The Future of Education: A Multi-Layered Metaverse Classroom Model for Immersive and Inclusive Learning
Abstract
:1. Introduction
- Literature Review and Theoretical Framework: This section provides a detailed review of the theoretical foundations supporting the integration of Metaverse technologies in education.
- Metaverse Classroom: a Layered Architectural View: The paper presents a Metaverse-based Meta-MILE that integrates immersive 3D settings, AI-driven personalization, gamified routes, and scenario-based assessments. This comprehensive strategy addresses significant shortcomings in contemporary virtual learning by providing customizable, captivating, and interactive experiences.
- Innovative Approach to Building a Metaverse Classroom: The study offers practical strategies to ensure equitable access and secure interactions in the Metaverse classroom while considering accessibility, infrastructure needs, and data protection. These suggestions connect innovative theories with real-world limitations, showing how institutions can adopt virtual learning inclusively and securely on a large scale.
- Empirical Validation and Practical Application: Empirical findings show improved learning engagement and skill acquisition under the Meta-MILE model, underscoring its effectiveness in fostering competency-based experiential learning.
- Discussion: This section discusses the practical implications, limitations, and future research directions. The discussion also emphasizes policy implications and the need for longitudinal research to further validate the results. It points to ongoing technological innovation as vital to making immersive classrooms more accessible and sustainable for the future of education.
- Conclusion: This section summarizes key contributions and emphasizes the importance of immersive technologies in shaping future educational practices.
2. Literature Review and Theoretical Framework
2.1. Foundations of Immersive Learning and Virtual Classrooms
2.2. Theories Supporting Metaverse Integration in Education
2.3. Current Gaps and Limitations in Virtual Learning Models
2.4. Positioning the Metaverse Classroom Within the Literature
3. Metaverse Classroom: A Layered Architectural View
3.1. Infrastructure Layer
3.1.1. Platform Technology
3.1.2. Network and Connectivity
3.1.3. Hardware Integration
3.2. Content and Interaction Layer
3.2.1. Three-Dimensional Virtual Environments
3.2.2. Interactive Learning Tools
3.2.3. Gamified Elements
3.3. Personalization and Accessibility Layer
3.3.1. AI-Driven Personalization
3.3.2. Assistive Technologies
3.3.3. Multilingual Support
3.4. Collaboration and Social Layer
3.4.1. Avatar-Based Interaction
3.4.2. Virtual Collaboration Spaces
3.4.3. Community Engagement
3.5. Assessment and Feedback Layer
3.5.1. Scenario-Based Evaluations
3.5.2. Instant Feedback and Analytics
3.5.3. Holistic Assessment
3.6. Security and Privacy Layer
3.6.1. Data Encryption and Secure Platforms
3.6.2. Parental Controls and Safe Use
3.6.3. Digital Well-Being
3.7. Management and Support Layer
3.7.1. Teacher Dashboards and Training
3.7.2. Content Management
3.7.3. Technical Support
4. Innovative Approach to Building a Metaverse Classroom
4.1. Unique Technological Integration
4.1.1. Cross-Platform Accessibility
4.1.2. AI and Machine Learning for Personalization
4.1.3. Data Security and Privacy Protections
4.2. Innovative Pedagogical Design
4.2.1. Scenario-Based Learning Environments
4.2.2. Gamified Learning Pathways
4.2.3. Holistic Skill Assessment
4.3. Enhanced Teacher Empowerment and Training
4.3.1. Dashboard Functionality and Analytics
4.3.2. Professional Development Within the Metaverse
4.4. Community and Parental Engagement Tools
4.4.1. Advanced Parental Control Features
4.4.2. Virtual Community Hubs
4.5. Sustainable, Scalable Design
4.5.1. Efficient Resource Use and Environmental Awareness
4.5.2. Future-Ready Infrastructure
5. Empirical Validation and Practical Application
5.1. Familiarity and Comfort with the Metaverse
5.2. Motivation to Learn
5.3. Industry Relevance
5.4. Distribution of Challenges in Metaverse Implementation
5.5. Educational Impact
5.6. Future Likelihood of Adoption
5.7. Advantages of Using the Metaverse
5.8. Challenges in Metaverse Adoption for Education
6. Discussion
6.1. Limitations of the Metaverse Classroom Model
6.2. Implications for Educational Institutions and Policy
7. Future Research Directions
7.1. Suggested Areas for Further Investigation
7.2. Technological and Pedagogical Advancements in Virtual Learning
8. Conclusions
8.1. Summary of Contributions
8.2. Vision for the Future of Metaverse in Education
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
ADHD | Attention-deficit/hyperactivity disorder |
AI | Artificial intelligence |
AR | Augmented reality |
CEO | Chief executive officer |
CMS | Content management system |
FERPA | Family Educational Rights and Privacy Act |
GDPR | General Data Protection Regulation |
IoT | Internet of Things |
Meta-MILE | Metaverse-driven Multi-layered Immersive Learning Environment |
MFA | Multi-factor authentication |
MoSCoW | Must-have, should-have, could-have |
SSO | Single sign-on |
STEM | Science, technology, engineering, and mathematics |
VR | Virtual reality |
References
- Wang, M.; Yu, H.; Bell, Z.; Chu, X. Constructing an edu-metaverse ecosystem: A new and innovative framework. IEEE Trans. Learn. Technol. 2022, 15, 685–696. [Google Scholar] [CrossRef]
- Singh, M. Exploring the possibilities to implement metaverse in higher education institutions of India. Edu. Inf. Technol. 2024, 29, 20715–20728. [Google Scholar] [CrossRef]
- Damaševičius, R.; Sidekerskienė, T. Virtual worlds for learning in metaverse: A narrative review. Sustainability 2024, 16, 2032. [Google Scholar] [CrossRef]
- Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [Google Scholar] [CrossRef]
- Papaioannou, G.; Volakaki, M.G.; Kokolakis, S.; Vouyioukas, D. Learning spaces in higher education: A state-of-the-art review. Trends High. Educ. 2023, 2, 526–545. [Google Scholar] [CrossRef]
- AlGerafi, M.A.; Zhou, Y.; Oubibi, M.; Wijaya, T.T. Unlocking the potential: A comprehensive evaluation of augmented reality and virtual reality in education. Electronics 2023, 12, 3953. [Google Scholar] [CrossRef]
- Yenduri, G.; Kaluri, R.; Rajput, D.S.; Lakshmanna, K.; Gadekallu, T.R.; Mahmud, M.; Brown, D.J. From assistive technologies to metaverse—Technologies in inclusive higher education for students with specific learning difficulties: A review. IEEE Access 2023, 11, 64907–64927. [Google Scholar] [CrossRef]
- Garlinska, M.; Osial, M.; Proniewska, K.; Pregowska, A. The influence of emerging technologies on distance education. Electronics 2023, 12, 1550. [Google Scholar] [CrossRef]
- Lo, S.C.; Tsai, H.H. Design of 3D virtual reality in the metaverse for environmental conservation education based on cognitive theory. Sensors 2022, 22, 8329. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Pramod, P. A collaborative metaverse based a-la-carte framework for tertiary education (CO-MATE). Heliyon 2023, 9, e13424. [Google Scholar] [CrossRef]
- Solanes, J.E.; Montava-Jordà, S.; Golf-Laville, E.; Colomer-Romero, V.; Gracia, L.; Muñoz, A. Enhancing STEM Education through Interactive Metaverses: A Case Study and Methodological Framework. Appl. Sci. 2023, 13, 10785. [Google Scholar] [CrossRef]
- Di Natale, A.F.; Bartolotta, S.; Gaggioli, A.; Riva, G.; Villani, D. Exploring students’ acceptance and continuance intention in using immersive virtual reality and metaverse integrated learning environments: The case of an Italian university course. Edu. Inf. Technol. 2024, 29, 14749–14768. [Google Scholar] [CrossRef]
- Chen, X.; Zou, D.; Xie, H.; Wang, F.L. Metaverse in education: Contributors, cooperations, and research themes. IEEE Trans. Learn. Technol. 2023, 16, 1111–1129. [Google Scholar] [CrossRef]
- Beck, D.; Morgado, L.; O’Shea, P. Educational practices and strategies with immersive learning environments: Mapping of reviews for using the metaverse. IEEE Trans. Learn. Technol. 2023, 17, 319–341. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, Y. Technology-enhanced education through VR-making and metaverse-linking to foster teacher readiness and sustainable learning. Sustainability 2022, 14, 4786. [Google Scholar] [CrossRef]
