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Abstract

:

The Grammatical Evolution technique has been successfully applied to a wide range of problems in various scientific fields. However, in many cases, techniques that make use of Grammatical Evolution become trapped in local minima of the objective problem and fail to reach the optimal solution. One simple method to tackle such situations is the usage of hybrid techniques, where local minimization algorithms are used in conjunction with the main algorithm. However, Grammatical Evolution is an integer optimization problem and, as a consequence, techniques should be formulated that are applicable to it as well. In the current work, a modified version of the Simulated Annealing algorithm is used as a local optimization procedure in Grammatical Evolution. This approach was tested on the Constructed Neural Networks and a remarkable improvement of the experimental results was shown, both in classification data and in data fitting cases.
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1. Introduction


Genetic Algorithms belong to the field of evolutionary techniques [1] and were originally formulated by John Hollands and his team [2]. Genetic Algorithms are initiated by generating a series of random candidate solutions to an optimization problem. These candidate solutions are called chromosomes, and they iteratively undergo a series of operations that have their foundation in physical processes, such as selection, crossover, and mutation [3,4,5]. Grammatical Evolution [6] is considered a special case of Genetic Algorithms, where the chromosomes are series of integer numbers. Chromosomes in the Grammatical Evolution process are rules for generating a Backus–Naur form (BNF) grammar [7] and can be used to create functional programs in any programming language.



Grammatical Evolution has been applied on a wide series of real-world applications, such as function approximation [8,9], credit classification [10], network security and prevention of attacks [11], monitoring of water quality [12], modeling glycemia in humans [13], automatic design of Ant algorithms [14], temperature prediction in data centers [15], solving trigonometric equations [16], composing music [17], neural network construction [18,19], producing numeric constants [20], video games [21,22], energy demand estimation [23], combinatorial optimization [24], cryptography [25], evolving of decision trees [26], automatic design of analog electronic circuits [27], etc.



The method of Grammatical Evolution has been extended by various researchers during recent years and some examples of these extensions are Structured Grammatical Evolution [28,29], which applies a one-to-one mapping between the chromosomes and the non-terminal symbols of the grammar; the  π Grammatical Evolution method [30], an application of the Particle Swarm Optimization(PSO) [31] to produce programs with Grammatical Evolution denoted as Grammatical Swarm [32,33]; the Probabilistic Grammatical Evolution [34], which introduced a new mapping mechanism for the Grammatical Evolution method, incorporation of parallel programming techniques [35,36], usage of Christiansen grammars [37], etc.



Also, a variety of software has been developed for Grammatical Evolution, such as the GEVA v2.0 [38] that proposes a GUI application for Grammatical Evolution, the gramEvol v2.1-4 software [39] that provides a package in the R programming language, the GeLab v2.0  [40] that implements a Matlab toolbox for Grammatical Evolution, the GenClass v1.0 [41] software used to produce classification programs, the QFc v1.10 software [42] for feature construction, etc.



Although the method of Grammatical Evolution has proven to be extremely efficient, it can often become trapped in the local minimum of the objective problem and its performance may not be as expected. A common method to get out of such situations is the use of local optimization techniques, which have been applied many times in combination with Genetic Algorithms [43,44]. In the case of Grammatical Evolution and due to the integral representation of the candidate solutions, local optimization techniques are not directly applicable, such as, for example, the BFGS method [45] and hence more suitable methods should be adopted. In this paper, an attempt is made to improve upon the excellent results shown by Grammatical Evolution in the past on a variety of problems by applying local optimization techniques, periodically applied to randomly selected chromosomes of Grammatical Evolution. The current work utilizes a modified version of the Simulated Annealing method [46] as a local search procedure. The method of Simulated Annealing has been utilized in various cases, such as image processing [47], protein structure optimization [48], resource allocation [49], convex optimization [50], deep learning [51], etc. To verify the possibility of the proposed methodology to improve the results of Grammatical Evolution, the neural networks construction technique was chosen. This method was initially provided in [52] and it can estimate the topology and the weights of neural networks using the Grammatical Evolution procedure. This method was chosen to test the present methodology because of its many applications. However, the technique proposed in this paper will be able to be applied in the future in other cases of using Grammatical Evolution. To evaluate the performance of the modified technique it was evaluated on a extended series of classification and regression problems found in the relevant literature and the results seem to be promising.



In the same direction, many researchers have published papers in neural network initialization or construction, such as the usage of decision trees to initialize the weights of a neural network [53], initialization of the weights using Cauchy’s inequality [54], and the application of discriminant learning [55]. Also, the issue of constructing the structure of artificial neural networks has been discussed in various papers, such as incorporation of genetic algorithms [56], construction and pruning of the weights [57], application of cellular automata [58], etc.



