Resolving Coffee Waste and Water Pollution—A Study on KOH-Activated Coffee Grounds for Organophosphorus Xenobiotics Remediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation and Physicochemical Characterization of KACGs
2.2. Adsorption Experiments
2.3. Determining the Concentration of OPs Using Ultra-Performance Liquid Chromatography
2.4. Assessment of AChE Activity Inhibition
3. Results and Discussion
3.1. Characterization of KACGs
3.2. Kinetic Studies of MLT and CHP Adsorption onto KACGs
3.3. Isotherm Studies for MLT and CHP Adsorption onto KACGs
3.4. Thermodynamic Analysis of MLT and CHP Adsorption onto KACGs
3.5. Determination of AChE Activity Inhibition Reduction after Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paun, I.; Pirvu, F.; Iancu, V.I.; Niculescu, M.; Pascu, L.F.; Chiriac, F.L. An Initial Survey on Occurrence, Fate, and Environmental Risk Assessment of Organophosphate Flame Retardants in Romanian Waterways. J. Xenobiot. 2024, 14, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Dhankhar, P.; Katiki, M.; Kumar, P. Structural Characterization of Enzymes Involved in Pesticide Degradation. 2016. Available online: https://www.researchgate.net/profile/Anchal-Sharma-8/publication/338165415_Structural_Characterization_of_Enzymes_Involved_in_Pesticide_Degradation/links/5e1c9bcba6fdcc2837710b6a/Structural-Characterization-of-Enzymes-Involved-in-Pesticide-Degradation.pdf (accessed on 1 July 2024).
- Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.; Karanth, S.; Liu, J. Pharmacology and toxicology of cholinesterase inhibitors: Uses and misuses of a common mechanism of action. Environ. Toxicol. Pharmacol. 2005, 19, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Bravo, N.; Garí, M.; Grimalt, J.O. Occupational and residential exposures to organophosphate and pyrethroid pesticides in a rural setting. Environ. Res. 2022, 214, 114186. [Google Scholar] [CrossRef] [PubMed]
- Stoytcheva, M. Pesticides in the Modern World; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Krstić, D.; Colović, M.; Krinulović, K.; Djurić, D.; Vasić, V. Inhibition of AChE by single and simultaneous exposure to malathion and its degradation products. Gen. Physiol. Biophys. 2007, 26, 247–253. [Google Scholar]
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Malathion (accessed on 28 June 2024).
- Kalender, S.; Uzun, F.G.; Durak, D.; Demir, F.; Kalender, Y. Malathion-induced hepatotoxicity in rats: The effects of vitamins C and E. Food Chem. Toxicol. 2010, 48, 633–638. [Google Scholar] [CrossRef]
- Moore, P.D.; Yedjou, C.G.; Tchounwou, P.B. Malathion-induced oxidative stress, cytotoxicity, and genotoxicity in human liver carcinoma (HepG2) cells. Environ. Toxicol. 2010, 25, 221–226. [Google Scholar] [CrossRef]
- Mokarizadeh, A.; Faryabi, M.R.; Rezvanfar, M.A.; Abdollahi, M. A comprehensive review of pesticides and the immune dysregulation: Mechanisms, evidence and consequences. Toxicol. Mech. Methods 2015, 25, 258–278. [Google Scholar] [CrossRef]
- John, E.M.; Shaike, J.M. Chlorpyrifos: Pollution and remediation. Environ. Chem. Lett. 2015, 13, 269–291. [Google Scholar] [CrossRef]
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Chlorpyrifos (accessed on 28 June 2024).
