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Abstract: The energy stored in electric vehicles (EVs) would be made available to commercial
buildings to actively manage energy consumption and costs in the near future. These concepts known
as vehicle-to-building (V2B) and vehicle-to-grid (V2G) technologies have the potential to provide
storage capacity to benefit both EV and building owners respectively, by reducing some of the high
cost of EVs, buildings’ energy cost, and providing reliable emergency backup services. In this study,
we considered a vehicle-to-buildings/grid (V2B/V2G) system simultaneously for peak shaving and
frequency regulation via a combined multi-objective optimization strategy which captures battery
state of charge (SoC), EV battery degradation, EV driving scenarios, and operational constraints.
Under these assumptions, we showed that the electricity usage/bill can be reduced by a difference
of 0.1 on a scale of 0 to 1 (with 1 the normalized original electricity cost), and that EV batteries can
also achieve superior economic benefits under controlled SoC limits (e.g., when kept between the
SoC range of SoCmin > 30% and SoCmax < 90%) and subjected to very restricted charge-discharge
battery cycling.
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1. Introduction

The energy stored in electric vehicles (EVs) would be made available to commercial buildings
to actively manage energy consumption and costs in the near future. These concepts known as
vehicle-to-X (V2X) (where X = home (H), building (B), or grid (G)) technologies have the potential to
provide storage capacity to benefit EVs owners, grid companies, and buildings owners by reducing
some of the high cost of EVs, reducing buildings’ energy cost, and providing reliable emergency backup
services [1,2]. For example, Tesla S70 has 90 kWh battery capacity, and its daily consumption for trips
is about 12.5% of this capacity (average daily distance for light vehicles is 53 km [3]). Hence of, 60 kWh
can be used as an energy storage system after reduction of 20% depletion ratio.

More often than usual, when these EVs are not in used for driving purposes, they are sitting in
the garage of the owners or in public parking lots, and the energies stored in the batteries would not be
beneficial. The goal of this study is to use these energies for peak shaving and frequency regulation
in vehicle-to-building/grid (V2B/V2G) technology. Studies in this direction have already been done
and published in the literature. The studies presented in [4] and [5] show the economic benefit of
using stationary batteries and plug-in electric vehicles batteries, respectively for energy arbitrage and
frequency regulation. These early works showed that using batteries for peak shaving and frequency
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regulation simultaneously yields beneficial results in comparison to single application. However, their
approaches did not account for the stochastic nature of the problem. In order to deal with potential
uncertainties from energy and ancillary service markets such as price and frequency regulation signals,
the studies published in [6–8] formulate the battery usage for peak shaving and frequency regulation
as a stochastic problem. Most of these prior works are based on stationary batteries and thus do not
account for power train in the degradation of the batteries.

The current study focuses on EV batteries which are mobile and can be used for driving purposes.
Furthermore, in comparison to the previous works related to stationary energy storage system, the
current study contributes in significantly different ways. A multi-objective optimization framework for
EV batteries to perform load management (building load and driving), peak shaving, and frequency
regulation services is proposed and simulated. This framework accounts for EV battery degradation,
operational constraints, driving profiles, and regulation signals. Since EV batteries cycle multiple times
when used for frequency regulation, peak shaving, and load management, the battery degradation plays
an important role in determining their operations. The simulation in this study was conducted based on
the assumption of five EV users working at the same building with different driving profiles and state
of charge (SoC) limits, EV1 = [10–90%], EV2 = [20–90%], EV3 = [30–90%], EV4 = [40–90%], and EV5 =

[50–90%] = [SoCmin–SoCmax] providing the same ancillary services. The main difference of SoC usage
ranges among the EV users results from the different driving profiles. The SoC limits are correlated to the
driving distance to and from work for each EV user. One major observation in this study is that under
these restricted scenarios, EV batteries can achieve much larger economic benefits if they jointly provide
multiple services under controlled SoC limits and very restricted charge-discharge battery cycling.