- Jagatheesaperumal, S.K.; Ahmad, K.; Al-Fuqaha, A.; Qadir, J. Advancing education through extended reality and internet of everything enabled metaverses: Applications, challenges, and open issues. IEEE Trans. Learn. Technol. 2024, 17, 1120–1139. [Google Scholar] [CrossRef]
- Onu, P.; Pradhan, A.; Mbohwa, C. Potential to use metaverse for future teaching and learning. Educ. Inf. Technol. 2024, 29, 8893–8924. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; García-Ortiz, J.; Sánchez-Viteri, S. Educational Advances in the Metaverse: Boosting Learning through Virtual and Augmented Reality and Artificial Intelligence. IEEE Access 2024, 12, 59093–59112. [Google Scholar] [CrossRef]
- Lazou, C.; Tsinakos, A. Critical immersive-triggered literacy as a key component for inclusive digital education. Educ. Sci. 2023, 13, 696. [Google Scholar] [CrossRef]
- Tsappi, E.; Deliyannis, I.; Papageorgiou, G.N. Developing a Performance Evaluation Framework Structural Model for Educational Metaverse. Technologies 2024, 12, 53. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Zhang, Q.; Zhou, B.; Wang, B. VR-enhanced cognitive learning: Method, framework, and application. Appl. Sci. 2023, 13, 4756. [Google Scholar] [CrossRef]
- Devi, K.S. Constructivist approach to learning based on the concepts of Jean Piaget and Lev Vygotsky An analytical Overview. J. Indian Educ. 2019, 44, 5–19. [Google Scholar]
- Hawes, D.; Arya, A. Technology solutions to reduce anxiety and increase cognitive availability in students. IEEE Trans. Learn. Technol. 2023, 16, 278–291. [Google Scholar] [CrossRef]
- Kim, T.; Planey, J.; Lindgren, R. Theory-driven design in metaverse virtual reality learning environments: Two exemplary cases. IEEE Trans. Learn. Technol. 2023, 16, 1141–1153. [Google Scholar] [CrossRef]
- AbuKhousa, E.; El-Tahawy, M.S.; Atif, Y. Envisioning architecture of metaverse intensive learning experience (MiLEx): Career readiness in the 21st century and collective intelligence development scenario. Future Internet 2023, 15, 53. [Google Scholar] [CrossRef]
- Abd El-Sattar, H.K.H. Future metaverse-based education to promote daily living activities in learners with autism using immersive technologies. Educ. Inf. Technol. 2024, 1–38. [Google Scholar] [CrossRef]
- Mahindru, R.; Kumar, A.; Bapat, G.; Rroy, A.D.; Kavita; Sharma, N. Metaverse Unleashed: Augmenting Creativity and Innovation in Business Education. Eng. Proc. 2024, 59, 207. [Google Scholar] [CrossRef]
- Kee, T.; Zhang, H.; King, R.B. An empirical study on immersive technology in synchronous hybrid learning in design education. Int. J. Technol. Des. Educ. 2024, 34, 1243–1273. [Google Scholar] [CrossRef]
- Lebert, A.; Vilarroya, Ó. The links between experiential learning and 4E cognition. Ann. N. Y. Acad. Sci. 2024, 1541, 37–52. [Google Scholar] [CrossRef]
- Alkhwaldi, A.F. Investigating the social sustainability of immersive virtual technologies in higher educational institutions: Students’ perceptions toward metaverse technology. Sustainability 2024, 16, 934. [Google Scholar] [CrossRef]
- Kee, T.; Zhang, H. Digital experiential learning for sustainable horticulture and landscape management education. Sustainability 2022, 14, 9116. [Google Scholar] [CrossRef]
- Zhang, H.L.; Xue, Y.; Lu, Y.; Lee, S. A fusion model: Towards a virtual, physical and cognitive integration and its principles. IEEE Consum. Electron. Mag. 2023, 13, 107–114. [Google Scholar] [CrossRef]
- Skulmowski, A.; Xu, K.M. Understanding cognitive load in digital and online learning: A new perspective on extraneous cognitive load. Educ. Psychol. Rev. 2022, 34, 171–196. [Google Scholar] [CrossRef]
- Sokołowska, B. Being in Virtual Reality and Its Influence on Brain Health—An Overview of Benefits, Limitations and Prospects. Brain Sci. 2024, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.N.; Condes Moreno, E.; Rubio-Zarapuz, A.; Dalamitros, A.A.; Yañez-Sepulveda, R.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J. Navigating the new normal: Adapting online and distance learning in the post-pandemic era. Educ. Sci. 2023, 14, 19. [Google Scholar] [CrossRef]
- Alawneh, Y.J.J.; Sleema, H.; Salman, F.N.; Alshammat, M.F.; Oteer, R.S.; ALrashidi, N.K.N. Adaptive Learning Systems: Revolutionizing Higher Education through AI-Driven Curricula. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024; Volume 1, pp. 1–5. [Google Scholar]
- Sajja, R.; Sermet, Y.; Cikmaz, M.; Cwiertny, D.; Demir, I. Artificial intelligence-enabled intelligent assistant for personalized and adaptive learning in higher education. Information 2024, 15, 596. [Google Scholar] [CrossRef]
- Villalba, K.; Jimeno, M.; Robles, H.; Vergara, L.; Sinning, C.; Lizcano, L.; Hurtado, B.; Nieto, W. Eyeland: A visually-impaired accessible English learning application using a Design Based Research framework. IEEE Access 2024, 12, 142275–142290. [Google Scholar] [CrossRef]
- Pasupuleti, V.; Thuraka, B.; Kodete, C.S.; Malisetty, S. Enhancing supply chain agility and sustainability through machine learning: Optimization techniques for logistics and inventory management. Logistics 2024, 8, 73. [Google Scholar] [CrossRef]
- Walker, R.; Morey, V.; Dinham, J.; Dobson, M.; Sims, C.; Bi, M.; Lamont, W. Welcome, How Can I Help You? Design Considerations for a Virtual Reality Environment to Support the Orientation of Online Initial Teacher Education Students. Educ. Sci. 2023, 13, 485. [Google Scholar] [CrossRef]
- Wiedermann, C.J.; Barbieri, V.; Plagg, B.; Marino, P.; Piccoliori, G.; Engl, A. Fortifying the foundations: A comprehensive approach to enhancing mental health support in educational policies amidst crises. Healthcare 2023, 11, 1423. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, I.M.; Manero, B.; Romero-Hernández, A.; Cárdenas, M.; Masó, I. Virtual reality platform for teacher training on classroom climate management: Evaluating user acceptance. Virtual Real. 2024, 28, 78. [Google Scholar] [CrossRef]
- Bizami, N.A.; Tasir, Z.; Kew, S.N. Innovative pedagogical principles and technological tools capabilities for immersive blended learning: A systematic literature review. Educ. Inf. Technol. 2023, 28, 1373–1425. [Google Scholar] [CrossRef] [PubMed]
- Mittal, U.; Sai, S.; Chamola, V.; Sangwan, D. A comprehensive review on generative ai for education. IEEE Access 2024, 12, 142733–142759. [Google Scholar] [CrossRef]
- Moreno, L.; Martínez, P.; Díaz, A.; Ochoa, H.; Corsetti, B. Assessing standards-driven accessibility in top video conferencing platforms. Univers. Access Inf. Soc. 2024, 1–18. [Google Scholar] [CrossRef]
- Alturki, U.; Aldraiweesh, A. The Factors Influencing 21st Century Skills and Problem-Solving Skills: The Acceptance of Blackboard as Sustainable Education. Sustainability 2023, 15, 12845. [Google Scholar] [CrossRef]
- Rosienkiewicz, M.; Helman, J.; Cholewa, M.; Molasy, M.; Górecka, A.; Kohen-Vacs, D.; Winokur, M.; Amador Nelke, S.; Levi, A.; Gómez-González, J.F.; et al. Enhancing technology-focused entrepreneurship in higher education institutions ecosystem: Implementing innovation models in international projects. Educ. Sci. 2024, 14, 797. [Google Scholar] [CrossRef]
- Makrakis, V. Teachers’ Resilience Scale for Sustainability Enabled by ICT/Metaverse Learning Technologies: Factorial Structure, Reliability, and Validation. Sustainability 2024, 16, 7679. [Google Scholar] [CrossRef]
- Norrie, C.S.; Deckers, S.R.; Radstaake, M.; van Balkom, H. A Narrative Review of the Sociotechnical Landscape and Potential of Computer-Assisted Dynamic Assessment for Children with Communication Support Needs. Multimodal Technol. Interact. 2024, 8, 38. [Google Scholar] [CrossRef]
- Bühler, M.M.; Jelinek, T.; Nübel, K. Training and preparing tomorrow’s workforce for the fourth industrial revolution. Educ. Sci. 2022, 12, 782. [Google Scholar] [CrossRef]