This paper has the following sections: in Section 2 the Grammatical Evolution procedure is discussed and the proposed modification is described. Section 3 presents the datasets used in the experiments as well as the results from the conducted experiments, and finally Section 4 provides some conclusions and guidelines for future work.




2. The Proposed Method


This section starts with a brief description of the Grammatical Evolution process and the grammar used, then the modified Simulated Annealing method is presented, and finally the artificial neural network construction algorithm will be presented.



2.1. The Grammatical Evolution Method


The chromosomes of Grammatical Evolution stand for production rules of the given BNF grammar. BNF grammars are usually defined as a tuple   G =  N , T , S , P   , where:




	
N is the set of non-terminal symbols.



	
T is the set of terminal symbols.



	
S represents that start symbol of the grammar with   S ∈ N  .



	
P is the production rules of the grammar. Usually these rules are in the form   A → a   or   A → a B ,  A , B ∈ N ,  a ∈ T  .








The BNF grammar is extended by using enumeration in the the production rules. The grammar shown in Figure 1 is used to construct artificial neural networks expressed in the form:


  N   x →  ,  w →   =  ∑  i = 1  H   w  ( d + 2 ) i − ( d + 1 )   σ   ∑  j = 1  d   x j   w  ( d + 2 ) i − ( d + 1 ) + j   +  w  ( d + 2 ) i     



(1)




where the parameter H represents the number of processing units (hidden nodes ) for the neural network and the value d represents the of the vector    x →  .   Also, the vector   w →   represents the vector of parameters for the neural network. The function sig(x) represents the sigmoid function   σ ( x )   defined as:


  σ  ( x )  =  1  1 + exp ( − x )    



(2)







The notation <> is used for the non-terminal symbols of the grammar. The sequence numbers of the production rules are inside the parentheses of the extended grammar. The constant d stands for the dimension of the provided dataset. The production of valid expressions initiates from the symbol S and using a series of steps, creates a program by replacing non-terminal symbols with the right hand of the selected production rule. Grammatical Evolution selects production rules using the following scheme:




	
Obtain the next element V from the provided chromosome.



	
The production rule is selected according to the scheme


   Rule  = V   mod    NR   



(3)




where NR is the total number of production rules for the current non-terminal symbol.









2.2. The Modified Simulated Annealing Algorithm


The current work utilizes a modified version of the Simulated Annealing algorithm as a local search procedure. Simulated Annealing was chosen as a local search method, since it offers the possibility of representing the considered solutions in an integer form, which is critical for the Grammatical Evolution representation of chromosomes. In addition, this method has been distinguished for its easy adaptation to a multitude of problems but also for its ability to find the total minimum of functions through the point acceptance mechanism at high temperatures. In the present work, the Simulated Annealing will initiate from the current representation of a chromosome and gradually try to find other nearby representations that might lead to lower values of the fitness value. The main steps of this procedure are shown in Algorithm 1.






	Algorithm 1 The modified version of the Simulated Annealing algorithm



	procedure siman   x 0    



	
Set   k = 0  ,    T 0  > 0 ,  ϵ > 0 ,      r T  > 0 ,   r T  < 1  ..



	
Set    N  e p s   > 0  , a positive integer indicated the number of samples drawn in every iteration.



	
Set g and R, positive integer values.



	
Set    x b  =  x 0  ,  f b  = f   x b    .



	
For    i = 1 …  N  e p s    




	(a) 

	
Set    y =  x k    




	(b) 

	
For    j = 1 … g  




	i. 

	
Set   p =  rand   1 ,  size    x 0     . The variable p indicates a randomly selected position in y.




	ii. 

	
Set     y p  =  y p  +  rand   − R , R    










	(c) 

	
EndFor




	(d) 

	
If   f  ( y )  ≤ f   x k     then    x  k + 1   = y   




	(e) 

	
Else Set    x  k + 1   = y   with probability   min  1 , exp  −   f  ( y )  − f   x k     T k       




	(f) 

	
If   f  y  <  f b    then    x b  = y ,  f b  = f  ( y )   .









	
EndFor



	
Set     T  k + 1   =  T k   r T    



	
Set   k = k + 1  .



	
If    T k  ≤ ϵ   terminate



	
Goto step 5.



	
Return    x b   





end siman








The method accepts the chromosome   x 0   as a starting point and, in each iteration, randomly generates chromosomes around it. The parameter g controls the number of changes that will be made to the chromosome and the parameter R controls the radius of these changes. The parameter T represents the temperature of the algorithm. The temperature starts at extremely high values and progressively decreases linearly. In the early stages and at high temperatures, the algorithm may accept points that may have higher values of the fitness function, but as the temperature decreases, this probability also decreases. The used Simulated Annealing variant is also shown graphically as a flow chart in Figure 2.