The rest of this paper is organized as follows. In Section 2, a detail description of the Materials
and Methods used in this study is performed and the problem formulated. The Results are presented
in Section 3, followed by Discussions in Section 4 and Conclusions in Section 5.

2. Materials and Methods

Our starting point is the calculation of the electricity bill, with the goal to use the energy stored in
EVs batteries to reduce the energy cost not only from the EV owner (i.e., V2H) perspective, but also
from the building owner (i.e., V2B) and grid company perspectives (i.e., V2G). Table 1 shows the list of
variables used in this study and their definitions.

2.1. Electricity Bill Calculation

An industrial building or a commercial unit, whose daily electricity bill H is the summation of
energy charge off peak and on peak demand charge is considered.

H = Helec + Hpeak = αelec

T∫
T0

r(t)dt + αpeak max︸︷︷︸
t=T0...T

[r(t)] = αelec

T∫
T0

r(t)dt + αpeakrpeak (1)

where αelec = energy price in $/MWh, r(t) power consume at time t, αpeak = peak demand price in $/MW.
The peak demand charge rpeak is based on the maximum power consumption, and it is calculated from
a running average of power consumption over 15 or 30 min [8,9].

2.2. Problem Formulation

The goals of this study are:

• To find the optimal policy and strategies for using the energy stored in EV batteries to reduce the
total energy cost H of the building owner.

• To find the SoC optimal range of EV batteries with slow battery degradation, while providing
building load supply when necessary, powertrain for the EV, peak shaving and frequency
regulation simultaneously.



World Electric Vehicle Journal 2020, 11, 14 3 of 11

Table 1. List of variables used in this study and their definitions.

Notations Definitions

H Daily electricity bill in $

Helect Daily off-peak electricity bill in $

Hpeak Daily on-peak electricity bill in $

Ha Adjusted electricity bill after peak shaving

αelec energy price in $/MWh

αpeak peak demand price in $/MW

r(t) power consume at time t

rpeak power consume during peak hours

bn(t) Energy store in the nth battery

bn(t) The average power injection of the nth battery

N Number of EVs

λn
cell is the nth MBESS cell price $/Wh

Kn Number of cycles that the nth MBESS could be operated within

s(t) The normalized frequency regulation signal

αc Frequency regulation revenue

αmis Frequency cost mismatch penalty

C Power capacity

SoCmin Min State of Charge

SoCt Current State of Charge

SoCmax Max State of Charge

cn Frequency regulation capacity of each EV

bch
n (t) Battery charging of the nth EV

bdc
n (t) Discharging power of the nth EV

y(t) Frequency regulation load baseline

Pn
max Battery capacity power of the nth EV

2.3. Peak Shaving

Peak demand charges can significantly increase the electricity bill. Smoothing these peak demands
represents one of the best ways for reducing electricity cost. Several techniques have been developed and
proposed in the literature for peak shaving: using energy storage [10], load shifting and balancing [11].
In this study, a set of N EVs, each having one mobile battery energy storage system (MBESS), which
can be connected to the grid via fast bidirectional chargers installed in the parking lot of a commercial
building is considered. The MBESS can discharge energy to the grid when it is connected and electrical
demand is high and charge in other times to smooth building’s energy consumption profiles.

Let us define bn(t) the power that the nth MBESS can inject in the grid at a given time t. Note that
bn(t) > 0 for discharging, bn(t) < 0 for charging. The total adjusted electricity bill Ha is now given by
Equation (2).

Ha = αelec

T∫
T0

r(t) − N∑
n=1

bn(t)

dt + αpeak max︸︷︷︸
t=T0...T

r(t) − N∑
n=1

bn(t)]

+ N∑
n=1

f (bn) (2)
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In Equation (2), r(t) is the power meter reading at time t, bn(t) is the average power injection of the

nth battery, ra(t) = r(t) −
N∑

n=1
bn(t) is the actual power meter reading when the N EVs are connected to

the grid, and f (bn) is the operating cost of the nth battery.