- Joshi, K.; Kumar, R.; Bharany, S.; Saini, D.K.J.B.; Kumar, R.; Ibrahim, A.O.; Abdelmaboud, A.; Nagmeldin, W.; Medani, M. Exploring the Connectivity Between Education 4.0 and Classroom 4.0: Technologies, Student Perspectives, and Engagement in the Digital Era. IEEE Access 2024, 12, 24179–24204. [Google Scholar] [CrossRef]
- Fan, S.; Yecies, B.; Zhou, Z.I.; Shen, J. Challenges and Opportunities for the Web 3.0 Metaverse Turn in Education. IEEE Trans. Learn. Technol. 2024, 17, 1935–1950. [Google Scholar] [CrossRef]
- Hatami, M.; Qu, Q.; Chen, Y.; Kholidy, H.; Blasch, E.; Ardiles-Cruz, E. A Survey of the Real-Time Metaverse: Challenges and Opportunities. Future Internet 2024, 16, 379. [Google Scholar] [CrossRef]
- Xu, M.; Ng, W.C.; Lim, W.Y.B.; Kang, J.; Xiong, Z.; Niyato, D.; Yang, Q.; Shen, X.; Miao, C. A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges. IEEE Commun. Surv. Tutor. 2022, 25, 656–700. [Google Scholar] [CrossRef]
- Muzata, A.R.; Singh, G.; Stepanov, M.S.; Musonda, I. Immersive Learning: A Systematic Literature Review on Transforming Engineering Education Through Virtual Reality. Virtual Worlds 2024, 3, 480–505. [Google Scholar] [CrossRef]
- Abilkaiyrkyzy, A.; Elhagry, A.; Laamarti, F.; El Saddik, A. Metaverse key requirements and platforms survey. IEEE Access 2023, 11, 117765–117787. [Google Scholar] [CrossRef]
- Marougkas, A.; Troussas, C.; Krouska, A.; Sgouropoulou, C. Virtual reality in education: A review of learning theories, approaches and methodologies for the last decade. Electronics 2023, 12, 2832. [Google Scholar] [CrossRef]
- Alsamhi, M.H.; Hawbani, A.; Kumar, S.; Alsamhi, S.H. Multisensory metaverse-6G: A new paradigm of commerce and education. IEEE Access 2024, 12, 75657–75677. [Google Scholar] [CrossRef]
- Porat, R.; Ceobanu, C. Enhancing Spatial Ability: A New Integrated Hybrid Training Approach for Engineering and Architecture Students. Educ. Sci. 2024, 14, 563. [Google Scholar] [CrossRef]
- Mendoza-Ramírez, C.E.; Tudon-Martinez, J.C.; Félix-Herrán, L.C.; Lozoya-Santos, J.d.J.; Vargas-Martínez, A. Augmented reality: Survey. Appl. Sci. 2023, 13, 10491. [Google Scholar] [CrossRef]
- Bobko, T.; Corsette, M.; Wang, M.; Springer, E. Exploring the Possibilities of Edu-Metaverse: A New 3D Ecosystem Model for Innovative Learning. IEEE Trans. Learn. Technol. 2024, 17, 1278–1289. [Google Scholar] [CrossRef]
- Wu, D.; Yang, Z.; Zhang, P.; Wang, R.; Yang, B.; Ma, X. Virtual-reality interpromotion technology for metaverse: A survey. IEEE Internet Things J. 2023, 10, 15788–15809. [Google Scholar] [CrossRef]
- Meccawy, M. Creating an immersive XR learning experience: A roadmap for educators. Electronics 2022, 11, 3547. [Google Scholar] [CrossRef]
- Buffa, M.; Girard, D.; Hofr, A. Using Web Audio Modules for Immersive Audio Collaboration in the Musical Metaverse. In Proceedings of the 2024 IEEE 5th International Symposium on the Internet of Sounds (IS2), Erlangen, Germany, 30 September–2 October 2024; pp. 1–10. [Google Scholar]
- Rekha, K.; Gopal, K.; Satheeskumar, D.; Anand, U.A.; Doss, D.S.S.; Elayaperumal, S. Ai-Powered Personalized Learning System Design: Student Engagement and Performance Tracking System. In Proceedings of the 2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 14–15 May 2024; pp. 1125–1130. [Google Scholar]
- Spettu, F.; Achille, C.; Fassi, F. State-of-the-Art Web Platforms for the Management and Sharing of Data: Applications, Uses, and Potentialities. Heritage 2024, 7, 6008–6035. [Google Scholar] [CrossRef]
- Kim, J.; Miller, J.; Wang, K.; Dorneich, M.C.; Winer, E.; Brown, L.J. Empowering Instructors: Augmented Reality Authoring Toolkit for Aviation Weather Education. IEEE Trans. Learn. Technol. 2024, 17, 2141–2152. [Google Scholar] [CrossRef]
- Chatterjee, P.; Bose, R.; Banerjee, S.; Roy, S. Enhancing data security of cloud based lms. Wirel. Pers. Commun. 2023, 130, 1123–1139. [Google Scholar] [CrossRef]
- Alier, M.; Casañ Guerrero, M.J.; Amo, D.; Severance, C.; Fonseca, D. Privacy and e-learning: A pending task. Sustainability 2021, 13, 9206. [Google Scholar] [CrossRef]
- Sakka, S.; Liagkou, V.; Stylios, C.; Ferreira, A. On the privacy and security for e-education metaverse. In Proceedings of the 2024 IEEE Global Engineering Education Conference (EDUCON), Kos Island, Greece, 8–11 May 2024; pp. 1–10. [Google Scholar]
- Pyae, A.; Ravyse, W.; Luimula, M.; Pizarro-Lucas, E.; Sanchez, P.L.; Dorado-Diaz, I.P.; Thaw, A.K. Exploring User Experience and Usability in a Metaverse Learning Environment for Students: A Usability Study of the Artificial Intelligence, Innovation, and Society (AIIS). Electronics 2023, 12, 4283. [Google Scholar] [CrossRef]
- Evangelista, S.H.; Bestard, G.A.; Oliveira, F.H.M.; da Silva, I.A.; Amorim, F.F.; Llanos, C.H.; Barbalho, S.C.M. Using Problem/Project-Based Learning for Developing a Mechanical Ventilator in Brazil: The Perception of Undergraduate Students Regarding Their Learning and Satisfaction. IEEE Rev. Iberoam. De Tecnol. Del Aprendiz. 2023, 18, 199–210. [Google Scholar] [CrossRef]
- Torres-Peña, R.C.; Peña-González, D.; Chacuto-López, E.; Ariza, E.A.; Vergara, D. Updating calculus teaching with AI: A classroom experience. Educ. Sci. 2024, 14, 1019. [Google Scholar] [CrossRef]
- Alzaga Elizondo, T.; Brown, D. Students’ use of technological tools to engage in collective mathematical proof activity. Int. J. Comput.-Support. Collab. Learn. 2024, 19, 433–453. [Google Scholar] [CrossRef]
- Lopatina, E.; Maltseva, S.; Pavlova, A. Self-Directed Learning Optimisation Toolkits for Electronics and Electrical Engineering Students. In Proceedings of the 2023 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 14–16 March 2023; pp. 1–5. [Google Scholar]
- Mohammed, S.P.; Hossain, G.; Ameen, S.Y.Q. Cybersecurity Data Visualization: Designing a Course for Future High School Students. In Proceedings of the 2024 12th International Symposium on Digital Forensics and Security (ISDFS), San Antonio, TX, USA, 29–30 April 2024; pp. 1–7. [Google Scholar]
- Qi, J.; Tang, H.; Zhu, Z. Exploring an affective and responsive virtual environment to improve remote learning. Virtual Worlds 2023, 2, 53–74. [Google Scholar] [CrossRef]
- Pfeifer, V.A.; Chilton, T.D.; Grilli, M.D.; Mehl, M.R. How ready is speech-to-text for psychological language research? Evaluating the validity of AI-generated English transcripts for analyzing free-spoken responses in younger and older adults. Behav. Res. Methods 2024, 56, 7621–7631. [Google Scholar] [CrossRef] [PubMed]
- Zamiri, M.; Esmaeili, A. Methods and technologies for supporting knowledge sharing within learning communities: A systematic literature review. Adm. Sci. 2024, 14, 17. [Google Scholar] [CrossRef]
- Yan, M.; Pourdavood, R.G. Faculty and Student Perspectives on Online Learning in Higher Education. Educ. Sci. 2024, 14, 801. [Google Scholar] [CrossRef]
- Gutiérrez-Colón, M.; Alameh, S.A. Effects of Implementing the Digital Storytelling Strategy on Improving the Use of Various Forms of the Passive Voice in Undergraduate EFL Students’ Oral Skills at the University Level. Digital 2024, 4, 914–931. [Google Scholar] [CrossRef]
- Boutefara, T.; Mahdaoui, L. Applying game design approach to build web-based collaborative tool with better social presence. In Proceedings of the 2020 4th International Symposium on Informatics and Its Applications (ISIA), M’sila, Algeria, 15–16 December 2020; pp. 1–6. [Google Scholar]
- Mahindru, R.; Bapat, G.; Bhoyar, P.; Abishek, G.D.; Kumar, A.; Vaz, S. Redefining Workspaces: Young Entrepreneurs Thriving in the Metaverse’s Remote Realm. Eng. Proc. 2024, 59, 209. [Google Scholar] [CrossRef]
- Li, C.; Jiang, Y.; Ng, P.H.; Dai, Y.; Cheung, F.; Chan, H.C.; Li, P. Collaborative learning in the Edu-Metaverse era: An empirical study on the enabling technologies. IEEE Trans. Learn. Technol. 2024, 17, 1107–1119. [Google Scholar] [CrossRef]
- Zamiri, M.; Esmaeili, A. Strategies, Methods, and Supports for Developing Skills within Learning Communities: A Systematic Review of the Literature. Adm. Sci. 2024, 14, 231. [Google Scholar] [CrossRef]
- Mansour, N. Students’ and facilitators’ experiences with synchronous and asynchronous online dialogic discussions and e-facilitation in understanding the Nature of Science. Educ. Inf. Technol. 2024, 29, 15965–15997. [Google Scholar] [CrossRef]
