A Deep Learning Method for the Health State Prediction of Lithium-Ion Batteries Based on LUT-Memory and Quantization
Abstract
:1. Introduction
2. Proposed Methodology
2.1. LUT Memory Creation and Usage
2.2. LUT Generation
- Step 1. Looping linearly over every possible combination of address bits, starting from 0 and going up to 27n. The binary address generated depends highly on the number of bits assigned to each of the seven features. The ones that will be tested are 2, 3, 4, 5, 6, 7, and 8 bits.
- Step 2. Then, the generated address bits are grouped into seven feature groups, while each feature owns its own number of bits, generating a feature binary address bit.
- Step 3. The address bit value for each feature is normalized as the bit’s value/2n, where n is the number of bits selected for the feature.
- Step 4. The seven normalized feature values are presented to the trained deep neural network.
- Step 5. The value inferred from the model is stored in the LUT memory at the given address.
- Step 6. Then, the next address is selected, and the whole operation is repeated (from step 1).
2.3. LUT Usage
- Step 1. It starts with the seven feature values (capacity, ambient temperature, date–time, measured volts, measured current, measured temperature, load voltage, and load current).
- Step 2. Each of the seven feature values will be normalized (0, 1).
- Step 3. Then, those values will be quantized based on the following configurations: 2 bits, 3 bits, 4 bits, 5 bits, 6 bits, and 8 bits, depending on the adaptation.
- Step 4. Quantization produces binary bits for each feature.
- Step 5. All bits are combined into one address, as shown in Figure 1,
3. Related Works on Quantization in DNNs
4. Dataset Description
5. Background and Preliminaries
5.1. Fully Connected Deep Neural Network
5.2. Long Short-Term Memory (LSTM) Deep Neural Network
6. Performance Evaluation and Metrics
6.1. Performance Evaluation Indicators
6.2. Model Training
7. Evaluation Results and Discussion
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Whittingham, M.S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126–1127. [Google Scholar] [CrossRef] [PubMed]
- Stan, A.-I.; Swierczynski, M.; Stroe, D.-I.; Teodorescu, R.; Andreasen, S.J. Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications—An overview. In Proceedings of the 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Bran, Romania, 22–24 May 2014; pp. 713–720. [Google Scholar] [CrossRef]
- Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- Huang, S.-C.; Tseng, K.-H.; Liang, J.-W.; Chang, C.-L.; Pecht, M.G. An online soc and soh estimation model for lithium-ion batteries. Energies 2017, 10, 512. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Dai, H.; Jiang, B.; Hu, X.; Lin, X.; Wei, X.; Pecht, M. Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends. Renew. Sustain. Energy Rev. 2021, 138, 110480. [Google Scholar] [CrossRef]
- Lawder, M.T.; Suthar, B.; Northrop, P.W.C.; DE, S.; Hoff, C.M.; Leitermann, O.; Crow, M.L.; Santhanagopalan, S.; Subramanian, V.R. Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications. Proc. IEEE Inst. Electr. Electron. Eng. 2014, 102, 1014–1030. [Google Scholar] [CrossRef]
- Lai, X.; Gao, W.; Zheng, Y.; Ouyang, M.; Li, J.; Han, X.; Zhou, L. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries. Electrochimica Acta 2019, 295, 1057–1066. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, G.; Li, X.; Chen, Z. A fractional-order model-based state estimation approach for lithium-ion battery and ul-tra-capacitor hybrid power source system considering load trajectory. J. Power Sources 2020, 449, 227543. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, X.; He, Y. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network. Energy 2021, 232, 121022. [Google Scholar] [CrossRef]