2.4. EV Battery Model and Degradation Cost

A vital element in the operational planning of MBESS is their operating cost, a majority of which
comes from the degradation of MBESS cells subjected to repeated charge and discharge cycles, aging,
and temperature effects. In this study, the generic model battery (Figure 1a) developed and verified
within the Matlab/Simulink software environment [12–14] (Figure 1b) is used.

Figure 1. Generic Matlab/Simulink battery model with temperature and aging (equivalent full
cycle) effects.

The controlled voltage source is described using Equation (3) below, and Vbatt = E − Ri.

E = E0 −K
Q

Q−
∫

idt
+ Ae−B

∫
idt (3)

E = no-load voltage in volts, E0 = battery constant voltage in volts, K = polarization voltage in
volts, Q = battery capacity in Ah,

∫
idt = actual battery charge in Ah, A = exponential zone amplitude

in volts, B = exponential zone time constant inverse in (Ah)−1, Vbatt = battery voltage in volts, R =

internal resistance in Ohms, and i = battery current in (amps). The model can accurately represent the
behavior of many battery types, provided the parameters are well determined. The main feature of
this battery model is that the parameters can be easily deduced from a manufacturer’s discharge curve
and can be set to account for temperature and aging effects [12–14].

The degradation cost of the nth MBESS is then modeled using Equation (4) [8,15].

f (bn) =
λn

cell × 106

2Kn
(
SoCn

max − SoCn
min

) ∣∣∣bn(t)
∣∣∣ (4)

In this equation λn
cell is the nth MBESS cell price ($/Wh). Kn is the number of cycles that the nth

MBESS could be operated within.
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2.5. Frequency Regulations

In addition to peak shaving, the MBESS is also used for frequency regulation market. A simplified
version of the Pennsylvania, New Jersey, and Maryland (PJM) frequency regulation market [16] is used
in this study. The revenue for providing frequency regulation service over time T is then defined by:

S = αcCT − αmis

T∫
T0

∣∣∣∣∣∣∣
N∑

n=1

bn(t) −Cs(t)

∣∣∣∣∣∣∣dt−
N∑

n=1

f (bn) (5)

In Equation (5), f (bn) is the operating cost of the MBESS and s(t) is the normalized frequency
regulation signal. Compared with traditional frequency regulation signals, it has a much faster ramping
rate and is designed to have a zero-mean within a certain time interval, which is well aligned with
the characteristics of MBESS. Note that, for providing frequency regulation service, the grid operator
pays a per-MW option fee αc to a resource withstand-by power capacity C for each hour. While during
the frequency regulation procurement period, the resource is subjected to a per-MWh regulation
mismatch penalty (αmis) for the absolute error between the instructed dispatch and the resource’s
actual response [16].

2.6. Multi-objective Optimization

The EV batteries are used for load management (house load, building load, and powertrain) but
also to provide frequency regulation (building grid side) service and peak shaving. These put several
constrains on the EV owner which can be summarized as follows.

- Minimize EV’s owner electricity bill
- Such that

# The gain from selling EV energy to building owner is maximized.
# Minimize battery degradation thus minimize battery cost.
# Keep SoC within SoCmin < SoC < SoCmax.

The objective on the building owner side is to reduce its electricity bill at any cost. Unfortunately,
this can only be accomplished while taking into consideration EV owners and grid company
requirements. Mathematically, this is described by Equation (6) and can be viewed as a multi-objective
optimization problem with the goal of finding a middle ground where all the parties involved agree.