- Sidekerskienė, T.; Damaševičius, R. Out-of-the-box learning: Digital escape rooms as a metaphor for breaking down barriers in stem education. Sustainability 2023, 15, 7393. [Google Scholar] [CrossRef]
- Al-Nofaie, H.; Alwerthan, T.A. Appreciative Inquiry into Implementing Artificial Intelligence for the Development of Language Student Teachers. Sustainability 2024, 16, 9361. [Google Scholar] [CrossRef]
- Song, J.; Lee, J. Presence and motivation: Comparing synchronous and asynchronous learning environments for foreign language learners using path analysis. Educ. Inf. Technol. 2024, 1–30. [Google Scholar] [CrossRef]
- Altinay, Z.; Altinay, F.; Sharma, R.C.; Dagli, G.; Shadiev, R.; Yikici, B.; Altinay, M. Capacity building for student teachers in learning, teaching artificial intelligence for quality of education. Societies 2024, 14, 148. [Google Scholar] [CrossRef]
- Buragohain, D.; Chaudhary, S.; Punpeng, G.; Sharma, A.; Am-in, N.; Wuttisittikulkij, L. Analyzing the impact and prospects of metaverse in learning environments through systematic and case study research. IEEE Access 2023, 11, 141261–141276. [Google Scholar] [CrossRef]
- Al-Kfairy, M.; Alzaabi, M.; Snoh, B.; Almarzooqi, H.; Alnaqbi, W. Metaverse-based classroom: The good and the bad. In Proceedings of the 2024 IEEE Global Engineering Education Conference (EDUCON), Kos Island, Greece, 8–11 May 2024; pp. 1–7. [Google Scholar]
- Caporusso, N.; Roa, Q.; Thomas, B.; Tilley, M. Tactile Network Topologies: Inclusive Learning for Visually Impaired Students in Computer Networking Education. In Proceedings of the 2024 47th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 20–24 May 2024; pp. 1399–1404. [Google Scholar]
- Portuguez-Castro, M.; Santos Garduño, H. Beyond Traditional Classrooms: Comparing Virtual Reality Applications and Their Influence on Students’ Motivation. Educ. Sci. 2024, 14, 963. [Google Scholar] [CrossRef]
- Marougkas, A.; Troussas, C.; Krouska, A.; Sgouropoulou, C. How personalized and effective is immersive virtual reality in education? A systematic literature review for the last decade. Multimed. Tools Appl. 2024, 83, 18185–18233. [Google Scholar] [CrossRef]
- Chu, C.E.; Cheong, G.S.W.; Mishra, A.; Wen, Y.; Leo, C.H.; Yeo, D.J.; Cheong, K.H. Enhancing Biology Laboratory Learning: Student Perceptions of Performing Heart Dissection with Virtual Reality. IEEE Access 2024, 12, 76682–76691. [Google Scholar] [CrossRef]
- Sineka, P.; Jothikumar, K.; Nivetha, V.; Luckshika, M.; Priyadharshini, P.; SG, J.R. The Role of Metaverse Technology in Education: A Framework for Implementation and Future Research. In Proceedings of the 2024 IEEE Students Conference on Engineering and Systems (SCES), Prayagraj, India, 21–23 June 2024; pp. 1–6. [Google Scholar]
- Glaser, N.; Yang, M.; Li, S.E.; Mendoza, K.R. The Museum of Instructional Design: An Examination of Learner Experiences & Usability in a Collaborative 3D Virtual Learning Environment. TechTrends 2024, 68, 338–357. [Google Scholar]
- De Felice, F.; Petrillo, A.; Iovine, G.; Salzano, C.; Baffo, I. How does the metaverse shape education? A systematic literature review. Appl. Sci. 2023, 13, 5682. [Google Scholar] [CrossRef]
- Alabau, A.; Fabra, L.; Martí-Testón, A.; Muñoz, A.; Solanes, J.E.; Gracia, L. Enriching User-Visitor Experiences in Digital Museology: Combining Social and Virtual Interaction within a Metaverse Environment. Appl. Sci. 2024, 14, 3769. [Google Scholar] [CrossRef]
- Iqbal, U.; Davies, T.; Perez, P. A Review of Recent Hardware and Software Advances in GPU-Accelerated Edge-Computing Single-Board Computers (SBCs) for Computer Vision. Sensors 2024, 24, 4830. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, P.; Fortino, A. Teaching with Zoom vs. the Metaverse a Bandwidth Use Study. In Proceedings of the 2024 IEEE Integrated STEM Education Conference (ISEC), Princeton, NJ, USA, 9 March 2024; pp. 01–04. [Google Scholar]
- Chee, S.K.; Hoong, S.L.J.; Lee, Y.S. Innovating Engineering Education with Blended Learning and Remote Laboratories. In Proceedings of the 2024 IEEE Global Engineering Education Conference (EDUCON), Kos Island, Greece, 8–11 May 2024; pp. 1–5. [Google Scholar]
- Zhang, Y.; Kutscher, D.; Cui, Y. Networked metaverse systems: Foundations, gaps, research directions. IEEE Open J. Commun. Soc. 2024, 5, 5488–5539. [Google Scholar] [CrossRef]
- Mouta, A.; Torrecilla-Sánchez, E.M.; Pinto-Llorente, A.M. Comprehensive professional learning for teacher agency in addressing ethical challenges of AIED: Insights from educational design research. Educ. Inf. Technol. 2024, 1–45. [Google Scholar] [CrossRef]
- Lin, H.C.K.; Lu, L.W.; Lu, R.S. Integrating Digital Technologies and Alternate Reality Games for Sustainable Education: Enhancing Cultural Heritage Awareness and Learning Engagement. Sustainability 2024, 16, 9451. [Google Scholar] [CrossRef]
- Feng, Q.; Luo, H.; Li, Z.; Liang, J.; Li, G.; Yi, Y. Creating an Immersive Virtual Reality Game Space for Multiuser, Synchronous Co-Located Collaboration: Design Considerations and Influencing Factors. Appl. Sci. 2024, 14, 2167. [Google Scholar] [CrossRef]
- Ricci, M.; Scarcelli, A.; Fiorentino, M. Designing for the metaverse: A multidisciplinary laboratory in the industrial design program. Future Internet 2023, 15, 69. [Google Scholar] [CrossRef]
- Rahman, H.; Wahid, S.A.; Ahmad, F.; Ali, N. Game-based learning in metaverse: Virtual chemistry classroom for chemical bonding for remote education. Educ. Inf. Technol. 2024, 29, 19595–19619. [Google Scholar] [CrossRef]
- Kolil, V.K.; Achuthan, K. Virtual labs in chemistry education: A novel approach for increasing student’s laboratory educational consciousness and skills. Educ. Inf. Technol. 2024, 29, 25307–25331. [Google Scholar] [CrossRef]
- Chen, C.M.; Li, M.C.; Tu, C.C. A Mixed Reality-Based Chemistry Experiment Learning System to Facilitate Chemical Laboratory Safety Education. J. Sci. Educ. Technol. 2024, 33, 505–525. [Google Scholar] [CrossRef]
- Norton, D.; Norton, F.A.; Veciana, S. Connected Art Practice: Transformative Learning Environments for Transdisciplinary Competences. Societies 2024, 14, 33. [Google Scholar] [CrossRef]
- Samaniego, M.; Usca, N.; Salguero, J.; Quevedo, W. Creative Thinking in Art and Design Education: A Systematic Review. Educ. Sci. 2024, 14, 192. [Google Scholar] [CrossRef]
- Otto, S.; Bertel, L.B.; Lyngdorf, N.E.R.; Markman, A.O.; Andersen, T.; Ryberg, T. Emerging digital practices supporting student-centered learning environments in higher education: A review of literature and lessons learned from the COVID-19 pandemic. Educ. Inf. Technol. 2024, 29, 1673–1696. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Agarwal, B.; Wuttisittikulkij, L.; Joshi, D.; Bhatnagar, A.; Chaudhary, S.; Sasithong, P. Interactive Learning Through the Metaverse and its Impact on Primary Education. In Proceedings of the 2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Khon Kaen, Thailand, 27–30 May 2024; pp. 1–8. [Google Scholar]
- Zhao, L.; Isenberg, T.; Xie, F.; Liang, H.N.; Yu, L. SpatialTouch: Exploring Spatial Data Visualizations in Cross-reality. IEEE Trans. Vis. Comput. Graph. 2024, 31, 897–907. [Google Scholar] [CrossRef]
- Yücel, F.; Ünal, H.S.; Surer, E.; Huvaj, N. A Modular Serious Game Development Framework for Virtual Laboratory Courses. IEEE Trans. Learn. Technol. 2024, 17, 966–981. [Google Scholar] [CrossRef]
- Salloum, S.A.; Alhumaid, K.; Alfaisal, A.M.; Aljanada, R.A.; Alfaisal, R. Adoption of 3D Holograms in Science Education: Transforming Learning Environments. IEEE Access 2024, 12, 70984–70998. [Google Scholar] [CrossRef]
- Petruse, R.E.; Grecu, V.; Chiliban, M.B.; Tâlvan, E.T. Comparative Analysis of Mixed Reality and PowerPoint in Education: Tailoring Learning Approaches to Cognitive Profiles. Sensors 2024, 24, 5138. [Google Scholar] [CrossRef] [PubMed]
- Natale, G.; Fornai, F. Advances in Anatomy and Its History. Anatomia 2024, 3, 50–56. [Google Scholar] [CrossRef]