- Dyer, S.M.; Cattani, M.; Pisaniello, D.L.; Williams, F.M.; Edwards, J.W. Peripheral cholinesterase inhibition by occupational chlorpyrifos exposure in Australian termiticide applicators. Toxicology 2001, 169, 177–185. [Google Scholar] [CrossRef]
- Farag, A.T.; El Okazy, A.M.; El-Aswed, A.F. Developmental toxicity study of chlorpyrifos in rats. Reprod. Toxicol. 2003, 17, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Uniyal, S.; Sharma, R.K. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosens. Bioelectron. 2018, 116, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Adami, L.; Schiavon, M. From Circular Economy to Circular Ecology: A Review on the Solution of Environmental Problems through Circular Waste Management Approaches. Sustainability 2021, 13, 925. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Kumar, R.; Kumar, A. Environmental waste management strategies and vermi transformation for sustainable development. Environ. Chall. 2023, 13, 100747. [Google Scholar] [CrossRef]
- Alfei, S.; Pandoli, O.G. Bamboo-Based Biochar: A Still Too Little-Studied Black Gold and Its Current Applications. J. Xenobiot. 2024, 14, 416–451. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Huang, X.; Zheng, S.; Xu, X.; Liu, Z.; Zhang, Y.; Wang, J.; Lin, H.; Xu, D. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. J. Mater. Sci. 2018, 53, 0772–10783. [Google Scholar] [CrossRef]
- Bevilacqua, E.; Cruzat, V.; Singh, I.; Rose’Meyer, R.B.; Panchal, S.K.; Brown, L. The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients 2023, 15, 994. [Google Scholar] [CrossRef]
- Stylianou, M.; Agapiou, A.; Omirou, M.; Vyrides, I.; Ioannides, I.M.; Maratheftis, G.; Fasoula, D. Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource. Environ. Sci. Pollut. Res. Int. 2018, 25, 35776–35790. [Google Scholar] [CrossRef]
- Kamil, M.; Ramadan, K.M.; Awad, O.I.; Ibrahim, T.K.; Inayat, A.; Ma, X. Environmental impacts of biodiesel production from waste spent coffee grounds and its implementation in a compression ignition engine. Sci. Total Environ. 2019, 675, 13–30. [Google Scholar] [CrossRef]
- Andrade, T.S.; Vakros, J.; Mantzavinos, D.; Lianos, P. Biochar obtained by carbonization of spent coffee grounds and its application in the construction of an energy storage device. Chem. Eng. J. Adv. 2020, 4, 100061. [Google Scholar] [CrossRef]
- Mukherjee, A.; Borugadda, V.B.; Dynes, J.J.; Niu, C.; Dalai, A.K. Carbon dioxide capture from flue gas in biochar produced from spent coffee grounds: Effect of surface chemistry and porous structure. J. Environ. Chem. Eng. 2021, 9, 106049. [Google Scholar] [CrossRef]
- Dattatraya Saratale, G.; Bhosale, R.; Shobana, S.; Banu, J.R.; Pugazhendhi, A.; Mahmoud, E.; Sirohi, R.; Kant Bhatia, S.; Atabani, A.E.; Mulone, V.; et al. A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. Bioresour. Technol. 2020, 314, 123800. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Toward Circular Economy: Potentials of Spent Coffee Grounds in Bioproducts and Chemical Production. Biomass 2024, 4, 286–312. [Google Scholar] [CrossRef]
- Hupian, M.; Galamboš, M.; Viglašová, E.; Rosskopfová, O.; Kusumkar, V.V.; Daňo, M. Activated carbon treated with different chemical agents for pertechnetate adsorption. J. Radioanal. Nucl. Chem. 2024, 333, 1815–1829. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Irfan, O.M.; Moustafa, H.M. H3PO4/KOH Activation Agent for High Performance Rice Husk Activated Carbon Electrode in Acidic Media Supercapacitors. Molecules 2023, 28, 296. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Brković, S.; Potkonjak, N.; Unterweger, C.; Bajuk-Bogdanović, D.; Pašti, I.; Lazarević-Pašti, T. Spent coffee grounds-derived carbon material as an effective adsorbent for removing multiple contaminants from wastewater: A comprehensive kinetic, isotherm, and thermodynamic study. J. Water Process Eng. 2024, 63, 105507. [Google Scholar] [CrossRef]
- Jacob, M.M.; Ponnuchamy, M.; Kapoor, A.; Sivaraman, P. Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water. J. Environ. Chem. Eng. 2020, 8, 103904. [Google Scholar] [CrossRef]
- Celso Gonçalves, A.; Zimmermann, J.; Schwantes, D.; Tarley, C.R.T.; Conradi Junior, E.; Henrique Dias de Oliveira, V.; Campagnolo, M.A.; Ziemer, G.L. Renewable Eco-Friendly Activated Biochar from Tobacco: Kinetic, Equilibrium and Thermodynamics Studies for Chlorpyrifos Removal. Sep. Sci. Technol. 2022, 57, 159–179. [Google Scholar] [CrossRef]
- Thuy, P.T.; Anh, N.V.; van der Bruggen, B. Evaluation of Two Low-Cost–High-Performance Adsorbent Materials in the Waste-to-Product Approach for the Removal of Pesticides from Drinking Water. CLEAN–Soil Air Water 2012, 40, 246–253. [Google Scholar] [CrossRef]
- Katnić, Đ.B.; Porobić, S.J.; Vujčić, I.; Kojić, M.M.; Lazarević-Pašti, T.; Milanković, V.; Marinović-Cincović, M.; Živojinović, D.Z. Irradiated fig pomace pyrochar as a promising and sustainable sterilized sorbent for water pollutant removal. Radiat. Phys. Chem. 2024, 214, 111277. [Google Scholar] [CrossRef]
- Katnić, Đ.; Porobić, S.J.; Lazarević-Pašti, T.; Kojić, M.; Tasić, T.; Marinović-Cincović, M.; Živojinović, D. Sterilized plum pomace biochar as a low-cost effective sorbent of environmental contaminants. J. Water Process Eng. 2023, 56, 104487. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Pejčić, M.; Pašti, I.; Lazarević-Pašti, T. Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos—Kinetics, Thermodynamics, and Eco-Neurotoxicity. Foods 2023, 12, 2397. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.-L.; Zeng, Y.-N.; Wang, Y.-T.; Li, J.-G.; Wang, F.-P.; Wang, Y.-J.; Yu, Q.; Wang, X.-M.; Ji, R.; Gao, D.; et al. Removal of pollutants from wastewater using coffee waste as adsorbent: A review. J. Water Process Eng. 2022, 49, 103178. [Google Scholar] [CrossRef]
- Available online: https://sdgresources.relx.com/ (accessed on 28 June 2024).
