabbit Ocular Surface. J. Ocul. Pharmacol. Ther. 2017, 33, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, N.; Kato, H.; Kinoshita, S. Facilitation of tear fluid secretion by 3% diquafosol ophthalmic solution in normal human eyes. Am. J. Ophthalmol. 2014, 157, 85–92.e1. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, S.; Arita, R. Tear film lipid layer increase after diquafosol instillation in dry eye patients with meibomian gland dysfunction: A randomized clinical study. Sci. Rep. 2019, 9, 9091. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Qin, G.; Wu, Y.; Song, Y.; Yang, L.; Yu, S.; He, X.; Moore, J.E.; Moutari, S.; et al. Impact of Diquafosol Ophthalmic Solution on Tear Film and Dry Eye Symptom in Type 2 Diabetic Dry Eye: A Pilot Study. J. Ocul. Pharmacol. Ther. 2022, 38, 133–140. [Google Scholar] [CrossRef]
- Yokoi, N.; Sonomura, Y.; Kato, H.; Komuro, A.; Kinoshita, S. Three percent diquafosol ophthalmic solution as an additional therapy to existing artificial tears with steroids for dry-eye patients with Sjögren’s syndrome. Eye 2015, 29, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, S.; Arita, R. Increase in tear film lipid layer thickness after instillation of 3% diquafosol ophthalmic solution in healthy human eyes. Ocul. Surf. 2017, 15, 730–735. [Google Scholar] [CrossRef]
- Byun, Y.S.; Yoo, Y.S.; Kwon, J.Y.; Joo, J.S.; Lim, S.A.; Whang, W.J.; Mok, J.W.; Choi, J.S.; Joo, C.K. Diquafosol promotes corneal epithelial healing via intracellular calcium-mediated ERK activation. Exp. Eye Res. 2016, 143, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Moon, S.H.; Kang, D.H.; Um, H.J.; Kang, S.S.; Kim, J.Y.; Tchah, H. Diquafosol Sodium Inhibits Apoptosis and Inflammation of Corneal Epithelial Cells via Activation of Erk1/2 and RSK: In Vitro and In Vivo Dry Eye Model. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5108–5115. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, W.Q.; Li, R.; Wang, Y. Efficacy and safety of topical diquafosol ophthalmic solution for treatment of dry eye: A systematic review of randomized clinical trials. Cornea 2015, 34, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Miljanovic, B.; Dana, R.; Sullivan, D.A.; Schaumberg, D.A. Impact of dry eye syndrome on vision-related quality of life. Am. J. Ophthalmol. 2007, 143, 409–415. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Ohashi, Y.; Watanabe, H.; Tsubota, K. Diquafosol Ophthalmic Solution Phase 2 Study Group: Efficacy and safety of diquafosol ophthalmic solution in patients with dry eye syndrome: A Japanese phase 2 clinical trial. Ophthalmology 2012, 119, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
- Uchino, M.; Yokoi, N.; Shimazaki, J.; Hori, Y.; Tsubota, K. On Behalf Of The Japan Dry Eye Society. Adherence to eye drops usage in dry eye patients and reasons for non-compliance: A web-based survey. J. Clin. Med. 2022, 11, 367. [Google Scholar] [CrossRef]
- Hori, Y.; Oka, K.; Inai, M. Efficacy and Safety of the Long-Acting Diquafosol Ophthalmic Solution DE-089C in Patients with Dry Eye: A Randomized, Double-Masked, Placebo-Controlled Phase 3 Study. Adv. Ther. 2022, 39, 3654–3667. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.K.; El-Annan, J.; Ecoiffier, T.; Goyal, S.; Zhang, Q.; Saban, D.R.; Dana, R. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J. Immunol. 2009, 182, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Han, S.J.; Nam, S.M.; Yoon, S.C.; Ahn, J.M.; Kim, T.I.; Kim, E.K.; Seo, K.Y. Analysis of tear cytokines and clinical correlations in Sjögren syndrome dry eye patients and non-Sjögren syndrome dry eye patients. Am. J. Ophthalmol. 2013, 156, 247–253.e1. [Google Scholar] [CrossRef]