- Reeves, S.M.; Crippen, K.J. Virtual laboratories in undergraduate science and engineering courses: A systematic review, 2009–2019. J. Sci. Educ. Technol. 2021, 30, 16–30. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Alanazi, S.; Alruwaili, M.; Alshammari, N.; Elaiwat, S.; Abu-Zanona, M.; Innab, N.; Mohammad Elzaghmouri, B.; Ahmed Alanazi, B. AI-and IoT-assisted sustainable education systems during pandemics, such as COVID-19, for smart cities. Sustainability 2023, 15, 8354. [Google Scholar] [CrossRef]
- Monib, W.K.; Qazi, A.; Apong, R.A.; Mahmud, M.M. Investigating learners’ perceptions of microlearning: Factors influencing learning outcomes. IEEE Access 2024, 12, 178251–178266. [Google Scholar] [CrossRef]
- Mitsea, E.; Drigas, A.; Skianis, C. Well-Being Technologies and Positive Psychology Strategies for Training Metacognition, Emotional Intelligence and Motivation Meta-Skills in Clinical Populations: A Systematic Review. Psych 2024, 6, 305–344. [Google Scholar] [CrossRef]
- Abd Wahab, M.D.H.; Krishna, H.L.; Chen, T.K. Implementing a Linear and Bottlenecking Gameplay Experience in a Self-Created World. In Proceedings of the 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkur, India, 4–5 December 2023; pp. 1–5. [Google Scholar]
- Mitrakas, N.; Tsihouridis, C.; Vavougios, D. Using Mixed Reality in the Educational Practice: An Inquiry-Based Process of the Fluid Expansion–Contraction Phenomena by Pre-Service Teachers. Educ. Sci. 2024, 14, 754. [Google Scholar] [CrossRef]
- Christopoulos, A.; Mystakidis, S. Gamification in education. Encyclopedia 2023, 3, 1223–1243. [Google Scholar] [CrossRef]
- Wu, J.G.; Zhang, D.; Lee, S.M. Into the brave new metaverse: Envisaging future language teaching and learning. IEEE Trans. Learn. Technol. 2023, 17, 44–53. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Mystakidis, S.; Tsinakos, A. Immersive Storytelling in Social Virtual Reality for Human-Centered Learning about Sensitive Historical Events. Information 2024, 15, 244. [Google Scholar] [CrossRef]
- Devadhas, V.A.; Krithika, M. Embracing the Metaverse: Revolutionizing Education for the Future. In Proceedings of the 2024 10th International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 12–14 April 2024; pp. 136–141. [Google Scholar]
- Mourtzis, D. The Metaverse in industry 5.0: A human-centric approach towards personalized value creation. Encyclopedia 2023, 3, 1105–1120. [Google Scholar] [CrossRef]
- Kourtesis, P. A Comprehensive Review of Multimodal XR Applications, Risks, and Ethical Challenges in the Metaverse. Multimodal Technol. Interact. 2024, 8, 98. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; Govea, J.; Godoy, L.N.; Mera-Navarrete, A. Virtual Reality Simulations for Skills Training: Improving Learning through Immersive Experiences in Educational Environments. IEEE Access 2024, 12, 130073–130090. [Google Scholar] [CrossRef]
- Shu, X.; Gu, X. An empirical study of A smart education model enabled by the edu-metaverse to enhance better learning outcomes for students. Systems 2023, 11, 75. [Google Scholar] [CrossRef]
- Murala, D.K. METAEDUCATION: State-of-the-Art Methodology for Empowering Feature Education. IEEE Access 2024, 12, 57992–58020. [Google Scholar] [CrossRef]
- George, B.; Wooden, O. Managing the strategic transformation of higher education through artificial intelligence. Adm. Sci. 2023, 13, 196. [Google Scholar] [CrossRef]
- Zhai, X.S.; Chu, X.Y.; Chen, M.; Shen, J.; Lou, F.L. Can Edu-Metaverse reshape virtual teaching community (VTC) to promote educational equity? An exploratory study. IEEE Trans. Learn. Technol. 2023, 16, 1130–1140. [Google Scholar] [CrossRef]
- Strielkowski, W.; Grebennikova, V.; Lisovskiy, A.; Rakhimova, G.; Vasileva, T. AI-driven adaptive learning for sustainable educational transformation. Sustain. Dev. 2024; Early View. [Google Scholar]
- Clapson, M.L.; Schechtel, S.; Davy, E.; Durfy, C.S. Solving the Chemistry Puzzle—A Review on the Application of Escape-Room-Style Puzzles in Undergraduate Chemistry Teaching. Educ. Sci. 2024, 14, 1273. [Google Scholar] [CrossRef]
- Fadhel, M.A.; Duhaim, A.M.; Albahri, A.; Al-Qaysi, Z.; Aktham, M.; Chyad, M.; Abd-Alaziz, W.; Albahri, O.; Alamoodi, A.; Alzubaidi, L.; et al. Navigating the metaverse: Unraveling the impact of artificial intelligence—a comprehensive review and gap analysis. Artif. Intell. Rev. 2024, 57, 264. [Google Scholar] [CrossRef]
- Damasceno, A.; Silva, L.; Barros, E.; Oliveira, F. DALverse: Assistive Technology for Inclusion of People with Disabilities in Distance Education through a Metaverse-Based Environment. In Proceedings of the 2024 IEEE International Conference on Advanced Learning Technologies (ICALT), Nicosia, Cyprus, 1–4 July 2024; pp. 142–146. [Google Scholar]
- Papadopoulos, K.; Koustriava, E.; Isaraj, L.; Chronopoulou, E.; Manganello, F.; Molina-Carmona, R. Assistive Technology for Higher Education Students with Disabilities: A Qualitative Research. Digital 2024, 4, 501–511. [Google Scholar] [CrossRef]
- Halim, N.A.A.; Azlan, M.H.; Ismail, A.W.; Fazli, F.E.; Ahmad, M.A.; Aladin, M.Y.F. Edu-Metaverse Classroom with AI-Driven Virtual Avatar Assistant. In Proceedings of the 2024 5th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 18–20 September 2024; pp. 1548–1554. [Google Scholar]
- Sumon, R.I.; Uddin, S.M.I.; Akter, S.; Mozumder, M.A.I.; Khan, M.O.; Kim, H.C. Natural Language Processing Influence on Digital Socialization and Linguistic Interactions in the Integration of the Metaverse in Regular Social Life. Electronics 2024, 13, 1331. [Google Scholar] [CrossRef]
- Othman, A.; Chemnad, K.; Hassanien, A.E.; Tlili, A.; Zhang, C.Y.; Al-Thani, D.; Altınay, F.; Chalghoumi, H.; S. Al-Khalifa, H.; Obeid, M.; et al. Accessible Metaverse: A Theoretical Framework for Accessibility and Inclusion in the Metaverse. Multimodal Technol. Interact. 2024, 8, 21. [Google Scholar] [CrossRef]
- Rottondi, C.; Sacchetto, M.; Severi, L.; Bianco, A. Towards an Inclusive Framework for Remote Musical Education and Practices. IEEE Access 2024, 12, 173836–173849. [Google Scholar] [CrossRef]
- Partarakis, N.; Zabulis, X. A review of immersive technologies, knowledge representation, and AI for human-centered digital experiences. Electronics 2024, 13, 269. [Google Scholar] [CrossRef]
- Dahlstrom-Hakki, I.; Alstad, Z.; Asbell-Clarke, J.; Edwards, T. The impact of visual and auditory distractions on the performance of neurodiverse students in virtual reality (VR) environments. Virtual Real. 2024, 28, 29. [Google Scholar] [CrossRef]
- Hashi, A.O.; Hashim, S.Z.M.; Asamah, A.B. A Systematic Review of Hand Gesture Recognition: An Update From 2018 to 2024. IEEE Access 2024, 12, 143599–143626. [Google Scholar] [CrossRef]
- Shin, J.; Miah, A.S.M.; Kabir, M.H.; Rahim, M.A.; Al Shiam, A. A Methodological and Structural Review of Hand Gesture Recognition Across Diverse Data Modalities. IEEE Access 2024, 12, 142606–142639. [Google Scholar] [CrossRef]
- Karunya, S.; Jalakandeshwaran, M.; Babu, T.; Uma, R. AI-Powered Real-Time Speech-to-Speech Translation for Virtual Meetings Using Machine Learning Models. In Proceedings of the 2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS), Chennai, India, 14–15 December 2023; pp. 1–6. [Google Scholar]
- Lian, Y.; Xie, J. The Evolution of Digital Cultural Heritage Research: Identifying Key Trends, Hotspots, and Challenges through Bibliometric Analysis. Sustainability 2024, 16, 7125. [Google Scholar] [CrossRef]
- Dayoub, B.; Yang, P.; Omran, S.; Zhang, Q.; Dayoub, A. Digital Silk Roads: Leveraging the Metaverse for Cultural Tourism within the Belt and Road Initiative Framework. Electronics 2024, 13, 2306. [Google Scholar] [CrossRef]
- Kim, T.s.; Ignacio, M.J.; Yu, S.; Jin, H.; Kim, Y.g. UI/UX for Generative AI: Taxonomy, Trend, and Challenge. IEEE Access 2024, 12, 179891–179911. [Google Scholar] [CrossRef]
- Chalkiadakis, A.; Seremetaki, A.; Kanellou, A.; Kallishi, M.; Morfopoulou, A.; Moraitaki, M.; Mastrokoukou, S. Impact of Artificial Intelligence and Virtual Reality on Educational Inclusion: A Systematic Review of Technologies Supporting Students with Disabilities. Educ. Sci. 2024, 14, 1223. [Google Scholar] [CrossRef]