2.3. The Neural Network Construction Algorithm


The main steps of the algorithm used to construct artificial neural networks with Grammatical Evolution are listed below:




	
Initialization step:




	(a)

	
Set   N g   as the maximum number of generations allowed.




	(b)

	
Set   N c   as the number of chromosomes.




	(c)

	
Set   p s   as the selection rate and   p m   as the mutation rate.




	(d)

	
Define as   L i   the number of generations that should elapse before applying the local optimization technique.




	(e)

	
Define as   L c   the number of chromosomes involved in the local search procedure.




	(f)

	
Initialize the chromosomes. Each chromosome is considered as a series of randomly initialized integers.




	(g)

	
Set iter=0.









	
Genetic step:




	(a)

	
For  i = 1 , … ,  N g   do




	
Create for every chromosome a neural network   C i   using the Grammatical Evolution procedure of Section 2.1 and the associated grammar given in Figure 1.



	
Calculate the fitness   f i   on the train set of the objective problem as:


   f i  =  ∑  j = 1  M     C i     x →  j   −  t j   2   



(4)




where the set      x j  →  ,  t j   ,  j = 1 , . . . M   is train dataset, with   t i   being the actual output for the point    x i  →  .



	
Perform the selection procedure. Initially, the chromosomes are sorted according to their fitness values. The best    1 −  p s   ×  N c    chromosomes are transferred to the next generation. The remaining chromosomes will be replaced by offspring created during the crossover procedure.



	
Perform the crossover procedure. The crossover procedure produces    p s  ×  N c    offspring. For every pair of produced offspring   z ˜   and   w ˜  , there are two offspring   ( z , w )  . The selection is performed using tournament selection. The new offspring are produced using the one-point crossover procedure. An example of the one-point crossover procedure is shown in Figure 3.



	
Perform the mutation procedure. For each element of every chromosome, a random number   r ∈  0 , 1    is drawn. The corresponding element is altered if   r ≤  p m   .









	(b)

	
EndFor









	
Local Search step:




	(a)

	
If     iters    mod    L i  = 0 ,  Then




	
Create a set of randomly   L C   chosen chromosomes from the genetic population. Denote this set as   L S  .



	
For every   X k   in   L S   apply the modified Simulated Annealing algorithm given in Algorithm 1:    X k  =  siman    X k     














	
set iter = iter + 1. If iter >   N g   goto Evaluation step else goto Genetic step.



	
Evaluation step:




	(a)

	
Obtain the chromosome with the lowest fitness value and create the associated neural network   C ∗  .




	(b)

	
Evaluate the neural network   C ∗   in the test set of the underlying dataset and report the results.
















3. Results


The current work was evaluated by executing a series of experiments on some classification and regression datasets, which are commonly used in the relevant literature. The obtained results were compared with other machine learning techniques. These datasets can be downloaded freely from the following websites:




	
The UCI dataset repository, https://archive.ics.uci.edu/ml/index.php (accessed on 20 March 2024) [59];



	
The Keel repository, https://sci2s.ugr.es/keel/datasets.php (accessed on 20 March 2024) [60];



	
The Statlib URL http://lib.stat.cmu.edu/datasets/ (accessed on 20 March 2024).








3.1. Classification Datasets


The following series of classification datasets was used in the conducted experiments:




	
Appendictis a medical dataset, provided in [61].



	
Australian dataset [62], which is related to credit card transactions.



	
Balance dataset [63], a dataset related to psychological experiments.



	
Circular dataset, an artificial dataset that contains 1000 examples.



	
Cleveland dataset, a medical dataset used in a series of papers [64,65].



	
Dermatology dataset [66], which is a medical dataset about dermatological deceases.



	
Ecoli dataset, a dataset about protein localization sites [67].



	
Haberman dataset, related to breast cancer.



	
Heart dataset [68], a medical dataset about heart diseases.



	
Hayes roth dataset [69], which is a human subjects study.



	
HouseVotes dataset [70], related to votes collected from U.S. House of Representatives Congressmen.



	
Ionosphere dataset, which was used in experiments related to the ionosphere [71,72].



	
Liverdisorder dataset [73], a medical dataset related to liver disorders.



	
Mammographic dataset [74], a medical dataset related to breast cancer.



	
Parkinsons dataset, a medical dataset related to Parkinson’s disease (PD) [75].



	
Pima dataset [76], a medical dataset related to the diabetes presence.