- Rivas, L.; Lopez-Garcia, J.S.; Murube, J.; Garcia-Lozano, I. Different conjunctival adaptive response in patients with aqueous-deficient and with mucous-deficient dry eyes. Eur. J. Ophthalmol. 2007, 17, 160–170. [Google Scholar] [CrossRef]
- Tuan, H.I.; Chi, S.C.; Kang, Y.N. An Updated Systematic Review With Meta-Analysis Of Randomized Trials On Topical Cyclosporin A For Dry-Eye Disease. Drug Des. Devel. Ther. 2020, 14, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Pflugfelder, S.C.; De Paiva, C.S.; Villarreal, A.L.; Stern, M.E. Effects of sequential artificial tear and cyclosporine emulsion therapy on conjunctival goblet cell density and transforming growth factor-beta2 production. Cornea 2008, 27, 64–69. [Google Scholar] [CrossRef]
- Stonecipher, K.G.; Torkildsen, G.L.; Ousler, G.W.; Morris, S.; Villanueva, L.; Hollander, D. The IMPACT study: A prospective evaluation of the effects of cyclosporine ophthalmic emulsion 0.05% on ocular surface staining and visual performance in patients with dry eye. Clin. Ophthalmol. 2016, 10, 887–895. [Google Scholar] [CrossRef]
- Perry, H.D.; Solomon, R.; Donnenfeld, E.D.; Perry, A.R.; Wittpenn, J.R.; Greenman, H.E.; Savage, H.E. Evaluation of topical cyclosporine for the treatment of dry eye disease. Arch. Ophthalmol. 2008, 126, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Ciclosporin Ophthalmic Emulsion 0.1%: A Review in Severe Dry Eye Disease. Drugs 2017, 77, 1909–1916. [Google Scholar] [CrossRef] [PubMed]
- Eom, Y.; Song, J.S.; Kim, H.M. Effectiveness of Topical Cyclosporin A 0.1%, Diquafosol Tetrasodium 3%, and Their Combination, in Dry Eye Disease. J. Ocul. Pharmacol. Ther. 2022, 38, 682–694. [Google Scholar] [CrossRef]
- Capita, L.; Chalita, M.R.; dos Santos-Neto, L.L. Prospective evaluation of hypromellose 2% for punctal occlusion in patients with dry eye. Cornea 2015, 34, 188–192. [Google Scholar] [CrossRef]
- Roberts, C.W.; Carniglia, P.E.; Brazzo, B.G. Comparison of topical cyclosporine, punctal occlusion, and a combination for the treatment of dry eye. Cornea 2007, 26, 805–809. [Google Scholar] [CrossRef]
- Park, J.; Yoo, Y.S.; Shin, E.; Han, G.; Shin, K.; Lim, D.H.; Chung, T.Y. Effects of the re-esterified triglyceride (rTG) form of omega-3 supplements on dry eye following cataract surgery. Br. J. Ophthalmol. 2021, 105, 1504–1509. [Google Scholar] [CrossRef] [PubMed]
- Ng, D.; Altamirano-Vallejo, J.C.; Gonzalez-De la Rosa, A.; Navarro-Partida, J.; Valdez-Garcia, J.E.; Acosta-Gonzalez, R.; Martinez Camarillo, J.C.; Bustamante-Arias, A.; Armendariz-Borunda, J.; Santos, A. An Oral Polyphenol Formulation to Modulate the Ocular Surface Inflammatory Process and to Improve the Symptomatology Associated with Dry Eye Disease. Nutrients 2022, 14, 3236. [Google Scholar] [CrossRef]
- Yamashita, S.I.; Suzuki, N.; Yamamoto, K.; Iio, S.I.; Yamada, T. Effects of MaquiBright(®) on improving eye dryness and fatigue 440 in humans: A randomized, double-blind, placebo-controlled trial. J. Tradit. Complement. Med. 2019, 9, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Togni, S.; Franceschi, F.; Kawada, S.; Inaba, Y.; Eggenhoffner, R.; Giacomelli, L. The effect of a natural, standardized bilberry extract (Mirtoselect®) in dry eye: A randomized, double blinded, placebo-controlled trial. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2518–2525. [Google Scholar] [PubMed]