- Rechkemmer, S.K.; Zang, X.; Zhang, W.; Sawodny, O. Empirical Li-ion aging model derived from single particle model. J. Energy Storage 2019, 21, 773–786. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Chen, Z. A comparative study of battery state-of-health estimation based on empirical mode decomposition and neural network. J. Energy Storage 2022, 54, 105333. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, S.; Lacey, M.J.; Brandell, D.; Thiringer, T. Bridging physics-based and equivalent circuit models for lithium-ion batteries. Electrochimica Acta 2021, 372, 137829. [Google Scholar] [CrossRef]
- Xu, N.; Xie, Y.; Liu, Q.; Yue, F.; Zhao, D. A Data-Driven Approach to State of Health Estimation and Prediction for a Lithium-Ion Battery Pack of Electric Buses Based on Real-World Data. Sensors 2022, 22, 5762. [Google Scholar] [CrossRef]
- Alipour, M.; Tavallaey, S.S.; Andersson, A.M.; Brandell, D. Improved Battery Cycle Life Prediction Using a Hybrid Data-Driven Model Incorporating Linear Support Vector Regression and Gaussian. Chemphyschem 2022, 23, e202100829. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Yan, J. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression. J. Power Sources 2019, 421, 56–67. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Monem, M.; Gopalakrishnan, R.; Berecibar, M.; Nanini-Maury, E.; Omar, N.; van den Bossche, P.; Van Mierlo, J. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter. J. Power Sources 2018, 373, 40–53. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.; Tian, J. Towards a smarter battery management system: A critical review on battery state of health monitoring methods. J. Power Sources 2018, 405, 18–29. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 2014, 258, 321–339. [Google Scholar] [CrossRef]
- Han, X.; Ouyang, M.; Lu, L.; Li, J.; Zheng, Y.; Li, Z. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. J. Power Sources 2014, 251, 38–54. [Google Scholar] [CrossRef]
- Gold, L.; Bach, T.; Virsik, W.; Schmitt, A.; Müller, J.; Staab, T.E.; Sextl, G. Probing Lithium-Ion Batteries’ State-of-Charge Using Ultrasonic Transmission—Concept and Laboratory Testing. J. Power Sources 2017, 343, 536–544. [Google Scholar] [CrossRef]
- Robinson, J.B.; Owen, R.E.; Kok, M.D.R.; Maier, M.; Majasan, J.; Braglia, M.; Stocker, R.; Amietszajew, T.; Roberts, A.J.; Bhagat, R.; et al. Identifying defects in li-ion cells using ultrasound acoustic measurements. J. Electrochem. Soc. 2020, 167, 120530. [Google Scholar] [CrossRef]
- R-Smith, N.A.-Z.; Leitner, M.; Alic, I.; Toth, D.; Kasper, M.; Romio, M.; Surace, Y.; Jahn, M.; Kienberger, F.; Ebner, A.; et al. Assessment of lithium ion battery ageing by combined impedance spectroscopy, functional microscopy and finite element modelling. J. Power Sources 2021, 512, 230459. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Yu, H.; Wang, J.; Li, J.; Yang, K.; Zhao, Y.; Wang, H.; Wu, B.; Brandon, N.P.; et al. Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle. Adv. Energy Mater. 2022, 12, 2200889. [Google Scholar] [CrossRef]
- Onori, S.; Spagnol, P.; Marano, V.; Guezennec, Y.; Rizzoni, G. A New Life Estimation Method for Lithium-ion Batteries in Plug-In Hybrid Electric Vehicles Applications. Int. J. Power Electron. 2012, 4, 302–319. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 3. State and Parameter Estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Goebel, K.; Saha, B.; Saxena, A.; Celaya, J.R.; Christophersen, J.P. Prognostics in Battery Health Management. IEEE Instrum. Meas. Mag. 2008, 11, 33–40. [Google Scholar] [CrossRef]
- Wang, D.; Yang, F.; Zhao, Y.; Tsui, K.-L. Battery Remaining Useful Life Prediction at Different Discharge Rates. Microelectron. Reliab. 2017, 78, 212–219. [Google Scholar] [CrossRef]
- Li, J.; Landers, R.G.; Park, J. A Comprehensive Single-Particle-Degradation Model for Battery State-of-Health Prediction. J. Power Sources 2020, 456, 227950. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, J.; Cao, D.; Egardt, B. Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling. IEEE Trans. Ind. Electron. 2015, 63, 2645–2656. [Google Scholar] [CrossRef]