Hmulti = min︸︷︷︸
cn,bch

n (t), bdc
n (t),y(t),N

Ha
− αcT

N∑
n=1

cn − αmin

T∫
t=T0

| − r(t) +
N∑

n=1

bn(t) + y(t) −
N∑

n=1

Cns(t)|dt (6)

Such that :



bn(t) = bdc
n (t) − bch

n (t)
N∑

n=1
cn ≥ 0

SoCn
min ≤

SoCn
ini+

∫ t
τ
[b(τ)ηc−

bdc
n
ηd

]dτ

E ≤ SoCn
max

0 ≤ bch
n (t) ≤ Pn

max
0 ≤ bdc

n (t) ≤ Pn
max

(7)

Most of the constraints are on the EV owner side. On the building owner side, as in [8], the
multi-objective optimization model should capture both the uncertainties of future demand r(t) and
future frequency regulation signals s(t). The objective function in Equation (6) minimizes the total
electricity cost of a commercial user for the next day, including the energy cost, peak demand charge,
and EV battery degradation cost and frequency regulation service revenue. Unlike [8], optimization
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variables are considered at the EV level and are frequency regulation capacity cn of each EV, battery
charging/discharging power bdc

n (t), bch
n (t), of each EV, number of EVs connected at a given time t, and

frequency regulation load baseline y(t). Participants in frequency regulation market should report a
baseline y(t) to the grid operator ahead of their service time [16]. For a commercial user, the baseline
y(t) is its load forecasting including the projected driving patterns of the EV owners. [T0 T] = time
interval considered, αc = frequency regulation revenue, and αmin = frequency cost mismatch penalty.

2.7. Simulation Strategy

For simulation purposes, several scenarios/hypotheses are considered: EV connection to the grid,
EV driver’s behavior, and SoC operation limits. When the EV is used as stationary, the EV is at a parking
lot and connected to the grid for peak shaving and frequency regulation, and the multi-objective
optimization framework is applied. When the EV is used as mobile, it is not connected to the grid and
it is being driven by its owner to go to work, to come back home, or to run some errands. When the EV
is at home, it can be used for house load management, and the batteries get charged overnight every
day during off-peak period, and leave every morning fully charged to the maximum defined SoC. The
simulation in this study is based on the assumption of five EV users working at the same building with
different driving profiles and SoC limits, EV1 = [10–90%], EV2 = [20–90%], EV3 = [30–90%], EV4 =

[40–90%], and EV5 = [50–90%] = [SoCmin–SoCmax] providing the same ancillary services. The main
difference of SoC usage ranges among the EV users results from the different driving profiles. The SoC
limits are correlated to the driving distance to and from work for each EV user.

3. Results

In order to verify the proposed scenarios, a small residential building with an electricity
consumption of 26 kWh/day, a commercial unit with an electricity consumption of 70 kWh/day
and 5 EVs having a battery storage capacity of 24 kWh per EV has been utilized for simulation on
battery degradation and electricity bill estimation. The results are obtained using Matlab/Simulink and
can be applicable to any larger buildings with a fleet of EVs by multiplication and additional detailed
adjustment. In this simulation work, it is assumed that a data centre or commercial building has 70
kWh power consumption with 10 kW peak power between 7:00 and 18:00 in a day.

The volatility of renewable energy poses uncontrollable fluctuations to the power generation in
the electric grid; therefore, it is required to find and connect resources for providing ancillary services
such as frequency and voltage regulations. A fleet of electric vehicles in the parking lot of a building
during working hours can be connected to the electric grid for ancillary services. This simulation
utilizes 5 EVs with different levels of SoC usage for the combination of frequency regulation and peak
shaving as V2B/V2G application between 11:30 and 12:30 in a day.

3.1. EV Owner and Household Bill

For each EV user, a fixed driving profile over a period of 10+ years is hypothesized. The MBESS
of the nth user can be used for household load, building load, and driving purposes. Figure 2 shows
the Simulink schema.

Figure 3 shows the daily profile simulation of EV1, EV2, EV3, EV4, and EV5, respectively. As
shown in Figure 3, every day from 11:30 to 12:30, all the EVs have the same depth of discharge (DoD)
with 20% for selling the same amount of energy to the building owner (V2B) for ancillary services on
the grid side. The rest of the day, EV discharging and charging profiles are different and correspond to
the EV owner’s driving and charging patterns.
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Figure 2. Vehicle-to-X (V2X) Simulink model in a 24 h period.