- Saleh, T.A. Chapter 3-Kinetic Models and Thermodynamics of Adsorption Processes: Classification. In Interface Science and Technology; Saleh, T.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 65–97. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Da, T.; Ma, Y. Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant. J. Mol. Liq. 2021, 322, 114980. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Veitía-de-Armas, L.; Reynel-Ávila, H.E.; Bonilla-Petriciolet, A.; Jáuregui-Rincón, J. Green solvent-based lipid extraction from guava seeds and spent coffee grounds to produce biodiesel: Biomass valorization and esterification/transesterification route. Ind. Crops Prod. 2024, 214, 118535. [Google Scholar] [CrossRef]
- Fuente, E.; Menéndez, J.A.; Díez, M.A.; Suárez, D.; Montes-Morán, M.A. Infrared Spectroscopy of Carbon Materials: A Quantum Chemical Study of Model Compounds. J. Phys. Chem. B 2003, 107, 6350–6359. [Google Scholar] [CrossRef]
- Naushad, M.; Alqadami, A.A.; AlOthman, Z.A.; Alsohaimi, I.H.; Algamdi, M.S.; Aldawsari, A.M. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J. Mol. Liq. 2019, 293, 111442. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Gominho, J.; Olivella, M.À.; Fiol, N.; Villaescusa, I.; Pereira, H. The chemical composition of exhausted coffee waste. Ind. Crops Prod. 2013, 50, 423–429. [Google Scholar] [CrossRef]
- Silva Filho, E.C.; Santos Júnior, L.S.; Silva, M.M.F.; Fonseca, M.G.; Santana, S.A.A.; Airoldi, C. Surface cellulose modification with 2-aminomethylpyridine for copper, cobalt, nickel and zinc removal from aqueous solution. Mater. Res. 2013, 16, 79–84. [Google Scholar] [CrossRef]
- Cheung, W.H.; Szeto, Y.S.; McKay, G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 2007, 98, 2897–2904. [Google Scholar] [CrossRef] [PubMed]
MLT | CHP | |
---|---|---|
Pseudo-first-order kinetic model | ||
qe (mg g−1) | 3.02 ± 0.06 | 7 ± 1 |
k1 × 102 (min−1) | 2.46 ± 0.08 | 1.1 ± 0.7 |
χ2 | 0.119 | 0.703 |
R2 | 0.732 | 0.570 |
Pseudo-second-order kinetic model | ||
qe (mg g−1) | 3.13 ± 0.05 | 7.6 ± 0.8 |
k2 × 102 (mg min−1 g−1) | 14.3 ± 0.4 | 23 ± 7 |
χ2 | 0.041 | 0.612 |
R2 | 0.907 | 0.625 |
Elovich kinetic model | ||
α (mg g−1 min−1) | 260 ± 10 | 25200 ± 400 |
β (g mg−1) | 4.1 ± 0.2 | 2.18 ± 0.03 |
χ2 | 0.009 | 0.045 |
R2 | 0.812 | 0.972 |
Intraparticle diffusion model | ||
part I | ||
C (mg g−1) | 0.931 | 4.719 |
kid (mg g−1 min−0.5) | 0.422 | 0.294 |
R2 | 1.000 | 0.999 |
part II | ||
C (mg g−1) | 2.216 | 6.320 |
kid (mg g−1 min−1) | 0.102 | 0.086 |
R2 | 0.948 | -- |
part III | ||
C (mg g−1) | 3.17 | 7.900 |
kid (mg g−1 min−0.5) | 0.0008 | 0.008 |
R2 | 0.859 | 0.968 |