- Berlian, Z.; Huda, M. Reflecting culturally responsive and communicative teaching (CRCT) through partnership commitment. Educ. Sci. 2022, 12, 295. [Google Scholar] [CrossRef]
- Suk, H.; Laine, T.H. Influence of avatar facial appearance on users’ perceived embodiment and presence in immersive virtual reality. Electronics 2023, 12, 583. [Google Scholar] [CrossRef]
- Wu, S.; Xu, L.; Dai, Z.; Pan, Y. Factors affecting avatar customization behavior in virtual environments. Electronics 2023, 12, 2286. [Google Scholar] [CrossRef]
- Voinea, G.D.; Gîrbacia, F.; Postelnicu, C.C.; Duguleana, M.; Antonya, C.; Soica, A.; Stănescu, R.C. Study of social presence while interacting in metaverse with an augmented avatar during autonomous driving. Appl. Sci. 2022, 12, 11804. [Google Scholar] [CrossRef]
- Tian, F.; Zou, J.; Li, K.; Li, Y. Kung Fu metaverse: A movement guidance training system. IEEE Trans. Learn. Technol. 2023, 16, 1082–1095. [Google Scholar] [CrossRef]
- Pervez, F.; Shoukat, M.; Usama, M.; Sandhu, M.; Latif, S.; Qadir, J. Affective Computing and the Road to an Emotionally Intelligent Metaverse. IEEE Open J. Comput. Soc. 2024, 5, 195–214. [Google Scholar] [CrossRef]
- Hoter, E.; Yazbak Abu Ahmad, M.; Azulay, H. Enhancing Language Learning and Intergroup Empathy through Multi-User Interactions and Simulations in a Virtual World. Virtual Worlds 2024, 3, 333–353. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Liu, Y.; Lau, R. Intelligent metaverse scene content construction. IEEE Access 2023, 11, 76222–76241. [Google Scholar] [CrossRef]
- Schmidt, S.; Köysürenbars, I.; Steinicke, F. Frankenstein’s Monster in the Metaverse: User Interaction with Customized Virtual Agents. IEEE Trans. Vis. Comput. Graph. 2024, 30, 7162–7171. [Google Scholar] [CrossRef]
- Cobben, S. Designing a New Customer Experience for Fashion in the Metaverse. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, October 2022. [Google Scholar]
- Çelik, F.; Baturay, M.H. The effect of metaverse on L2 vocabulary learning, retention, student engagement, presence, and community feeling. BMC Psychol. 2024, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Sun, D.; Zheng, Z. Enhancing university students’ learning performance in a metaverse-enabled immersive learning environment for STEM education: A community of inquiry approach. Future Educ. Res. 2024, 2, 288–309. [Google Scholar] [CrossRef]
- Alpala, L.O.; Quiroga-Parra, D.J.; Torres, J.C.; Peluffo-Ordóñez, D.H. Smart factory using virtual reality and online multi-user: Towards a metaverse for experimental frameworks. Appl. Sci. 2022, 12, 6258. [Google Scholar] [CrossRef]
- Krishnapriya, S.; Malathy, R.; Banu, A.S.; Gomathi, R.; Vishnupriyan, T.; Kavitha, S. Collaborative Learning with IoT: Enhancing Student Engagement. In Proceedings of the 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 14–15 March 2024; Volume 1, pp. 2524–2529. [Google Scholar]
- Jia, Y.; Wang, X.E.; Sin, Z.P.; Li, C.; Ng, P.H.; Huang, X.; Baciu, G.; Cao, J.; Li, Q. Knowledge-Graph-Driven Mind Mapping for Immersive Collaborative Learning: A Pilot Study in Edu-Metaverse. IEEE Trans. Learn. Technol. 2024, 17, 1794–1808. [Google Scholar] [CrossRef]
- You, Y.C. Integrative Narratology and Its Application in AI-based Virtual Education System. In Proceedings of the 2023 7th International Conference on E-Society, E-Education and E-Technology (ESET), Chiayi, China, 13–15 October 2023; pp. 8–17. [Google Scholar]
- Giabbanelli, P.; Shrestha, A.; Demay, L. Design and Development of a Collaborative Augmented Reality Environment for Systems Science. In Proceedings of the 57th Hawaii International Conference on System Sciences (HICSS), Kauai, HI, USA, 3–6 June 2024. [Google Scholar]
- Hong, D.J. Exploring Metaverse-Based Remote Work. In Proceedings of the 2024 IEEE International Symposium on Emerging Metaverse (ISEMV), Bellevue, WA, USA, 21 October 2024; pp. 41–44. [Google Scholar]
- Cities, R.; Li, X.S. Building Digital Twin Metaverse Cities; Apress: Berkeley, CA, USA, 2024. [Google Scholar]
- Cheng, R.; Murat, E.; Yu, L.F.; Chen, S.; Han, B. Understanding Online Education in Metaverse: Systems and User Experience Perspectives. In Proceedings of the 2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Orlando, FL, USA, 16–21 March 2024; pp. 598–608. [Google Scholar]
- Liu, W.; Fu, Z.; Zhu, Y.; Li, Y.; Sun, Y.; Hong, X.; Li, Y.; Liu, M. Co-making the future: Crafting tomorrow with insights and perspectives from the China-US young maker competition. Int. J. Technol. Des. Educ. 2024, 34, 1763–1783. [Google Scholar] [CrossRef]
- Ford, S.J.; dos Santos, R.; dos Santos, R. Empowering Female High School Students for STEM Futures: Career Exploration and Leadership Development at Scientella. Educ. Sci. 2024, 14, 955. [Google Scholar] [CrossRef]
- Bansal, G.; Rajgopal, K.; Chamola, V.; Xiong, Z.; Niyato, D. Healthcare in metaverse: A survey on current metaverse applications in healthcare. IEEE Access 2022, 10, 119914–119946. [Google Scholar] [CrossRef]
- Ng, P.H.; Chen, P.Q.; Wu, A.C.; Tai, K.S.; Li, C. Reimagining STEM Learning: A Comparative Analysis of Traditional and Service Learning Approaches for Social Entrepreneurship. IEEE Trans. Learn. Technol. 2024, 17, 2212–2226. [Google Scholar] [CrossRef]
- De Giovanni, P. Sustainability of the Metaverse: A transition to Industry 5.0. Sustainability 2023, 15, 6079. [Google Scholar] [CrossRef]
- Suiçmez, İ.; Ozansoy, K. Development of Sustainable Education Environments in Higher Education with Metaverse Applications. Sustainability 2024, 16, 10331. [Google Scholar] [CrossRef]
- Boopathy, P.; Deepa, N.; Maddikunta, P.K.R.; Victor, N.; Gadekallu, T.R.; Yenduri, G.; Wang, W.; Pham, Q.V.; Huynh-The, T.; Liyanage, M. The Metaverse for Industry 5.0 in NextG Communications: Potential Applications and Future Challenges. IEEE Open J. Comput. Soc. 2024, 6, 4–24. [Google Scholar] [CrossRef]
- Suh, I.; McKinney, T.; Siu, K.C. Current perspective of metaverse application in medical education, research and patient care. Virtual Worlds 2023, 2, 115–128. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J. Development of an Extended Reality-Based Collaborative Platform for Engineering Education: Operator 5.0. Electronics 2023, 12, 3663. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Hu, X.; Xu, B.; Zhang, J. Theoretical model and practical analysis of immersive industrial design education based on virtual reality technology. Int. J. Technol. Des. Educ. 2024, 1–28. [Google Scholar] [CrossRef]
- Ghaempanah, F.; Moasses Ghafari, B.; Hesami, D.; Hossein Zadeh, R.; Noroozpoor, R.; Moodi Ghalibaf, A.; Hasanabadi, P. Metaverse and its impact on medical education and health care system: A narrative review. Health Sci. Rep. 2024, 7, e70100. [Google Scholar] [CrossRef] [PubMed]
- Gaudi, T.; Kapralos, B.; Quevedo, A. Structural and Functional Fidelity of Virtual Humans in Immersive Virtual Learning Environments. In Proceedings of the 2024 IEEE Gaming, Entertainment, and Media Conference (GEM), Turin, Italy, 5–7 June 2024; pp. 1–4. [Google Scholar]
- Senka, G.; Tramonti, M.; Dochshanov, A.M.; Jesmin, T.; Terasmaa, J.; Tsalapatas, H.; Heidmann, O.; Caeiro-Rodriguez, M.; Vaz de Carvalho, C. Using a Game to Educate About Sustainable Development. Multimodal Technol. Interact. 2024, 8, 96. [Google Scholar] [CrossRef]
- Uddin, M.; Manickam, S.; Ullah, H.; Obaidat, M.; Dandoush, A. Unveiling the metaverse: Exploring emerging trends, multifaceted perspectives, and future challenges. IEEE Access 2023, 11, 87087–87103. [Google Scholar] [CrossRef]
- Sofianidis, A. Why do students prefer augmented reality: A mixed-method study on preschool teacher students’ perceptions on self-assessment AR quizzes in science education. Educ. Sci. 2022, 12, 329. [Google Scholar] [CrossRef]
- Bibri, S.E.; Jagatheesaperumal, S.K. Harnessing the potential of the metaverse and artificial intelligence for the internet of city things: Cost-effective XReality and synergistic AIoT technologies. Smart Cities 2023, 6, 2397–2429. [Google Scholar] [CrossRef]