Figure 3. Daily 24 h profile of electric vehicles (EVs) with state of charge (SoC) limits: EV1 = [10–90%],
EV2 = [20–90%], EV3 = [30–90%], EV4 = [40–90%], and EV5 = [50–90%].
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In each profile, at the first current spike, the daily battery cycling starts with a discharge current
of 25 A (driving to work), at ambient temperature of 25 degrees C. The initial SoC (SoCmax = 90%)
is same for each EV and its battery pack is discharged until the SoC reaches 65% (DoD of 35%), 70%
(DoD of 30%), 75% (DoD of 25%), 80% (DoD of 20%), 85% (DoD of 15%), for EV1, EV2, EV3, EV4, and
EV5, respectively.

The second current spike is related to the V2B application after each EV arrives at work and is
connected to the DC fast charger of the parking lot of the building for ancillary services. For this period,
the discharge current is 25 A and the SoC decreases down to 45% (DoD of 55%), 50% (DoD of 50%), 55%
(DoD of 45%), 60% (DoD of 40%), 65% (DoD of 35%), for EV1, EV2, EV3, EV4, and EV5, respectively.

The third current spike is related to driving back home. The discharge current is 25A and the SoC
decreases down to 20% (DoD of 80%), 30% (DoD of 70%), 40% (DoD of 60%), 50% (DoD of 50%), 60%
(DoD of 40%), for EV1, EV2, EV3, EV4, and EV5, respectively.

The fourth current spike describes the V2H application after each EV arrives at home and is
connected to the EV charger of the house for V2H applications. For this period, the discharge current
is 25 A and the SoC decreases down to minimum SoCmin for each EV. That is: 10% (DoD of 90%), 20%
(DoD of 80%), 30% (DoD of 70%), 40% (DoD of 60%), 50% (DoD of 50%), for EV1, EV2, EV3, EV4, and
EV5, respectively.

Afterwards, the EV battery pack is charged back overnight to 90% SoC with a charge current of 15
A. As this cycle is repeated every day up to 12 years (12 × 365 = 4380 days), the battery age increases
whereas its capacity decreases. Simulation of the battery degradation on ancillary services and driving
over this period is shown in Figure 4. The deeper the depth of battery discharge is used, the more
the battery degradation is pronounced. Short commute driving habit, EV5 with SoC within [50–90%]
shows the lowest battery degradation.

Figure 4. Battery degradation for various driving patterns and SoC limits: EV1 = [10–90%], EV2 =

[20–90%], EV3 = [30–90%], EV4 = [40–90%], and EV5 = [50–90%].

Figure 5 shows the comparison of the original bill normalized to 1 with simulated bills after
frequency regulation only, peak shaving only and combined peak shaving and frequency regulation,
for each of the SoC operation range considered above.

Bill corresponds to the original bill normalized to 1. That is the home owner’s bill without
ancillary services. Frequency regulation, peak shaving, and joint correspond to normalized bill when
participating in frequency regulation, peak shaving, and both services respectively.
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Figure 5. Comparative analysis of the original bill normalized to 1 corresponding to bill without
ancillary services and others with bills after peak shaving, frequency regulation, combination of peak
shaving and frequency regulation, under different SoC limits: Electricity bills to be paid by EV owners
after reflecting reimbursement for ancillary services.

3.2. Electricity Bill for Building Owner

On the Building owner side, we assumed that the 5 EVs are connected during working hours, and
provide a fix amount of power or battery capacity each day to the building owner for peak shaving
and frequency regulations as shown in Figure 3. Figure 6 shows the Simulink schema and Figure 7 the
simulation of bill saving under different scenarios.

Figure 6. Simulink model for building owner.