OP | MLT | CHP | ||||
---|---|---|---|---|---|---|
T [°C] | 25 | 30 | 35 | 25 | 30 | 35 |
Freundlich isotherm | ||||||
KF ((dm3 mg−1)1/n) | 0.384 ± 0.001 | 0.462 ±0.001 | 0.786 ± 0.002 | 3.87 ± 0.03 | 3.04 ± 0.03 | 2.41 ± 0.05 |
n | 1.28 ± 0.01 | 1.34 ± 0.01 | 1.45 ± 0.03 | 1.95 ± 0.05 | 1.79 ± 0.04 | 1.70 ± 0.05 |
χ2 | 0.005 | 0.004 | 0.096 | 1.705 | 2.032 | 2.607 |
R2 | 0.999 | 0.999 | 0.990 | 0.968 | 0.956 | 0.932 |
Langmuir isotherm | ||||||
KL × 102 (dm3 mg−1) | 1.82 ± 0.01 | 2.31 ± 0.02 | 3.73 ± 0.01 | 0.163 ± 0.02 | 0.128 ± 0.01 | 0.107 ± 0.002 |
qmax (mg g−1) | 13.5 ± 0.1 | 14.0 ± 0.1 | 15.0 ± 0.1 | 22.3 ± 0.1 | 21.7 ± 0.1 | 20.3 ± 0.1 |
χ2 | 0.006 | 0.016 | 0.001 | 0.280 | 0.101 | 0.461 |
R2 | 0.999 | 0.997 | 1.000 | 0.995 | 0.998 | 0.988 |
Temkin isotherm | ||||||
KT (dm3 mg−1) | 0.546 ± 0.009 | 0.600 ± 0.008 | 0.688 ± 0.005 | 4.13 ± 0.07 | 2.13 ± 0.03 | 1.44 ± 0.01 |
bT (J g mol−1 mg−1) | 1430 ± 60 | 1400 ± 60 | 1050 ± 50 | 697 ± 8 | 627 ± 4 | 625 ± 2 |
χ2 | 0.451 | 0.450 | 0.429 | 4.367 | 1.238 | 0.300 |
R2 | 0.908 | 0.914 | 0.955 | 0.917 | 0.973 | 0.992 |
Dubinin–Radushkevich isotherm | ||||||
KDR × 106 (mol2 J−2) | 3.4 ± 0.7 | 2.7 ± 0.6 | 2.2 ± 0.4 | 0.56 ± 0.03 | 0.76 ± 0.01 | 0.994 ± 0.006 |
qDR (mg g−1) | 4.4 ± 0.9 | 4.6 ± 0.9 | 6.3 ± 0.7 | 14 ± 1 | 13 ± 1 | 12.5 ± 0.7 |
E (J mol−1) | 380 ± 80 | 430 ± 90 | 470 ± 60 | 940 ± 30 | 810 ± 10 | 709 ± 7 |
χ2 | 1.807 | 1.913 | 2.757 | 6.286 | 4.739 | 2.846 |
R2 | 0.632 | 0.636 | 0.710 | 0.880 | 0.897 | 0.925 |
ΔH0 [kJ mol−1] | ΔS0 [J mol−1K−1] | ΔG0 [kJ mol−1] | R2 | |||
---|---|---|---|---|---|---|
T [°C] | 25 | 30 | 35 | |||
MLT | 28 ± 2 | 130 ± 10 | −11 ± 1 | −12 ± 1 | −13 ± 1 | 0.863 |
CHP | −25.2 ± 0.03 | −28.0 ± 0.04 | −17.0 ± 0.3 | −16.8 ± 0.3 | −16.6 ± 0.3 | 0.985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanković, V.; Tasić, T.; Pašti, I.A.; Lazarević-Pašti, T. Resolving Coffee Waste and Water Pollution—A Study on KOH-Activated Coffee Grounds for Organophosphorus Xenobiotics Remediation. J. Xenobiot. 2024, 14, 1238-1255. https://doi.org/10.3390/jox14030070
Milanković V, Tasić T, Pašti IA, Lazarević-Pašti T. Resolving Coffee Waste and Water Pollution—A Study on KOH-Activated Coffee Grounds for Organophosphorus Xenobiotics Remediation. Journal of Xenobiotics. 2024; 14(3):1238-1255. https://doi.org/10.3390/jox14030070
Chicago/Turabian StyleMilanković, Vedran, Tamara Tasić, Igor A. Pašti, and Tamara Lazarević-Pašti. 2024. "Resolving Coffee Waste and Water Pollution—A Study on KOH-Activated Coffee Grounds for Organophosphorus Xenobiotics Remediation" Journal of Xenobiotics 14, no. 3: 1238-1255. https://doi.org/10.3390/jox14030070