	
Popfailures dataset [77], a dataset related to climate measurements.



	
Regions2 dataset, medical dataset related to hepatitis C [78].



	
Saheart dataset [79]. This dataset is used to detect heart diseases.



	
Segment dataset [80], related to image processing.



	
Student dataset [81], related to data collected in Portuguese schools.



	
Transfusion dataset [82], this dataset was taken from the Blood Transfusion Service Center in Hsin-Chu City in Taiwan.



	
Wdbc dataset [83], a medical dataset related cancer detection.



	
Wine dataset. This is a dataset used to detect the quality of a series of wines [84,85].



	
Eeg datasets, a dataset related to EEG measurements [86]. From this dataset the following cases were used: Z_F_S, Z_O_N_F_S, ZO_NF_S, and ZONF_S.



	
Zoo dataset [87], related to animal classification.









3.2. Regression Datasets


The following regression datasets were used in the conducted experiments:




	
Abalone dataset [88], a dataset related to the prediction of age of abalones.



	
Airfoil dataset, a dataset proposed by NASA [89].



	
Baseball dataset, related with the income of baseball players.



	
Concrete dataset [90], which is a civil engineering dataset.



	
Dee dataset. This dataset has measures from the price of electricity.



	
HO dataset, downloaded from the STALIB repository.



	
Housing dataset, mentioned in [91].



	
Laser dataset. This is a dataset related to laser experiments



	
LW dataset, related to risk factors associated with low-weight babies.



	
MORTGAGE dataset, a dataset related to economic measurements from the USA.



	
PL dataset, provided from the STALIB repository.



	
SN dataset, provided from the STALIB repository.



	
Treasury dataset, a dataset related to economic measurements from the USA.



	
TZ dataset, provided from the STALIB repository.









3.3. Experimental Results


For the execution of the experiments, code written in ANSI C++ was used with the help of the programming environment Optimus. The software is freely available from https://github.com/itsoulos/OPTIMUS/ (accessed on 20 March 2024). The experiments were conducted 30 times. In every execution different seed was used for the random number generator and the function drand48() of the C programming language was used. The validation of the results was performed using the technique of 10-fold cross validation. The average classification error is reported for the case of classification datasets and the average regression error for the case of regression datasets. These errors are measured on the corresponding test set. The values for the experimental parameters are displayed in Table 1. The experimental results for the classification datasets are outlined in Table 2 and the results for the regression datasets are shown in Table 3. The following applies to the tables with the experimental results:




	
The column DATASET denotes the used dataset.



	
The column ADAM denotes the application of the ADAM optimization method [92] in an artificial neural network with   H = 10   processing nodes.



	
The column NEAT stands for the usage of NEAT method (NeuroEvolution of Augmenting Topologies ) [93].



	
The column MLP stands for the experimental results of an artificial neural network with   H = 10   processing nodes. The neural network was trained using a Genetic Algorithm and the BFGS local optimization method [94].



	
The column RBF represents the application of an RBF network with   H = 10   processing nodes in each dataset.



	
The column NNC denotes the usage of the original Neural Construction technique, which was constructed with Grammatical Evolution.



	
The column NNC-S denotes the usage of the proposed local optimization procedure in the Neural Construction technique.



	
The line AVERAGE denotes the average classification or regression error.








The above techniques were used in the experiments as they are widespread in machine learning, such as the Adam method [95,96] and because they have a similar complexity to the present technique, such as Genetic Algorithms. As is evident, the proposed modification improves the efficiency of the proposed method in the majority of used datasets. This improvement on some datasets could be as much as an 80% percent error reduction on the test set. In all cases, the simple neural network construction technique outperforms other machine learning techniques and this is evident from the average result (the last row in experimental tables). However, the proposed method significantly reduces the classification error or the error in the data fitting sets in most of the cases where it was used. In fact, in order to show in which cases there was a reduction in the error, bold marking is used in the tables of results.



Figure 4 is a scatter plot that provides a detailed comparative analysis of classification error percentages for six distinct machine learning and optimization algorithms: ADAM, NEAT, GENETIC, RBF, NNC, and NNC-S. Each point on the plot represents the outcome of an individual run of a model, thus showcasing the range of variation in the error rates associated with these classification methods. The vertical dispersion of points for each method reflects the spread of error rates, which is critical for evaluating the reliability of each algorithm. The medians of these error rates are indicated by horizontal lines intersecting the clusters of dots, offering a snapshot of each algorithm’s central tendency in performance. The asterisk-based notation above the clusters denotes statistical significance levels: one asterisk (*) signifies a p-value less than 0.05, two asterisks (**) denote p < 0.01, three asterisks (***) represent p < 0.001, and four asterisks (****) indicate an extremely low p-value of less than 0.0001, suggesting strong evidence against the null hypothesis. Of note is the performance of the NNC-S method, which not only shows a significantly lower median error rate when compared to the NNC method but also displays a notably tighter cluster of data points. This implies that the NNC-S method not only tends to be more accurate on average but also provides greater consistency in its error rates across different runs, underscoring its robustness as a classification tool.