- Kosehira, M.; Machida, N.; Kitaichi, N. A 12-Week-Long Intake of Bilberry Extract (Vaccinium myrtillus L.) Improved Objective Findings of Ciliary Muscle Contraction of the Eye: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Trial. Nutrients 2020, 12, 600. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018, 136, 1–20. [Google Scholar] [CrossRef]
- Donoso, A.; González-Durán, J.; Muñoz, A.A.; González, P.A.; Agurto-Muñoz, C. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacol. Res. 2021, 166, 105479. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Senni, C.; Bernabei, F.; Cicero, A.F.G.; Vagge, A.; Maestri, A.; Scorcia, V.; Giannaccare, G. The Role of Nutrition and Nutritional Supplements in Ocular Surface Diseases. Nutrients 2020, 12, 952. [Google Scholar] [CrossRef]
- Giannaccare, G.; Pellegrini, M.; Senni, C.; Bernabei, F.; Scorcia, V.; Cicero, A.F.G. Clinical Applications of Astaxanthin in the Treatment of Ocular Diseases: Emerging Insights. Mar. Drugs 2020, 18, 239. [Google Scholar] [CrossRef] [PubMed]
- Giannaccare, G.; Pellegrini, M.; Sebastiani, S.; Bernabei, F.; Roda, M.; Taroni, L.; Versura, P.; Campos, E.C. Efficacy of Omega-3 Fatty Acid Supplementation for Treatment of Dry Eye Disease: A Meta-Analysis of Randomized Clinical Trials. Cornea 2019, 38, 565–573. [Google Scholar] [CrossRef]
- Dry Eye Assessment and Management Study Research Group; Asbell, P.A.; Maguire, M.G.; Pistilli, M.; Ying, G.S.; Szczotka-Flynn, L.B.; Hardten, D.R.; Lin, M.C.; Shtein, R.M. n-3 Fatty Acid Supplementation for the Treatment of Dry Eye Disease. N. Engl. J. Med. 2018, 378, 1681–1690. [Google Scholar]
- Lim, L.; Lim, E.W.L. Therapeutic Contact Lenses in the Treatment of Corneal and Ocular Surface Diseases—A Review. Asia Pac. J. Ophthalmol. 2020, 9, 524–532. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, R.; Sun, M.; Chen, X.; Lin, S.; Ye, J.; Chen, C. Efficacy of an ocular bandage contact lens for the treatment of dry eye after phacoemulsification. BMC Ophthalmol. 2019, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.N.; Song, H.; Ding, T.; Qiu, W.Q.; Wang, W. Evaluation of the safety and efficacy of therapeutic bandage contact lenses on post-cataract surgery patients. Int. J. Ophthalmol. 2018, 11, 230–234. [Google Scholar] [PubMed]
- Li, B.; Zhang, M.; Yang, Z. Study of the efficacy and safety of contact lens used in trabeculectomy. J. Ophthalmol. 2019, 2019, 1839712. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Aranguez, A.; Fonseca, B.; Carracedo, G.; Martin-Gil, A.; Martinez-Aguila, A.; Pintor, J. Dry Eye Treatment Based on Contact Lens Drug Delivery: A Review. Eye Contact Lens 2016, 42, 280–288. [Google Scholar] [CrossRef]
- Creech, J.L.; Chauhan, A.; Radke, C.J. Dispersive mixing in the posterior tear film under a soft contact lens. Ind. Eng. Chem. Res. 2001, 40, 3015–3026. [Google Scholar] [CrossRef]
- Li, C.C.; Chauhan, A. Modeling ophthalmic drug delivery by soaked contact lenses. Ind. Eng. Chem. Res. 2006, 45, 3718–3734. [Google Scholar] [CrossRef]
- Bengani, L.C.; Hsu, K.H.; Gause, S.; Chauhan, A. Contact lenses as a platform for ocular drug delivery. Expert Opin. Drug Deliv. 2013, 10, 1483–1496. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.M. The effects of silicone hydrogel lens wear on the corneal epithelium and risk for microbial keratitis. Eye Contact Lens 2013, 39, 67–72. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Dogru, M.; Goto, E.; Ohashi, Y.; Kojima, T.; Ishida, R.; Tsubota, K. Autologous serum application in the treatment of neurotrophic keratopathy. Ophthalmology 2004, 111, 1115–1120. [Google Scholar] [CrossRef]