Bill corresponds to the original bill normalized to 1. That is the building owner’s bill without
ancillary services. Frequency regulation, peak shaving and joint correspond to normalized bill when
participating in frequency regulation, peak shaving and both services, respectively.
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Figure 7. Comparative analysis of the original bill normalized to 1 corresponding to bill without
ancillary services and others with bills after peak shaving, frequency regulation, combination of peak
shaving and frequency regulation, under different SoC limits: Electricity bill for building owner.

4. Discussion

In this study the energy stored in EVs is used for peak shaving and frequency regulation in a
vehicle-to-building/grid (V2B/V2G) application, but also for driving purpose at the same time, with the
goal to study the effect of the different mentioned tasks on EV battery degradation and EV owner’s
electricity bill. Although several studies have been carried out in this direction, mostly using stationary
batteries [8], this study focuses on EV mobile batteries and contributes in significantly different ways.
A multi-objective optimization framework for EV batteries to perform load management (building load
and driving), peak shaving and frequency regulation services is proposed. This framework accounts
for EV battery degradation, operational constraints, driving profiles, and regulation signals. Since the
depth of discharge of EV battery pack increases when used for frequency regulation, peak shaving, and
load management, the battery degradation plays an important role in determining their operations.

Here it is also shown that the V2B/V2G application of EVs can be beneficial when used for ancillary
services and driving purpose, these results were obtained under certain strict conditions such as fixed
driving patterns for EV owners, fixed battery cycling, fixed depth of discharge, and fixed SoC limits,
which are not always the case in real life. In our future work, we would relax all these conditions, add
more stochasticity in the EV owner’s driving behavior and also consider a fleet of vehicles more than
five EVs.

5. Conclusions

In this study, the energy stored in EV batteries is used for V2B/V2G application. This energy was
simultaneously used for power train, peak shaving, and frequency regulation. Simulation of these
tasks on energy bill calculation and battery degradation via a combined multi-objective optimization
strategy which captures battery state of charge, EV battery degradation, EV driving scenarios, and
operational constraints. Under these constraints, the electricity usage/bill can be reduced and EV
batteries can also achieve superior economic benefits under controlled state of charge limits and
charge-discharge battery cycling. Under these assumptions, we showed that the electricity usage/bill
can be reduced by a difference of 0.1 on a scale of 0 to 1 (with 1 the normalized original electricity cost),
and that EV batteries can also achieve superior economic benefits under controlled SoC limits (e.g.,
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when kept between the SoC range of SoCmin > 30% and SoCmax < 90%) and subjected to very restricted
charge-discharge battery cycling.

Author Contributions: conceptualization, A.T. and Y.Y.; methodology, A.T. and Y.Y.; software, A.T. and Y.Y.;
validation, A.T. and Y.Y.; formal analysis, A.T. and Y.Y.; investigation, A.T. and Y.Y.; writing—original draft
preparation, A.T.; writing—review and editing, Y.Y.; project administration, Y.Y.; funding acquisition, Y.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the NRC’s Vehicle Propulsion Technology (VPT) Program and
by Natural Resources Canada (NRCan) through the Program of Energy Research and Development (PERD).

Acknowledgments: The authors acknowledge financial support from the NRC’s Vehicle Propulsion Technology
(VPT) Program and Natural Resources Canada (NRCan) through the Program of Energy Research and Development
(PERD).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Electric Vehicle Outlook 2017; Bloomberg New Energy Finance: New York, NY, USA, 2017.
2. Pike Research Report on Vehicle to Building Technologies; Pike Research: Pikes Peak, CL, USA, 2012.
3. Motors, T. Tesla Model S Specifications. Available online: https://www.teslamotors.com/en_CA/support/

model-s-specifications (accessed on 30 September 2015).
4. Walawalkar, R.; Apt, J.; Mancini, R. Economics of electric energy storage for energy arbitrage and regulation

in New York. Energy Policy 2007, 35, 2558–2568. [CrossRef]
5. White, C.D.; Zhang, K.M. Using vehicle-to-grid technology for frequency regulation and peak-load reduction.