- Piao, C.; Li, Z.; Lu, S.; Jin, Z.; Cho, C. Analysis of Real-Time Estimation Method Based on Hidden Markov Models for Battery System States of Health. J. Power Electron. 2016, 16, 217–226. [Google Scholar] [CrossRef]
- Liu, D.; Pang, J.; Zhou, J.; Peng, Y.; Pecht, M. Prognostics for State of Health Estimation of Lithium-Ion Batteries Based on Combination Gaussian Process Functional Regression. Microelectron. Reliab. 2013, 53, 832–839. [Google Scholar] [CrossRef]
- Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-Ion Batteries Based on a Deep Learning Al-gorithm. Energies 2019, 12, 660. [Google Scholar] [CrossRef]
- Xia, Z.; Qahouq, J.A.A. Adaptive and Fast State of Health Estimation Method for Lithium-Ion Batteries Using Online Complex Impedance and Artificial Neural Network. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 3361–3365. [Google Scholar]
- Eddahech, A.; Briat, O.; Bertrand, N.; Delétage, J.-Y.; Vinassa, J.-M. Behavior and State-of-Health Monitoring of Li-Ion Batteries Using Impedance Spectroscopy and Recurrent Neural Networks. Int. J. Electr. Power Energy Syst. 2012, 42, 487–494. [Google Scholar] [CrossRef]
- Shen, S.; Sadoughi, M.; Chen, X.; Hong, M.; Hu, C. A Deep Learning Method for Online Capacity Estimation of Lithium-Ion Batteries. J. Energy Storage 2019, 25, 100817. [Google Scholar] [CrossRef]
- Wu, H.; Judd, P.; Zhang, X.; Isaev, M.; Micikevicius, P. Integer quantization for deep learning inference: Principles and empirical evaluation. arXiv 2020, arXiv:2004.09602. [Google Scholar]
- Gong, R.; Liu, X.; Jiang, S.; Li, T.; Hu, P.; Lin, J.; Yu, F.; Yan, J. Differentiable Soft Quantization: Bridging Full-Precision and Low-Bit Neural Networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27–28 October 2019; pp. 4852–4861. [Google Scholar]
- Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P.I.; Srinivasan, V.; Gopalakrishnan, K. Pact: Parameterized clipping activation for quantized neural networks. arXiv 2018, arXiv:1805.06085. [Google Scholar]
- Esser, S.K.; McKinstry, J.L.; Bablani, D.; Appuswamy, R.; Modha, D.S. Learned step size quantization. arXiv 2019, arXiv:1902.08153. [Google Scholar]
- Yang, Z.; Wang, Y.; Han, K.; Xu, C.; Xu, C.; Tao, D.; Xu, C. Searching for low-bit weights in quantized neural networks. Adv. Neural Inf. Process. Syst. 2020, 33, 4091–4102. [Google Scholar]
- Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights during propagations. Adv. Neural Inf. Process. Syst. 2015, 2, 3123–3131. [Google Scholar]
- Zhu, C.; Han, S.; Mao, H.; Dally, W.J. Trained ternary quantization. arXiv 2016, arXiv:1612.01064. [Google Scholar]
- Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 525–542. [Google Scholar]
- Ullrich, K.; Meeds, E.; Welling, M. Soft weight-sharing for neural network compression. arXiv 2017, arXiv:1702.04008. [Google Scholar]
- Xu, Y.; Wang, Y.; Zhou, A.; Lin, W.; Xiong, H. Deep neural network compression with single and multiple level quantization. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–3 February 2018; Volume 32. [Google Scholar]
- Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental network quantization: Towards lossless cnns with low-precision weights. arXiv 2017, arXiv:1702.03044. [Google Scholar]
- Miyashita, D.; Lee, E.H.; Murmann, B. Convolutional neural networks using logarithmic data representation. arXiv 2016, arXiv:1603.01025. [Google Scholar]
- Blalock, D.; Gonzalez Ortiz, J.J.; Frankle, J.; Guttag, J. What is the state of neural network pruning? Proc. Mach. Learn. Syst. 2020, 2, 129–146. [Google Scholar]
- Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge distillation: A survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [Google Scholar] [CrossRef]
- Google. TensorFlow: An End-to-End Open Source Machine Learning Platform. 2019. Available online: https://www.tensorflow.org (accessed on 15 November 2023).
- MACE. 2020. Available online: https://github.com/XiaoMi/mace (accessed on 15 November 2023).
- Microsoft. ONNX Runtime. 2019. Available online: https://github.com/microsoft/ (accessed on 15 November 2023).