- Sharma, N.; Goel, M.; Velpandian, T.; Titiyal, J.S.; Tandon, R.; Vajpayee, R.B. Evaluation of umbilical cord serum therapy in acute ocular chemical burns. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1087–1092. [Google Scholar] [CrossRef]
- Kumar, A.; Chaurasiya, D.; Sultan, S.; Soni, D.; Kubrey, S.; Singh, P.; Verma, S.; Mohan, R.R.; Sharma, B. Therapeutic Profile of Human Umbilical Cord Blood Serum and Autologous Serum Therapies in Treatment of Ocular Surface Disorders: A Pilot Study. J. Ocul. Pharmacol. Ther. 2023, 39, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Celebi, A.R.; Ulusoy, C.; Mirza, G.E. The efficacy of autologous serum eye drops for severe dry eye syndrome: A randomized double-blind crossover study. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Haedersdal, M.; Beerwerth, F.; Nash, J.F. Laser and intense pulsed light hair removal technologies: From professional to home use. Br. J. Dermatol. 2011, 165 (Suppl. 3), 31–36. [Google Scholar] [CrossRef] [PubMed]
- Wat, H.; Wu, D.C.; Rao, J.; Goldman, M.P. Application of intense pulsed light in the treatment of dermatologic disease: A systematic review. Dermatol. Surg. 2014, 40, 359–377. [Google Scholar] [CrossRef] [PubMed]
- Toyos, R. Intense pulsed light for dry eye syndrome. Cataract. Refract. Surg. Today 2016, 30–31. [Google Scholar]
- Choi, M.; Han, S.J.; Ji, Y.W.; Choi, Y.J.; Jun, I.; Alotaibi, M.H.; Ko, B.Y.; Kim, E.K.; Kim, T.I.; Nam, S.M.; et al. Meibum Expressibility Improvement as a Therapeutic Target of Intense Pulsed Light Treatment in Meibomian Gland Dysfunction and Its Association with Tear Inflammatory Cytokines. Sci. Rep. 2019, 9, 7648. [Google Scholar] [CrossRef]
- Piyacomn, Y.; Kasetsuwan, N.; Reinprayoon, U.; Satitpitakul, V.; Tesapirat, L. Efficacy and Safety of Intense Pulsed Light in Patients With Meibomian Gland Dysfunction-A Randomized, Double-Masked, Sham-Controlled Clinical Trial. Cornea 2020, 39, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Xue, A.L.; Wang, M.T.M.; Ormonde, S.E.; Craig, J.P. Randomised double-masked placebo-controlled trial of the cumulative treatment efficacy profile of intense pulsed light therapy for meibomian gland dysfunction. Ocul. Surf. 2020, 18, 286–297. [Google Scholar] [CrossRef]
- Arita, R.; Mizoguchi, T.; Fukuoka, S.; Morishige, N. Multicenter Study of Intense Pulsed Light Therapy for Patients with Refractory Meibomian Gland Dysfunction. Cornea 2019, 38, e4. [Google Scholar] [CrossRef]
- Arita, R.; Fukuoka, S.; Morishige, N. Therapeutic efficacy of intense pulsed light in patients with refractory meibomian gland dysfunction. Ocul. Surf. 2019, 17, 104–110. [Google Scholar] [CrossRef]
- Piccolo, D.; Di Marcantonio, D.; Crisman, G.; Cannarozzo, G.; Sannino, M.; Chiricozzi, A.; Chimenti, S. Unconventional use of intense pulsed light. BioMed Res. Int. 2014, 2014, 618206. [Google Scholar] [CrossRef]
- Jiang, X.; Yuan, H.; Zhang, M.; Lv, H.; Chou, Y.; Yang, J.; Li, X. The Efficacy and Safety of New-Generation Intense Pulsed Light in the Treatment of Meibomian Gland Dysfunction-Related Dry Eye: A Multicenter, Randomized, Patients-Blind, Parallel-Control, Non-Inferiority Clinical Trial. Ophthalmol. Ther. 2022, 11, 1895–1912. [Google Scholar] [CrossRef] [PubMed]