- Laine, T.H.; Lee, W. Collaborative Virtual Reality in Higher Education: Students’ Perceptions on Presence, Challenges, Affordances, and Potential. IEEE Trans. Learn. Technol. 2023, 17, 280–293. [Google Scholar] [CrossRef]
- Song, Y.; Cao, J.; Wu, K.; Yu, P.L.H.; Lee, J.C.K. Developing “Learningverse”—A 3-D Metaverse Platform to Support Teaching, Social, and Cognitive Presences. IEEE Trans. Learn. Technol. 2023, 16, 1165–1178. [Google Scholar] [CrossRef]
- Jovanović, A.; Milosavljević, A. VoRtex Metaverse platform for gamified collaborative learning. Electronics 2022, 11, 317. [Google Scholar] [CrossRef]
- Zaky, Y.A.M.; Gameil, A.A. Exploring the Use of Avatars in the Sustainable Edu-Metaverse for an Alternative Assessment: Impact on Tolerance. Sustainability 2024, 16, 6604. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.J.; Cai, Z. Security and privacy in metaverse: A comprehensive survey. Big Data Min. Anal. 2023, 6, 234–247. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Zhang, N.; Xing, R.; Liu, D.; Luan, T.H.; Shen, X. A survey on metaverse: Fundamentals, security, and privacy. IEEE Commun. Surv. Tutorials 2022, 25, 319–352. [Google Scholar] [CrossRef]
- Kostelić, K.; Etinger, D. Securing the Metaverse: A Bibliometric Analysis of Cybersecurity Challenges and Research Trajectories. IEEE Eng. Manag. Rev. 2024; Early Access. [Google Scholar]
- Basyoni, L.; Tabassum, A.; Shaban, K.; Elmahjub, E.; Halabi, O.; Qadir, J. Navigating Privacy Challenges in the Metaverse: A Comprehensive Examination of Current Technologies and Platforms. IEEE Internet Things Mag. 2024, 7, 144–152. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Ezz, M.; Elbashir, M.K.; Alruily, M.; Hamouda, E.; Alsarhani, M.; Said, W. Strengthening cloud security: An innovative multi-factor multi-layer authentication framework for cloud user authentication. Appl. Sci. 2023, 13, 10871. [Google Scholar] [CrossRef]
- Awadallah, A.; Eledlebi, K.; Zemerly, J.; Puthal, D.; Damiani, E.; Taha, K.; Kim, T.Y.; Yoo, P.D.; Choo, K.K.R.; Yim, M.S.; et al. Artificial intelligence-based cybersecurity for the metaverse: Research challenges and opportunities. IEEE Commun. Surv. Tutor. 2024; Early Access. [Google Scholar]
- Sharma, S.; Singh, J.; Gupta, A.; Ali, F.; Khan, F.; Kwak, D. User Safety and Security in the Metaverse: A Critical Review. IEEE Open J. Commun. Soc. 2024, 5, 5467–5487. [Google Scholar] [CrossRef]
- Sreerakuvandana; Pappachan, P.; Bansal, R. Metaverse Security Paradigms; IGI Global: Hershey, PA, USA, 2024; pp. 228–252. [Google Scholar]
- Digennaro, S.; Visocchi, A. Nurturing Body Literacy: Transforming Education in the Virtual Reality Era to Shape Children’s Identities and Redefine Educator Roles. Educ. Sci. 2024, 14, 267. [Google Scholar] [CrossRef]
- Rahaman, M.F.; Golam, M.; Subhan, M.R.; Tuli, E.A.; Kim, D.S.; Lee, J.M. Meta-Governance: Blockchain-Driven Metaverse Platform for Mitigating Misbehavior Using Smart Contract and AI. IEEE Trans. Netw. Serv. Manag. 2024, 21, 4024–4038. [Google Scholar] [CrossRef]
- Kuru, K. Metaomnicity: Toward immersive urban metaverse cyberspaces using smart city digital twins. IEEE Access 2023, 11, 43844–43868. [Google Scholar] [CrossRef]
- Han, L.; Afzal, N.; Wang, Z.; Wang, Z.; Jin, T.; Guo, S.; Gong, H.; Wang, D. Ambient haptics: Bilateral interaction among human, machines and virtual/real environments in pervasive computing era. CCF Trans. Pervasive Comput. Interact. 2024, 1–33. [Google Scholar] [CrossRef]
- Raman, R.; Hughes, L.; Mandal, S.; Das, P.; Nedungadi, P. Mapping metaverse research to the sustainable development goal of good health and well-being. IEEE Access 2024, 12, 180631–180651. [Google Scholar] [CrossRef]
- Mazumdar, H.; Sathvik, M.; Chakraborty, C.; Unhelkar, B.; Mahmoudi, S. Real-time mental health monitoring for metaverse consumers to ameliorate the negative impacts of escapism and post trauma stress disorder. IEEE Trans. Consum. Electron. 2024, 70, 2129–2136. [Google Scholar] [CrossRef]
- Osorio, C.; Fuster, N.; Chen, W.; Men, Y.; Juan, A.A. Enhancing Accessibility to Analytics Courses in Higher Education through AI, Simulation, and e-Collaborative Tools. Information 2024, 15, 430. [Google Scholar] [CrossRef]
- Aria, R.; Archer, N.; Khanlari, M.; Shah, B. Influential factors in the design and development of a sustainable Web3/metaverse and its applications. Future Internet 2023, 15, 131. [Google Scholar] [CrossRef]
- Malave, S.; Takmare, S.; Sarfare, A.; Patil, V.; Sawant, S.; Patil, P. MetaCampus: Advancing Online Education with Virtual Classroom. In Proceedings of the 2024 3rd International Conference for Innovation in Technology (INOCON), Bangalore, India, 1–3 March 2024; pp. 1–7. [Google Scholar]
- Fiaz, F.; Sajjad, S.M.; Iqbal, Z.; Yousaf, M.; Muhammad, Z. MetaSSI: A Framework for Personal Data Protection, Enhanced Cybersecurity and Privacy in Metaverse Virtual Reality Platforms. Future Internet 2024, 16, 176. [Google Scholar] [CrossRef]
- Chawki, M.; Basu, S.; Choi, K.S. Redefining Boundaries in the Metaverse: Navigating the Challenges of Virtual Harm and User Safety. Laws 2024, 13, 33. [Google Scholar] [CrossRef]
- Laurens-Arredondo, L.A.; Laurens, L. Metaversity: Beyond emerging educational technology. Sustainability 2023, 15, 15844. [Google Scholar] [CrossRef]
- Mishra, D.; Agarwal, N.; Sharahiley, S.; Kandpal, V. Digital Financial Literacy and Its Impact on Financial Decision-Making of Women: Evidence from India. J. Risk Financ. Manag. 2024, 17, 468. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Hieu, N.Q.; Hoang, D.T.; Nguyen, D.N.; Lin, C.T. A human-centric metaverse enabled by brain-computer interface: A survey. IEEE Commun. Surv. Tutor. 2024, 26, 2120–2145. [Google Scholar] [CrossRef]
- Stecuła, K.; Wolniak, R.; Aydın, B. Technology Development in Online Grocery Shopping—From Shopping Services to Virtual Reality, Metaverse, and Smart Devices: A Review. Foods 2024, 13, 3959. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lee, L.H.; Braud, T.; Hui, P. Re-shaping Post-COVID-19 teaching and learning: A blueprint of virtual-physical blended classrooms in the metaverse era. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW), Bologna, Italy, 10 July 2022; pp. 241–247. [Google Scholar]
- Siddiqua, A.; Sabeer, S.; Rao, R.S.; Ahuja, S.; Aggarwal, S.; Lourens, M. Machine Learning-Driven Educational Ethics Considerations: Striking A Balance Between Privacy And Personalization. In Proceedings of the 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gautam Buddha Nagar, India, 1–3 December 2023; Volume 10, pp. 1748–1753. [Google Scholar]
- Al-Ghaili, A.M.; Kasim, H.; Al-Hada, N.M.; Hassan, Z.B.; Othman, M.; Tharik, J.H.; Kasmani, R.M.; Shayea, I. A review of metaverse’s definitions, architecture, applications, challenges, issues, solutions, and future trends. IEEE Access 2022, 10, 125835–125866. [Google Scholar] [CrossRef]
- Farouk, A.M.; Naganathan, H.; Rahman, R.A.; Kim, J. Exploring the Economic Viability of Virtual Reality in Architectural, Engineering, and Construction Education. Buildings 2024, 14, 2655. [Google Scholar] [CrossRef]
- Chengoden, R.; Victor, N.; Huynh-The, T.; Yenduri, G.; Jhaveri, R.H.; Alazab, M.; Bhattacharya, S.; Hegde, P.; Maddikunta, P.K.R.; Gadekallu, T.R. Metaverse for healthcare: A survey on potential applications, challenges and future directions. IEEE Access 2023, 11, 12765–12795. [Google Scholar] [CrossRef]
- Ali, M.; Naeem, F.; Kaddoum, G.; Hossain, E. Metaverse communications, networking, security, and applications: Research issues, state-of-the-art, and future directions. IEEE Commun. Surv. Tutor. 2023, 26, 1238–1278. [Google Scholar] [CrossRef]
- Patra, A.; Pandey, A.; Hassija, V.; Chamola, V.; Mishra, R.P. A survey on Edge enabled Metaverse: Applications, Technological Innovations, and Prospective Trajectories within the Industry. IEEE Access 2024, 12, 125125–125144. [Google Scholar] [CrossRef]
- Park, S.M.; Kim, Y.G. A metaverse: Taxonomy, components, applications, and open challenges. IEEE Access 2022, 10, 4209–4251. [Google Scholar] [CrossRef]