Building on the previous analysis of classification methods, Figure 5 extends the evaluation to regression algorithms, providing a comparative study of regression error rates for the same six methods: ADAM, NEAT, GENETIC, RBF, NNC, and NNC-S. Each data point reflects the regression error from a specific trial, with the array of points for each method revealing the range of performance outcomes. The median error rates are again represented by horizontal lines across the clusters of dots, serving as a summary statistic that facilitates a direct comparison of the method’s central performance trends. The notation of statistical significance is consistent with the previous figure, where asterisks convey the p-value levels, identifying statistically meaningful differences in performance between the methods.



This plot reveals that the NNC-S method maintains its superior performance in the context of regression tasks, demonstrating lower median regression errors compared to the other methods. Significantly, it achieves a markedly lower median regression error than its predecessor, NNC, as indicated by the blue dots and supported by the three asterisks (***). This pattern of results underscores the broader applicability of the NNC-S method’s local optimization enhancements, not only in classification accuracy but also in reducing regression errors.



Additionally, the effectiveness and the robustness of the proposed method was evaluated by performing additional experiments with different values for the critical parameter g of the suggested Simulated Annealing variant. This parameter is used to control the number of random changes performed on any given chromosome. The experimental results in the classification datasets are shown in Table 4. Clearly, no significant variation in the performance of the proposed technique occurs when this critical parameter is varied.



Continuing from the previous analysis, Figure 6 presents the classification error rates for variations of the NNC-S algorithm with differing values of the parameter g. The plot aims to evaluate whether changes in the parameter g led to statistically significant differences in the algorithm’s classification performance. The horizontal bars on the plot indicate the median classification error for each variation of the NNC-S method, providing a clear comparison across the different parameter values. The statistical annotations (“ns” for not significant, “**” for p < 0.01, and “***” for p < 0.001) are used to denote the statistical significance of the differences between the groups. It appears that some variations, particularly between NNC-S (  g = 2  ) and NNC-S (  g = 5  ), as well as between NNC-S (  g = 10  ) and NNC-S (  g = 20  ), do not show significant differences in performance (denoted by “ns”). In contrast, other comparisons do reveal significant differences, suggesting that certain values of g can indeed impact the classification error rates of the NNC-S algorithm.



In addition, in the graph of Figure 7, a comparison is made for the average execution time of each experiment for the classification datasets. The comparison was made between the initial method (denoted as NNC in the graph) as well as the various cases of the proposed technique by changing the parameter g to 5, 10, and 20. As expected, adding the local minimization technique to the Grammatical Evolution method significantly increases the execution time of the method; however, this increase remains almost constant for different values of the critical parameter g. Moreover, by using parallel techniques that appear in the relevant literature this increase in execution time could be reduced.



Furthermore, another experiment was executed by varying the parameter R of the proposed Simulated Annealing variant. This parameter controls the range of changes performed in any given chromosome. The results for this experiment are shown in Table 5. This time the method appeared quite robust in its performance, without large variations in the error as measured in the test set.



As a practical application of the suggested method, we consider the dataset proposed in [97], which relates alcohol consumption and EEG recordings. The proposed method was applied on this dataset and it is compared against the original neural network construction technique; the results are outlined in Figure 8.



Once again, the present method outperforms the original artificial neural network construction technique and the performance appears to be stable as the critical parameter g grows.





4. Conclusions


In the current work, an extension of the original Grammatical Evolution has been proposed, which was applied in the Neural Construction method. In this extension, an application of a modified optimization method was suggested, in order to improve the efficiency of the underlying technique. The proposed optimization algorithm was a variant of the Simulated Annealing method, which was applied on a series of chromosomes that was randomly from the Grammatical Evolution procedure. This method was chosen because of its widespread use in many applications and because of its ability to handle integer representations, since the chromosomes in Grammatical Evolution are vectors of integers. Of course, other local optimization techniques could be incorporated, such as tabu search [98] or hill climbing [99] as feature extensions of the proposed method.