- Wang, M.; Ding, S.; Cao, T.; Liu, Y.; Xu, F. Asymo: Scalable and efficient deep-learning inference on asymmetric mobile cpus. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, New Orleans, Louisiana, 25–29 October 2021; pp. 215–228. [Google Scholar]
- Jiang, X.; Wang, H.; Chen, Y.; Wu, Z.; Wang, L.; Zou, B.; Yang, Y.; Cui, Z.; Cai, Y.; Yu, T.; et al. Mnn: A universal and efficient inference engine. Proc. Mach. Learn. Syst. 2020, 2, 1–3. [Google Scholar]
- Liang, R.; Cao, T.; Wen, J.; Wang, M.; Wang, Y.; Zou, J.; Liu, Y. Romou: Rapidly generate high-performance tensor kernels for mobile gpus. In Proceedings of the 28th Annual International Conference on Mobile Computing And Networking, Sydney, Australia, 17–21 October 2022; pp. 487–500. [Google Scholar]
- Jiao, Y.; Han, L.; Long, X. Hanguang 800 npu–the ultimate ai inference solution for data centers. In Proceedings of the 2020 IEEE Hot Chips 32 Symposium (HCS), Palo Alto, CA, USA, 16–18 August 2020; IEEE Computer Society: Washington, DC, USA, 2020; pp. 1–29. [Google Scholar]
- Jouppi, N.P.; Yoon, D.H.; Ashcraft, M.; Gottscho, M.; Jablin, T.B.; Kurian, G.; Laudon, J.; Li, S.; Ma, P.; Ma, X.; et al. Ten lessons from three generations shaped google’s tpuv4i: Industrial product. In Proceedings of the 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), Virtual, 14–19 June 2021; pp. 1–14. [Google Scholar]
- Wechsler, O.; Behar, M.; Daga, B. Spring hill (nnp-i 1000) intel’s data center inference chip. In Proceedings of the 2019 IEEE Hot Chips 31 Symposium (HCS), Cupertino, CA, USA, 18–20 August 2019; IEEE Computer Society: Washington, DC, USA, 2019; pp. 1–12. [Google Scholar]
- Saha, B.; Goebel, K. Battery Data Set, NASA Ames Prognostics Data Repository; NASA Ames: Moffett Field, CA, USA, 2007. [Google Scholar]
- Ren, L.; Zhao, L.; Hong, S.; Zhao, S.; Wang, H.; Zhang, L. Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach. IEEE Access 2018, 6, 50587–50598. [Google Scholar] [CrossRef]
- How, D.N.; Hannan, M.A.; Lipu, M.H.; Ker, P.J. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review. IEEE Access 2019, 7, 136116–136136. [Google Scholar] [CrossRef]
- Choi, Y.; Ryu, S.; Park, K.; Kim, H. Machine Learning-Based Lithium-Ion Battery Capacity Estimation Exploiting Multi-Channel Charging Profiles. IEEE Access 2019, 7, 75143–75152. [Google Scholar] [CrossRef]
Bits/Feature | Values Given | Bits Total (Address) | SQNR dB | Memory Size |
---|---|---|---|---|
2 | 4 | 14 | 12.04 | 16 K |
3 | 8 | 21 | 18.06 | 2 M |
4 | 16 | 28 | 24.08 | 256 M |
5 | 32 | 35 | 30.10 | 32 G |
6 | 64 | 42 | 36.12 | 4 T |
7 | 128 | 49 | 42.14 | - |
8 | 256 | 56 | 48.16 | - |
Capacity | Vm | Im | Tm | ILoad | VLoad | Time (s) | |
---|---|---|---|---|---|---|---|
Min | 1.28745 | 2.44567 | −2.02909 | 23.2148 | −1.9984 | 0.0 | 0 |
Max | 1.85648 | 4.22293 | 0.00749 | 41.4502 | 1.9984 | 4.238 | 3,690,234 |
Layers | Output Shape | Parameters No. | |
---|---|---|---|
Model 1 FCNN | Dense | (node, 8) | 217 |
Dense | (node, 8) | ||
Dense | (node, 8) | ||
Dense | (node, 8) | ||
Dense | (node, 1) | ||
Model 2 LSTM | LSTM 1 | (N, 7, 200) | 1.124 M |
Dropout 1 | (N, 7, 200) | ||
LSTM 2 | (7, 200) | ||
Dropout 2 | (N, 7, 200) | ||
LSTM 3 | (N, 7, 200) | ||