- Epstein, I.J.; Rosenberg, E.; Stuber, R.; Choi, M.B.; Donnenfeld, E.D.; Perry, H.D. Double-masked and unmasked prospective study of terpinen-4-ol lid scrubs with microblepharoexfoliation for the treatment of demodex blepharitis. Cornea 2020, 39, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Rynerson, J.M.; Perry, H.D. DEBS—A unification theory for dry eye and blepharitis. Clin. Ophthalmol. 2016, 10, 2455–2467. [Google Scholar] [CrossRef]
- Dong, X.; Wang, Y.; Wang, W.; Lin, P.; Huang, Y. Composition and diversity of bacterial community on the ocular surface of patients with meibomian gland dysfunction. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4774–4783. [Google Scholar] [CrossRef]
- Mireille Aye, A.; Bonnin-Jusserand, M.; Brian-Jaisson, F.; Ortalo-Magne, A.; Culioli, G.; Koffi Nevry, R.; Rabah, N.; Blache, Y.; Molmeret, M. Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiology 2015, 161, 2039–2051. [Google Scholar] [CrossRef]
- Yarwood, J.M.; Schlievert, P.M. Quorum sensing in Staphylococcus infections. J. Clin. Investig. 2003, 112, 1620–1625. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.Y.; Han, S.A.; Kwon, H.J.; Park, S.Y.; Lee, J.H.; Chung, H.S.; Kim, J.Y.; Tchah, H.; Lee, H. Effects of lid debris debridement combined with meibomian gland expression on the ocular surface MMP-9 levels and clinical outcomes in moderate and severe meibomian gland dysfunction. BMC Ophthalmol. 2021, 21, 175. [Google Scholar] [CrossRef] [PubMed]
- Pult, H.; Riede-Pult, B.H.; Purslow, C. A comparison of an eyelid-warming device to traditional compress therapy. Optom. Vis. Sci. 2012, 89, E1035–E1041. [Google Scholar] [CrossRef]
- Tomlinson, A.; Bron, A.J.; Korb, D.R.; Amano, S.; Paugh, J.R.; Pearce, E.I.; Yee, R.; Yokoi, N.; Arita, R.; Dogru, M. The international workshop on meibomian gland dysfunction: Report of the diagnosis subcommittee. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2006–2049. [Google Scholar] [CrossRef]
- Hu, J.G.; Dang, V.T.; Chang, D.H.; Goldberg, D.F.; McKinnon, C.; Makedonsky, K.; Laron, M.; Ji, L. Performance of a Translucent Activator for LipiFlow Vectored Thermal Pulse (VTP) Treatment of Meibomian Gland Dysfunction. Clin. Ophthalmol. 2022, 16, 963–971. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, S.; Liu, X. Efficacy and safety of a vectored thermal pulsation system (Lipiflow®) in the treatment of meibomian gland dysfunction: A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 25–39. [Google Scholar] [CrossRef]
- Maskin, S.L. Intraductal meibomian gland probing relieves symptoms of obstructive meibomian gland dysfunction. Cornea 2010, 29, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Magno, M.; Moschowits, E.; Arita, R.; Vehof, J.; Utheim, T.P. Intraductal meibomian gland probing and its efficacy in the treatment of meibomian gland dysfunction. Surv. Ophthalmol. 2021, 66, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Qin, Q.; Wang, L.; Zheng, J.; Lin, L.; Jin, X. Clinical results of intraductal meibomian gland probing combined with intense pulsed light in treating patients with refractory obstructive meibomian gland dysfunction: A randomized controlled trial. BMC Ophthalmol. 2019, 19, 211. [Google Scholar] [CrossRef]
- Incekalan, T.K.; Harbiyeli, I.I.; Yagmur, M.; Erdem, E. Effectiveness of intraductal meibomian gland probing in addition to the conventional treatment in patients with obstructive meibomian gland dysfunction. Ocul. Immunol. Inflamm. 2019, 27, 1345–1351. [Google Scholar] [CrossRef]