The proposed modification was applied to the neural network construction method and its efficiency was measured on some commonly used classification and regression datasets. Based on the experimental results, it has become clear that the proposed variant significantly improves the performance of the technique both on classification datasets and on data fitting datasets. Also, the effectiveness and the robustness of the proposed modification were measured using experiments with different values of some critical parameters of the current Simulated Annealing variant. These experiments indicated that the method tends to be robust, since the experimental results do not depend on the selection of any critical parameter of the Simulated Annealing variant.



The present modification could be applied to other techniques that use Grammatical Evolution without significant differences and, moreover, it could also be used to optimize functions either without constraints or with constraints in similar techniques that have been proposed in recent years. However, as was seen from the experimental results, the addition of the Simulated Annealing technique significantly increases the required execution time and it is necessary to use techniques that are not particularly demanding in time or to search for termination techniques of the proposed Simulated Annealing variant that take advantage of its particular characteristics. Also, a field of research could be the search for more effective techniques to reduce the critical temperature factor used in the Simulated Annealing.



Future work may include application of the local search procedure in other Grammatical Evolution applications, such as feature construction, creation of classification rules, etc. Also, the proposed process can be significantly accelerated by the use of parallel optimization techniques [100], which take advantage of modern computational structures.
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Figure 1. The used grammar in neural network construction. 
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Figure 2. Flowchart of the used Simulated Annealing variant. 
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Figure 3. An example of the one-point crossover method, used in the Grammatical Evolution procedure. 
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Figure 4. Scatter plot illustrating the variability and median classification error rates for six machine learning algorithms, with statistical significance denoted by asterisks. The asterisk-based notation above the clusters denotes statistical significance levels. The NNC-S method demonstrates notably lower error rates, as evidenced by the high statistical significance relative to other methods, which may indicate its superior performance in classification tasks. 
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Figure 5. Scatter plot of regression error rates for various regression methods, demonstrating the distribution, median error rates, and statistical significance of differences in performance. The asterisk-based notation above the clusters denotes statistical significance levels The NNC-S method, shows statistically significant improvements in accuracy over the NNC method, underlining the efficacy of local optimization enhancements in regression tasks. The y-axis is presented on a logarithmic scale to clearly visualize the range of error magnitudes across methods. 
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Figure 6. This figure examines the impact of varying the parameter g on the NNC-S algorithm’s classification errors, revealing that while some parameter adjustments do not significantly affect performance, others result in noticeable differences, as indicated by the statistical significance annotations. 
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Figure 7. Time comparison between the initial method and the proposed modifications. 
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Figure 8. Comparison between the proposed method and the original Neural Construction method for the alcohol consumption dataset. 
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Table 1. The values for the parameters used in the conducted experiments.
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	Name
	Purpose
	Value





	   N c   
	Number of chromosomes
	500



	   N g   
	Number of generations
	200



	   p s   
	Selection rate
	0.10



	   p m   
	Mutation rate
	0.05



	g
	Number of random changes
	10



	R
	Range of random changes
	10



	  ϵ  
	Small value used in comparisons
	   10  − 5    



	   N  e p s    
	Number of random samples
	200



	T
	Initial temperature
	   10 8   



	   r T   
	Rate of decrease in temperature
	0.8










 





Table 2. Experimental results for the series of machine learning methods for the classification datasets. The numbers in cells are the average classification errors as measured in the test set. The bold values it is and indication if the suggested method outperforms the original NNC method.
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	Dataset
	ADAM
	NEAT
	GENETIC
	RBF
	NNC
	NNC-S