- Zawish, M.; Dharejo, F.A.; Khowaja, S.A.; Raza, S.; Davy, S.; Dev, K.; Bellavista, P. AI and 6G into the metaverse: Fundamentals, challenges and future research trends. IEEE Open J. Commun. Soc. 2024, 5, 730–778. [Google Scholar] [CrossRef]
- Kumar, A.; Chakravarthy, S.; Nanthaamornphong, A. Energy-Efficient Deep Neural Networks for EEG Signal Noise Reduction in Next-Generation Green Wireless Networks and Industrial IoT Applications. Symmetry 2023, 15, 2129. [Google Scholar] [CrossRef]
- Ahmad, S.; Umirzakova, S.; Mujtaba, G.; Amin, M.S.; Whangbo, T. Education 5.0: Requirements, enabling technologies, and future directions. arXiv 2023, arXiv:2307.15846. [Google Scholar]
- Wang, C.H. Education in the metaverse: Developing virtual reality teaching materials for K–12 natural science. Educ. Inf. Technol. 2024, 1–22. [Google Scholar] [CrossRef]
- Alauthman, M.; Ishtaiwi, A.; Al Maqousi, A.; Hadi, W. A Framework for Cybersecurity in the Metaverse. In Proceedings of the 2024 2nd International Conference on Cyber Resilience (ICCR), Dubai, United Arab Emirates, 26–28 February 2024; pp. 1–8. [Google Scholar]
- Ghosh, A.; Hassija, V.; Chamola, V.; El Saddik, A. A Survey on Decentralized Metaverse using Blockchain and Web 3.0 technologies, Applications, and more. IEEE Access 2024, 12, 146915–146948. [Google Scholar] [CrossRef]
- Rahman, M.A.; Alqahtani, L.; Albooq, A.; Ainousah, A. A survey on security and privacy of large multimodal deep learning models: Teaching and learning perspective. In Proceedings of the 2024 21st Learning and Technology Conference (L&T), Jeddah, Saudi Arabia, 15–16 January 2024; pp. 13–18. [Google Scholar]
- Żydowicz, W.M.; Skokowski, J.; Marano, L.; Polom, K. Navigating the Metaverse: A New Virtual Tool with Promising Real Benefits for Breast Cancer Patients. J. Clin. Med. 2024, 13, 4337. [Google Scholar] [CrossRef] [PubMed]
- Mutibwa, D.H. Radical Left Culture and Heritage, the Politics of Preservation and Memorialisation, and the Promise of the Metaverse. Heritage 2024, 7, 537–575. [Google Scholar] [CrossRef]
- Madanchian, M.; Taherdoost, H. Business Model Evolution in the Age of NFTs and the Metaverse. Information 2024, 15, 378. [Google Scholar] [CrossRef]
- Mogier, G.A.A.; El Khayat, G.A.; Elkordy, M.M.; Hanafy, Y.A.E.G. A Proposed Metaverse Framework Implementing Gamification for Training Teaching Staff. In Proceedings of the 2023 IEEE Afro-Mediterranean Conference on Artificial Intelligence (AMCAI), Hammamet, Tunisia, 13–15 December 2023; pp. 1–7. [Google Scholar]
- Yu, D. AI-empowered metaverse learning simulation technology application. In Proceedings of the 2023 International Conference on Intelligent Metaverse Technologies & Applications (iMETA), Tartu, Estonia, 18–20 September 2023; pp. 1–6. [Google Scholar]
- Maier, F.; Weinberger, M. Metaverse Meets Smart Cities—Applications, Benefits, and Challenges. Future Internet 2024, 16, 126. [Google Scholar] [CrossRef]
- Gadekallu, T.R.; Maddikunta, P.K.R.; Boopathy, P.; Deepa, N.; Chengoden, R.; Victor, N.; Wang, W.; Wang, W.; Zhu, Y.; Dev, K. Xai for industry 5.0-concepts, opportunities, challenges and future directions. IEEE Open J. Commun. Soc. 2024; Early Access. [Google Scholar]
- Sá, M.J.; Serpa, S. Metaverse as a learning environment: Some considerations. Sustainability 2023, 15, 2186. [Google Scholar] [CrossRef]
- Nleya, S.M.; Velempini, M. Industrial metaverse: A comprehensive review, environmental impact, and challenges. Appl. Sci. 2024, 14, 5736. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, D.; Xiao, R.; Wu, X.; Zhang, H. A Systematic Review on Extended Reality-Mediated Multi-User Social Engagement. Systems 2024, 12, 396. [Google Scholar] [CrossRef]
- Cho, Y.; Park, K.S. Designing immersive virtual reality simulation for environmental science education. Electronics 2023, 12, 315. [Google Scholar] [CrossRef]
- Choi, W.; Kim, S. Curriculum Development of EdTech Class Using 3D Modeling Software for University Students in the Republic of Korea. Sustainability 2023, 15, 16605. [Google Scholar] [CrossRef]
- Alam, T. Metaverse of Things (MoT) applications for revolutionizing urban living in smart cities. Smart Cities 2024, 7, 2466–2494. [Google Scholar] [CrossRef]
- Dahan, N.A.; Al-Razgan, M.; Al-Laith, A.; Alsoufi, M.A.; Al-Asaly, M.S.; Alfakih, T. Metaverse framework: A case study on E-learning environment (ELEM). Electronics 2022, 11, 1616. [Google Scholar] [CrossRef]
- Kuleto, V.; Ilić, M.P.; Ranković, M.; Radaković, M.; Simović, A. Augmented and Virtual Reality in the Metaverse Context: The Impact on the Future of Work, Education, and Social Interaction. In Augmented and Virtual Reality in the Metaverse; Springer: Berlin, Germany, 2024; pp. 3–24. [Google Scholar]
- Guzzo, T.; Ferri, F.; Grifoni, P. Lessons learned during COVID-19 and future perspectives for emerging technology. Sustainability 2023, 15, 10747. [Google Scholar] [CrossRef]
Requirement | Priority (MoSCoW) | Description | |
---|---|---|---|
1 | Cross-platform accessibility (VR headsets, smartphones, tablets, and computers) | Must-Have | Ensures students can access the classroom from various devices. |
2 | Real-time troubleshooting and technical support | Must-Have | Provides immediate assistance to prevent disruptions in virtual learning. |
3 | Data encryption and secure data handling | Must-Have | Safeguards sensitive student and educator data during transmission and storage. |
4 | Interactive virtual classrooms with avatar-based interactions | Must-Have | Allows students to visually represent themselves in the virtual space for engagement. |
5 | Parental control features for content and screen time management | Should-Have | Gives parents control over their child’s virtual activities and content access. |
6 | Scenario-based Learning Environment | Must-Have | Offers immersive, real-world scenarios to enhance problem-solving skills. |
7 | Multilingual support and translation tools | Could-Have | Supports students from different linguistic backgrounds. |
8 | Customizable teacher dashboards and analysis | Must-Have | Gives teachers insights into student progress and classroom management. |
9 | Holistic assessments tracking academic and social skills | Should-Have | Evaluates a broad range of student skills beyond academics. |
10 | CMS for organizing resources | Must-Have | Centralized hub for storing and updating educational content. |
11 | Adaptive AI-driven personalized learning | Should-Have | Personalizes learning based on student performance and preferences. |
12 | Compliance with GDPR and FERPA | Must-Have | Ensures the platform adheres to data privacy regulations. |
13 | Offline access for students with limited connectivity | Could-Have | Allows students to access learning materials without continuous internet. |
14 | Gamified elements to enhance engagement | Could-Have | Increases student motivation and participation through rewards and challenges. |
15 | Self-help tutorials and automated system | Should-Have | Empowers users to resolve basic issues and prevents major disruptions. |
16 | Scheduling virtual parent-teacher | Could-Have | Simplifies parent-teacher communication within the virtual environment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeganeh, L.N.; Fenty, N.S.; Chen, Y.; Simpson, A.; Hatami, M. The Future of Education: A Multi-Layered Metaverse Classroom Model for Immersive and Inclusive Learning. Future Internet 2025, 17, 63. https://doi.org/10.3390/fi17020063
Yeganeh LN, Fenty NS, Chen Y, Simpson A, Hatami M. The Future of Education: A Multi-Layered Metaverse Classroom Model for Immersive and Inclusive Learning. Future Internet. 2025; 17(2):63. https://doi.org/10.3390/fi17020063
Chicago/Turabian StyleYeganeh, Leyli Nouraei, Nicole Scarlett Fenty, Yu Chen, Amber Simpson, and Mohsen Hatami. 2025. "The Future of Education: A Multi-Layered Metaverse Classroom Model for Immersive and Inclusive Learning" Future Internet 17, no. 2: 63. https://doi.org/10.3390/fi17020063
APA StyleYeganeh, L. N., Fenty, N. S., Chen, Y., Simpson, A., & Hatami, M. (2025). The Future of Education: A Multi-Layered Metaverse Classroom Model for Immersive and Inclusive Learning. Future Internet, 17(2), 63. https://doi.org/10.3390/fi17020063