- Kheirkhah, A.; Kobashi, H.; Girgis, J.; Jamali, A.; Ciolino, J.B.; Hamrah, P. A randomized, sham-controlled trial of intraductal meibomian gland probing with or without topical antibiotic/steroid for obstructive meibomian gland dysfunction. Ocul. Surf. 2020, 18, 852–856. [Google Scholar] [CrossRef]
- Shoughy, S.S. Topical tacrolimus in anterior segment inflammatory disorders. Eye Vis. 2017, 4, 7. [Google Scholar] [CrossRef]
- Garg, V.; Nirmal, J.; Warsi, M.H.; Pandita, D.; Kesharwani, P.; Jain, G.K. Topical Tacrolimus Progylcosomes Nano-Vesicles as a Potential Therapy for Experimental Dry Eye Syndrome. J. Pharm. Sci. 2022, 111, 479–484. [Google Scholar]
- Moscovici, B.K.; Holzchuh, R.; Chiacchio, B.B.; Santo, R.M.; Shimazaki, J.; Hida, R.Y. Clinical treatment of dry eye using 0.03% tacrolimus eye drops. Cornea 2012, 31, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Moawad, P.; Shamma, R.; Hassanein, D.; Ragab, G.; El Zawahry, O. Evaluation of the effect of topical tacrolimus 0.03% versus cyclosporine 0.05% in the treatment of dry eye secondary to Sjogren syndrome. Eur. J. Ophthalmol. 2022, 32, 673–679. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, S.; Cong, L.; Zhang, T.; Cheng, J.; Yang, N.; Qu, X.; Li, D.; Zhou, X.; Wang, H.; et al. TNF-α inhibitor tanfanercept (HBM9036) improves signs and symptoms of dry eye in a phase 2 trial in the controlled adverse environment in China. Int. Ophthalmol. 2022, 42, 2459–2472. [Google Scholar] [CrossRef]
- Albertsmeyer, A.C.; Kakkassery, V.; Spurr-Michaud, S.; Beeks, O.; Gipson, I.K. Effect of pro-inflammatory mediators on membrane-associated mucins expressed by human ocular surface epithelial cells. Exp. Eye Res. 2010, 90, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.B.; Choi, H.J.; Cho, S.M.; Kang, S.; Ahn, H.K.; Song, Y.J.; Kim, Y.J.; Son, W.C. Efficacy of HL036 versus cyclosporine a in the treatment of naturally occurring canine keratoconjunctivitis sicca. Curr. Eye Res. 2018, 43, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Tsai, Y.Y.; Lai, C.T.; Li, Y.L.; Wu, Y.H.; Chiang, C.C. Lifitegrast Ophthalmic Solution 5% Is a Safe and Efficient Eyedrop for Dry Eye Disease: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 5014. [Google Scholar] [CrossRef]
- Semba, C.P.; Torkildsen, G.L.; Lonsdale, J.D.; McLaurin, E.B.; Geffin, J.A.; Mundorf, T.K.; Kennedy, K.S.; Ousler, G.W. A Phase 2 Randomized, Double-Masked, Placebo-Controlled Study of a Novel Integrin Antagonist (SAR 1118) for the Treatment of Dry Eye. Am. J. Ophthalmol. 2012, 153, 1050–1060. [Google Scholar] [CrossRef]
- Holland, E.J.; Luchs, J.; Karpecki, P.M.; Nichols, K.K.; Jackson, M.A.; Sall, K.; Tauber, J.; Roy, M.; Raychaudhuri, A.; Shojaei, A. Lifitegrast for the Treatment of Dry Eye Disease: Results of a Phase III, Randomized, Double-Masked, Placebo-Controlled Trial (OPUS-3). Ophthalmology 2017, 124, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Meinert, H.; Roy, T. Semifluorinated alkanes—A new class of compounds with outstanding properties for use in ophthalmology. Eur. J. Ophthalmol. 2000, 10, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Steven, P.; Scherer, D.; Krösser, S.; Beckert, M.; Cursiefen, C.; Kaercher, T. Semifluorinated alkane eye drops for treatment of dry eye disease–a prospective, multicenter noninterventional study. J. Ocul. Pharmacol. Ther. 2015, 31, 498–503. [Google Scholar] [CrossRef]
- Delicado-Miralles, M.; Velasco, E.; Díaz-Tahoces, A.; Gallar, J.; Acosta, M.C.; Aracil-Marco, A. Deciphering the Action of Perfluorohexyloctane Eye Drops to Reduce Ocular Discomfort and Pain. Front. Med. 2021, 8, 709712. [Google Scholar] [CrossRef]