Dropout 3 | (N, 7, 200) | ||
LSTM 4 | (N, 200) | ||
Dropout 4 | (N, 200) | ||
Dense | (N, 1) |
Model | Batch Size | Epochs | Time (s) | Loss |
---|---|---|---|---|
FCNN | 25 | 50 | 200 | 0.0243 |
LSTM | 25 | 50 | 7453 | 3.1478 × 10−5 |
Battery | Model | RMSE | MAE | MAPE |
---|---|---|---|---|
B0006 | FCNN | 0.080010 | 0.068220 | 0.100970 |
LSTM | 0.076270 | 0.067620 | 0.098770 | |
B0007 | FCNN | 0.019510 | 0.018019 | 0.021460 |
LSTM | 0.029282 | 0.024710 | 0.030434 | |
B0018 | FCNN | 0.015680 | 0.013610 | 0.016890 |
LSTM | 0.018021 | 0.016371 | 0.020547 |
Battery | Model | Quantization Bits | RMSE | MAE | MAPE (%) |
---|---|---|---|---|---|
B0006 | FCNN | 2 | 0.0195370 | 0.0159236 | 0.0190499 |
3 | 0.0098006 | 0.0080317 | 0.0096645 | ||
4 | 0.0046815 | 0.0037988 | 0.0045664 | ||
5 | 0.0024301 | 0.0020093 | 0.0024294 | ||
6 | 0.0012535 | 0.0010379 | 0.0012461 | ||
7 | 0.0006150 | 0.0005068 | 0.0006144 | ||
8 | 0.0003125 | 0.0002565 | 0.0003088 | ||
LSTM | 2 | 0.0216045 | 0.0185078 | 0.0225291 | |
3 | 0.0104658 | 0.0088477 | 0.0107360 | ||
4 | 0.0050010 | 0.0042487 | 0.0051737 | ||
5 | 0.0025885 | 0.0022293 | 0.0027206 | ||
6 | 0.0013394 | 0.0011620 | 0.0014114 | ||
7 | 0.0006609 | 0.0005692 | 0.0006974 | ||
8 | 0.0003309 | 0.0002835 | 0.0003446 | ||
B0007 | FCNN | 2 | 0.0187614 | 0.0162685 | 0.0191451 |
3 | 0.0101181 | 0.0088282 | 0.0103004 | ||
4 | 0.0050026 | 0.0043651 | 0.0051114 | ||
5 | 0.0024498 | 0.0021127 | 0.0024730 | ||
6 | 0.0012030 | 0.0010481 | 0.0012269 | ||
7 | 0.0006394 | 0.0005566 | 0.0006533 | ||
8 | 0.0003060 | 0.0002578 | 0.0003013 | ||
LSTM | 2 | 0.0209633 | 0.0181984 | 0.0219105 | |
3 | 0.0113147 | 0.0099692 | 0.0119157 | ||
4 | 0.0056382 | 0.0049296 | 0.0059140 | ||
5 | 0.0027386 | 0.0023843 | 0.0028542 | ||
6 | 0.0013495 | 0.0011826 | 0.0014153 | ||
7 | 0.0007212 | 0.0006320 | 0.0007581 | ||
8 | 0.0003432 | 0.0002912 | 0.0003475 | ||
B00018 | FCNN | 2 | 0.0205289 | 0.0159912 | 0.0189426 |
3 | 0.0096451 | 0.0077552 | 0.0092191 | ||
4 | 0.0050730 | 0.0040254 | 0.0047780 | ||
5 | 0.0022966 | 0.0017585 | 0.0020886 | ||
6 | 0.0011492 | 0.0008754 | 0.0010336 | ||
7 | 0.0006432 | 0.0005005 | 0.0005950 | ||
8 | 0.0002954 | 0.0002268 | 0.0002719 | ||
LSTM | 2 | 0.0218554 | 0.0189299 | 0.0233109 | |
3 | 0.0109069 | 0.0094792 | 0.0116619 | ||
4 | 0.0057440 | 0.0049472 | 0.0060704 | ||
5 | 0.0026591 | 0.0022228 | 0.0027317 | ||
6 | 0.0013255 | 0.0011411 | 0.0014012 | ||
7 | 0.0007168 | 0.0006208 | 0.0007612 | ||
8 | 0.0003431 | 0.0002941 | 0.0003649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Meer, M.H. A Deep Learning Method for the Health State Prediction of Lithium-Ion Batteries Based on LUT-Memory and Quantization. World Electr. Veh. J. 2024, 15, 38. https://doi.org/10.3390/wevj15020038
Al-Meer MH. A Deep Learning Method for the Health State Prediction of Lithium-Ion Batteries Based on LUT-Memory and Quantization. World Electric Vehicle Journal. 2024; 15(2):38. https://doi.org/10.3390/wevj15020038
Chicago/Turabian StyleAl-Meer, Mohamed H. 2024. "A Deep Learning Method for the Health State Prediction of Lithium-Ion Batteries Based on LUT-Memory and Quantization" World Electric Vehicle Journal 15, no. 2: 38. https://doi.org/10.3390/wevj15020038