	APPENDICITIS
	16.50%
	17.20%
	18.10%
	12.23%
	14.40%
	14.60%



	AUSTRALIAN
	35.65%
	31.98%
	32.21%
	34.89%
	14.46%
	14.90%



	BALANCE
	7.87%
	23.84%
	8.97%
	33.42%
	22.13%
	7.66%



	CIRCULAR
	3.94%
	34.07%
	5.99%
	6.30%
	14.26%
	7.88%



	CLEVELAND
	67.55%
	53.44%
	51.60%
	67.10%
	49.93%
	48.59%



	DERMATOLOGY
	26.14%
	32.43%
	30.58%
	62.34%
	24.80%
	13.11%



	ECOLI
	64.43%
	43.24%
	49.38%
	59.50%
	48.82%
	44.88%



	HABERMAN
	29.00%
	24.04%
	28.66%
	25.10%
	28.33%
	28.73%



	HAYES ROTH
	59.70%
	50.15%
	56.18%
	64.36%
	37.23%
	28.08%



	HEART
	38.53%
	39.27%
	28.34%
	31.20%
	15.78%
	16.00%



	HOUSEVOTES
	7.48%
	10.89%
	6.62%
	6.13%
	3.52%
	3.74%



	IONOSPHERE
	16.64%
	19.67%
	15.14%
	16.22%
	11.86%
	10.03%



	LIVERDISORDER
	41.53%
	30.67%
	31.11%
	30.84%
	32.97%
	32.82%



	MAMMOGRAPHIC
	46.25%
	22.85%
	19.88%
	21.38%
	18.22%
	16.58%



	PARKINSONS
	24.06%
	18.56%
	18.05%
	17.41%
	13.21%
	12.26%



	PIMA
	34.85%
	34.51%
	32.19%
	25.78%
	28.47%
	25.26%



	POPFAILURES
	5.18%
	7.05%
	5.94%
	7.04%
	6.83%
	5.52%



	REGIONS2
	29.85%
	33.23%
	29.39%
	38.29%
	25.87%
	24.47%



	SAHEART
	34.04%
	34.51%
	34.86%
	32.19%
	30.80%
	29.52%



	SEGMENT
	49.75%
	66.72%
	57.72%
	59.68%
	54.89%
	39.38%



	STUDENT
	5.13%
	12.50%
	5.61%
	7.52%
	5.70%
	4.52%



	TRANSFUSION
	25.68%
	24.87%
	25.84%
	27.36%
	25.30%
	24.33%



	WDBC
	35.35%
	12.88%
	8.56%
	7.27%
	7.27%
	5.59%



	WINE
	29.40%
	25.43%
	19.20%
	31.41%
	13.53%
	11.47%



	Z_F_S
	47.81%
	38.41%
	10.73%
	13.16%
	15.30%
	7.93%



	Z_O_N_F_S
	78.79%
	79.08%
	64.81%
	60.40%
	50.48%
	40.42%



	ZO_NF_S
	47.43%
	43.75%
	8.41%
	9.02%
	15.22%
	6.60%



	ZONF_S
	11.99%
	5.44%
	2.60%
	4.03%
	3.14%
	2.36%



	ZOO
	14.13%
	20.27%
	16.67%
	21.93%
	9.10%
	7.20%



	AVERAGE
	32.23%
	30.72%
	24.94%
	28.74%
	22.13%
	18.43%










 





Table 3. Experimental results as measured on the regression datasets. The numbers in cells denote the average regression errors for the associated machine learning method, as measured on the test set. The bold values it is and indication if the suggested method outperforms the original NNC method.
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	Dataset
	ADAM
	NEAT
	GENETIC
	RBF
	NNC
	NNC-S





	ABALONE
	4.30
	9.88
	7.17
	7.37
	5.11
	4.95



	AIRFOIL
	0.005
	0.067
	0.003
	0.27
	0.003
	0.003



	BASEBALL
	77.90
	100.39
	103.60
	93.02
	59.40
	57.30



	CONCRETE
	0.078
	0.081
	0.0099
	0.011
	0.008
	0.006



	DEE
	0.63
	1.512
	1.013
	0.17
	0.26
	0.23



	HO
	0.035
	0.167
	2.78
	0.03
	0.016
	0.012



	HOUSING
	80.20
	56.49
	43.26
	57.68
	25.56
	18.82



	LASER
	0.03
	0.084
	0.59
	0.024
	0.026
	0.015



	LW
	0.028
	0.17
	1.90
	1.14
	0.97
	0.038



	MORTGAGE
	9.24
	14.11
	2.41
	1.45
	0.29
	0.12



	PL
	0.117
	0.097
	0.28
	0.083
	0.046
	0.033



	SN
	0.026
	0.174
	2.95
	0.90
	0.026
	0.024



	TREASURY
	11.16
	15.52
	2.93
	2.02
	0.47
	0.18



	TZ
	0.07
	0.097
	5.38
	4.10
	0.06
	0.028



	AVERAGE
	13.12
	14.20
	12.45
	12.02
	6.60
	5.84










 





Table 4. Experiments with the parameter g used in the modified Simulated Annealing method.
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	Datatset
	NNC-S    ( g = 2 )    
	NNC-S    ( g = 5 )    
	NNC-S    ( g = 10 )    
	NNC-S    ( g = 20 )    