- Vagge, A.; Senni, C.; Bernabei, F.; Pellegrini, M.; Scorcia, V.; Traverso, C.E.; Giannaccare, G. Therapeutic Effects of Lactoferrin in Ocular Diseases: From Dry Eye Disease to Infections. Int. J. Mol. Sci. 2020, 21, 6668. [Google Scholar] [CrossRef]
- Sonobe, H.; Ogawa, Y.; Yamada, K.; Shimizu, E.; Uchino, Y.; Kamoi, M.; Saijo, Y.; Yamane, M.; Citterio, D.; Suzuki, K.; et al. A novel and innovative paper-based analytical device for assessing tear lactoferrin of dry eye patients. Ocul. Surf. 2019, 17, 160–166. [Google Scholar] [CrossRef]
- McDonald, M.B.; Sheha, H.; Tighe, S.; Janik, S.B.; Bowden, F.W.; Chokshi, A.R.; Singer, M.A.; Nanda, S.; Qazi, M.A.; Dierker, D.; et al. Treatment outcomes in the DRy Eye Amniotic Membrane (DREAM) study. Clin. Ophthalmol. 2018, 12, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Murri, M.S.; Moshirfar, M.; Birdsong, O.C.; Ronquillo, Y.C.; Ding, Y.; Hoopes, P.C. Amniotic membrane extract and eye drops: A review of literature and clinical application. Clin. Ophthalmol. 2018, 12, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.L.; Barreales, S.; Sabater-Cruz, N.; Martinez-Conesa, E.M.; Vilarrodona, A.; Casaroli-Marano, R.P. Amniotic membrane extract eye drops: A new approach to severe ocular surface pathologies. Cell Tissue Bank. 2022, 23, 473–481. [Google Scholar] [CrossRef]
- Sabater-Cruz, N.; Figueras-Roca, M.; Ferrán-Fuertes, M.; Agustí, E.; Martínez-Conesa, E.M.; Pérez-Rodríguez, M.L.; Vilarrodona, A.; Casaroli-Marano, R.P.; AMEED Study Group. Amniotic membrane extract eye drops for ocular surface diseases: Use and clinical outcome in real-world practice. Int. Ophthalmol. 2021, 41, 2973–2979. [Google Scholar] [CrossRef] [PubMed]
- Yeu, E.; Goldberg, D.F.; Mah, F.S.; Beckman, K.A.; Luchs, J.I.; Solomon, J.D.; White, D.E.; Gupta, P.K. Safety and efficacy of amniotic cytokine extract in the treatment of dry eye disease. Clin. Ophthalmol. 2019, 13, 887–894. [Google Scholar] [CrossRef]
- Arunkumar, R.; Gorusupudi, A.; Bernstein, P.S. The Macular Carotenoids: A Biochemical Overview. Biochim. Biophys. Acta. Mol. Cell. Biol. Lipids. 2020, 1865, 158617. [Google Scholar] [CrossRef]
- Arunkumar, R.; Baskaran, V. Lutein Encapsulated in PLGA–Phospholipid Nano-Carrier Effectively Mitigates Cytokines by Inhibiting Tumor Necrosis Factor TNF-α and Nuclear Factor NF-κB in Mice Retina. J. Funct. Biomater. 2023, 14, 197. [Google Scholar] [CrossRef]
- Mares, J. Lutein and Zeaxanthin Isomers in Eye Health and Disease. Annu. Rev. Nutr. 2016, 36, 571–602. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Ren, C.; Cai, W.; Wei, Q.; Song, Y.; Yu, J. Proteomic analysis of tears following acupuncture treatment for menopausal dry eye disease by two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry. Int. J. Nanomed. 2017, 12, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.; Tong, L. Acupuncture has effect on increasing tear break-up time: Acupuncture for treating dry eye, a randomized placebo-controlled trial. Acta Ophthalmol. 2012, 90, e73. [Google Scholar] [CrossRef]
- Hu, W.L.; Yu, H.J.; Pan, L.Y.; Wu, P.C.; Pan, C.C.; Kuo, C.E.; Tseng, Y.J.; Hung, Y.C. Laser Acupuncture Improves Tear Film Stability in Patients with Dry Eye Disease: A Two-Center Randomized-Controlled Trial. J. Altern. Complement. Med. 2021, 27, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.Y.; Peng, Q.H. Study on the mechanism of acupuncture treatment of dry eye. Guid. J. Tradit. Chin. Med. Pharm. 2019, 25, 116–119. [Google Scholar]