J. Power Sources 2011, 196, 3972–3980. [CrossRef]
6. Xi, X.; Sioshansi, R.; Marano, V. A stochastic dynamic programming model for co-optimization of distributed

energy storage. Energy Syst. 2014, 5, 475–505. [CrossRef]
7. Cheng, B.; Powell, W. Co-optimizing battery storage for the frequency regulation and energy arbitrage using

multi-scale dynamic programming. IEEE Trans. Smart Grid 2018, 9, 1997–2005. [CrossRef]
8. Shi, Y.; Xu, B.; Wang, D. Zhang, B. Using battery storage for peak shaving and frequency regulation: Joint

optimization for superlinear gains. arXiv 2017, arXiv:1702.08065v3.
9. Intro to Demand Charge Management. Available online: https://www.civicsolar.com (accessed on 12

March 2019).
10. Sigrist, L.; Lobato, E.; Rouco, L. Energy storage systems providing primary reserve and peak shaving in

small isolated power systems: An economic assessment. Int. J. Electr. Power Energy Syst. 2013, 53, 675–683.
[CrossRef]

11. Caprino, D.; Della Vedova, M.L.; Facchinetti, T. Peak shaving through real-time scheduling of household
appliances. Energy Build. 2014, 75, 133–148. [CrossRef]

12. Matlab Generic Battery Model. Available online: https://www.mathworks.com/help/physmod/sps/powersys/
ref/battery.html (accessed on 11 October 2019).

13. Tremblay, O.; Dessaint, L.-A.; Dekkiche, A.-I. A Generic Battery Model for the Dynamic Simulation of Hybrid
Electric Vehicles. In Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference, Arlington, TX,
USA, 9–13 September 2007.

14. Omar, N.; Monem, M.A.; Firouz, Y.; Salminen, J.; Smekens, J.; Hegazy, O.; Gaulous, H.; Mulder, G.;
Bossche, P.V.D.; Coosemans, T.; et al. Lithium iron phosphate based battery—Assessment of the aging
parameters and development of cycle life model. Appl. Energy 2014, 113, 1575–1585. [CrossRef]

15. Guo, Y.; Fang, Y. Electricity Cost Saving Strategy in Data Centers by Using Energy Storage. IEEE Trans.
Parallel Distrib. Syst. 2012, 24, 1149–1160. [CrossRef]

16. Xu, B.; Dvorkin, Y.; Kirschen, D.S.; Silva-Monroy, C.A.; Watson, J.-P. A comparison of policies on the
participation of storage in US. frequency regulation markets. In Proceedings of the Power and Energy Society
General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.teslamotors.com/en_CA/support/model-s-specifications
https://www.teslamotors.com/en_CA/support/model-s-specifications
http://dx.doi.org/10.1016/j.enpol.2006.09.005
http://dx.doi.org/10.1016/j.jpowsour.2010.11.010
http://dx.doi.org/10.1007/s12667-013-0100-6
http://dx.doi.org/10.1109/TSG.2016.2605141
https://www.civicsolar.com
http://dx.doi.org/10.1016/j.ijepes.2013.05.046
http://dx.doi.org/10.1016/j.enbuild.2014.02.013
https://www.mathworks.com/help/physmod/sps/powersys/ref/battery.html
https://www.mathworks.com/help/physmod/sps/powersys/ref/battery.html
http://dx.doi.org/10.1016/j.apenergy.2013.09.003
http://dx.doi.org/10.1109/TPDS.2012.201
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Electricity Bill Calculation 
	Problem Formulation 
	Peak Shaving 
	EV Battery Model and Degradation Cost 
	Frequency Regulations 
	Multi-objective Optimization 
	Simulation Strategy 

	Results 
	EV Owner and Household Bill 
	Electricity Bill for Building Owner 

	Discussion 
	Conclusions 
	References