	APPENDICITIS
	14.90%
	15.00%
	14.60%
	14.50%



	AUSTRALIAN
	14.59%
	14.85%
	14.90%
	15.04%



	BALANCE
	8.53%
	7.68%
	7.66%
	7.56%



	CIRCULAR
	10.49%
	8.81%
	7.88%
	7.50%



	CLEVELAND
	48.41%
	48.31%
	48.59%
	48.10%



	DERMATOLOGY
	15.09%
	13.80%
	13.11%
	13.29%



	ECOLI
	45.30%
	45.12%
	44.88%
	44.36%



	HABERMAN
	27.80%
	27.97%
	28.73%
	27.83%



	HAYES ROTH
	29.85%
	28.85%
	28.08%
	29.15%



	HEART
	16.11%
	15.04%
	16.00%
	14.78%



	HOUSEVOTES
	3.70%
	4.22%
	3.74%
	3.70%



	IONOSPHERE
	10.54%
	10.09%
	10.03%
	10.00%



	LIVERDISORDER
	31.41%
	33.15%
	32.82%
	33.29%



	MAMMOGRAPHIC
	17.16%
	17.25%
	16.58%
	16.99%



	PARKINSONS
	12.32%
	12.89%
	12.26%
	12.11%



	PIMA
	26.12%
	25.96%
	25.26%
	25.92%



	POPFAILURES
	5.58%
	6.00%
	5.52%
	5.68%



	REGIONS2
	24.71%
	24.05%
	24.47%
	24.66%



	SAHEART
	30.04%
	29.67%
	29.52%
	29.07%



	SEGMENT
	46.94%
	42.37%
	39.38%
	41.19%



	STUDENT
	4.60%
	4.73%
	4.52%
	4.48%



	   TRANSFUSION    
	24.28%
	24.34%
	24.33%
	24.03%



	WDBC
	6.23%
	6.22%
	5.59%
	5.68%



	WINE
	12.59%
	11.30%
	11.47%
	9.24%



	Z_F_S
	9.57%
	9.60%
	7.93%
	8.10%



	Z_O_N_F_S
	46.04%
	43.36%
	40.42%
	41.54%



	ZO_NF_S
	9.69%
	8.54%
	6.60%
	6.44%



	ZONF_S
	2.58%
	2.28%
	2.36%
	2.36%



	ZOO
	6.90%
	7.00%
	7.20%
	7.70%



	AVERAGE
	19.38%
	18.91%
	18.43%
	18.42%










 





Table 5. Experiments with the parameter R of the modified Simulated Annealing algorithm. The parameter g was set to 10.
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	Dataset
	NNC-S    ( R = 2 )    
	NNC-S    ( R = 5 )    
	NNC-S    ( R = 10   )
	NNC-S    ( R = 20 )    





	APPENDICITIS
	14.40%
	14.90%
	14.60%
	15.20%



	AUSTRALIAN
	14.77%
	14.78%
	14.90%
	14.70%



	BALANCE
	7.66%
	7.74%
	7.66%
	7.66%



	CIRCULAR
	8.39%
	8.29%
	7.88%
	7.78%



	CLEVELAND
	49.45%
	49.28%
	48.59%
	47.11%



	DERMATOLOGY
	14.09%
	12.54%
	13.11%
	11.34%



	ECOLI
	44.24%
	46.30%
	44.88%
	44.48%



	HABERMAN
	27.33%
	28.10%
	28.73%
	28.04%



	HAYES ROTH
	29.15%
	27.92%
	28.08%
	26.46%



	HEART
	15.67%
	15.52%
	16.00%
	15.15%



	HOUSEVOTES
	4.00%
	3.62%
	3.74%
	4.52%



	IONOSPHERE
	10.14%
	10.03%
	10.03%
	10.71%



	LIVERDISORDER
	32.80%
	32.12%
	32.82%
	32.29%



	MAMMOGRAPHIC
	17.18%
	16.78%
	16.58%
	16.62%



	PARKINSONS
	12.68%
	12.16%
	12.26%
	11.95%



	PIMA
	25.72%
	25.11%
	25.26%
	26.33%



	POPFAILURES
	5.87%
	5.72%
	5.52%
	5.58%



	REGIONS2
	23.55%
	24.04%
	24.47%
	24.08%



	SAHEART
	29.48%
	28.96%
	29.52%
	29.24%



	SEGMENT
	40.32%
	40.23%
	39.38%
	40.82%



	STUDENT
	4.18%
	4.50%
	4.52%
	4.78%



	TRANSFUSION
	24.60%
	24.12%
	24.33%
	24.36%



	WDBC
	6.09%
	5.68%
	5.59%
	5.46%



	WINE
	11.00%
	10.30%
	11.47%
	9.41%



	Z_F_S
	8.33%
	8.30%
	7.93%
	8.50%



	Z_O_N_F_S
	41.70%
	43.42%
	40.42%
	41.44%



	ZO_NF_S
	7.58%
	7.72%
	6.60%
	7.10%



	ZONF_S
	2.50%
	2.54%
	2.36%
	3.00%



	ZOO
	6.80%
	6.30%
	7.20%
	6.10%



	AVERAGE
	18.61%
	18.52%
	18.43%
	18.28%
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