- Whittaker, P. Laser acupuncture: Past, present, and future. Lasers Med. Sci. 2004, 19, 69–80. [Google Scholar] [CrossRef]
- Barbosa, M.C.; Grosso, R.A.; Fader, C.M. Hallmarks of Aging: An Autophagic Perspective. Front. Endocrinol. 2019, 9, 790. [Google Scholar] [CrossRef]
- Kallab, M.; Szegedi, S.; Hommer, N.; Stegmann, H.; Kaya, S.; Werkmeister, R.M.; Schmidl, D.; Schmetterer, L.; Garhöfer, G. Topical Low Dose Preservative-Free Hydrocortisone Reduces Signs and Symptoms in Patients with Chronic Dry Eye: A Randomized Clinical Trial. Adv. Ther. 2020, 37, 329–341. [Google Scholar] [CrossRef]
- Rolando, M.; Barabino, S. The Subtle Role of Para-inflammation in Modulating the Progression of Dry Eye Disease. Ocul. Immunol. Inflamm. 2021, 29, 811–816. [Google Scholar] [CrossRef]
Name | Principle | Dosage | Application Frequency | Therapeutic Effect | Limitation |
---|---|---|---|---|---|
Diquafosol | Mucin and water secretion promotion | Eye drops | 3 times a day * | Stabilization of tear film and increased tear fluid | Irritation |
Cyclosporine | Inflammation suppression | Eye drops | 1 times a day ** | Anti-inflammatory and reduction of tissue damage | Heat and stinging pain |
Name | Dosage | Therapeutic Effect | Limitation |
---|---|---|---|
Supplement | Internal medicine | Moisturising and anti-inflammatory | Intraocular bioavailability |
Therapeutic contact lens | Contact lens | Corneal healing promotion and drug delivery system | Infection |
Human umbilical cord serum eye drops | Eye drops | Anti-inflammatory | Allergy and infection |
Intense pulsed light | Myobomian gland dysfunction therapy | Anti-inflammatory | Skin bruising |
Lid debris debridement | Improved mybum characteristics | Irritation, erythema, and abrasion | |
Vectored thermal pulsation system | Relief of obstruction of the meibomian glands | Skin pain and swelling | |
Intraductal meibomian gland probing | Relief of obstruction of the meibomian glands | Bleeding |
Name | Dosage | Therapeutic Effect | Limitation |
---|---|---|---|
Tacrolimus ophthalmic solution | Eye drops | Anti-inflammatory | Tingling and burning sensations |
Tanfanercept ophthalmic solution | Anti-inflammatory | Intraocular bioavailability | |
Lifitegrast ophthalmic solution | Anti-inflammatory | Taste disturbance | |
Perfluorohexyloctane ophthalmic solution | Lipid layer thickening and cooling on ocular surface | Hypersensitivity | |
Lactoferrin ophthalmic solution | Anti-inflammatory | Intraocular bioavailability | |
Amniotic membrane extract ophthalmic solution | Anti-inflammatory | Foreign body and ocular burning sensations | |
Lutein supplement | Internal medicine | Anti-inflammatory | Intraocular bioavailability |
Laser acupuncture | Acupuncture | Anti-inflammatory | Skin irritation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawahara, A. Treatment of Dry Eye Disease (DED) in Asia: Strategies for Short Tear Film Breakup Time-Type DED. Pharmaceutics 2023, 15, 2591. https://doi.org/10.3390/pharmaceutics15112591
Kawahara A. Treatment of Dry Eye Disease (DED) in Asia: Strategies for Short Tear Film Breakup Time-Type DED. Pharmaceutics. 2023; 15(11):2591. https://doi.org/10.3390/pharmaceutics15112591
Chicago/Turabian StyleKawahara, Atsushi. 2023. "Treatment of Dry Eye Disease (DED) in Asia: Strategies for Short Tear Film Breakup Time-Type DED" Pharmaceutics 15, no. 11: 2591. https://doi.org/10.3390/pharmaceutics15112591