Urban Stream and Wetland Restoration in the Global South—A DPSIR Analysis
Abstract
:1. Introduction: Urban Freshwater Hydrosystems of the Global South—A Socio-Ecological Pandemonium
- Driving forces: Which are currently the main urban development trends negatively impacting freshwater hydrosystems in the Global South and which must be considered in the context of their restoration? Which major societal and political phenomena are linked to hydrosystem restoration in the Global South?
- Pressures and Impacts: Which biophysical phenomena of the Urban Stream Syndrome are particularly problematic in freshwater hydrosystems in the Global South? What are the main impacts (positive or negative consequence of state variables) for ecosystems and for society?
- State: What is the state of urban hydrosystems in the Global South?
- Societal responses: Which steps can be taken to motivate the stakeholders to act and to overcome administrative hurdles for hydrosystem restoration?
- Technical responses: Which practical engineering approaches can be devised to overcome the specific biophysical problems and meet socio-economic goals?
2. Materials and Methods
3. Results and Discussion
3.1. Driving Forces: Which Current Urban Development Trends Make Freshwater Hydrosystem Restoration Particularly Difficult in the Global South
3.2. Urban Sprawl and Environmental Injustice
3.3. Local Governance Problems Make Integrated River Management and Restoration Projects Difficult
3.4. Drivers beyond the Catchment Scale (International–National Policies)
3.5. Perception of the Problem: What Makes Citizens Feel that They Need to Restore Urban Hydrosystems
3.6. Concepts for Urban Hydrosystem Restoration in Developing Countries Are Virtually Absent
4. Pressures and Impacts: Which Biophysical Phenomena Are Particularly Problematic for Urban Freshwater Hydrosystems in the Global South
4.1. Hydrological and Morphological Pressures on Southern Urban Hydrosystems
4.2. Physical Pressures: High Water Temperatures and Siltation
4.3. Simultaneous Occurrence of Different Types of Chemical Pollution: The Hydrosystem as a Sewer
5. The State of Urban Hydrosystems in the Global South
6. Societal Responses
6.1. Which Steps Can Be Taken to Motivate the Local Population to Take Action and to Overcome Administrative Hurdles for Hydrosystem Restoration
- -
- Bottom-up approach, driven by active urbanites
- -
- Top-down approach, driven by the government
- -
- Interactive approach, driven by societal and economical processes
6.2. Bottom-up Approach: Increasing Participation by the Population
Manuelzão Project, Minas Gerais, Brazil
- The State of Minas Gerais has an excellent level of education, with one of the lowest degrees of illiteracy in Brazil and a great interest in environmental issues by the population.
- The riverine urbanites have a strong cultural and emotional linkage to “their” river, which motivated them to take action when seeing that their river was “dying” (visible, frequent fish kills that were also reported by the media), the memory of a healthy river was still present in the politically active part of the population.
- There was an emblematic personality (“Manuelzão”, a well-respected, old man who was a living testimony for the Velhas River before pollution) who served as a “trademark” for generating an identity of the participants that came from very different social and political groups.
- The driving force was to overcome public health problems, i.e., an issue that touches the entire society (whereas purely biodiversity-driven restoration projects often have difficulties gaining traction with the larger populace).
- An open-minded mixture of academics, local citizens, and government members planned, conceived, and coordinated actions jointly, and active feedback on the technical efforts and on the financial aspects contributed to an efficient project implementation.
- A State Government who was interested in accepting the proposals by the population, who had (or developed) an administrative infrastructure capable of acting on the entire catchment, who found the financial means to realize the projects, and who gave priority to these actions over other thematic issues.
- A period, in which the citizens were strongly engaged in political participation, after with overcome a dictatorship, and which was carried by the spirit of the ecological movement, culminating the first Earth Summit in Rio de Janeiro 1992.
- The size of the river precluded it from being buried, as it had happened to many smaller urban streams.
- The restored river system is free of dams, which enables migratory fish to return.
- Some of the tributaries are relatively well-protected and served as species pool for recolonizing the restored aquatic and riparian zones of the river (i.e., the native fauna and flora was able to recolonize the river before this was done by invaders).
- The surrounding ecosystems are relatively well-protected from invasive species so that the restored habitats were re-colonized by native species.
6.3. Top-Down Approach: National and Regional Governance
6.3.1. Urban Drainage, Belo Horizonte
6.3.2. Rio Barigui
- Curitíba has a long-standing reputation as one of the best-organized and most ecology-driven megacities in the world, including an excellent transportation system, waste recycling, and a high degree of public participation
- The perspective to give the illegal squatters a better housing than their current situation has contributed to the public acceptance. The local government has shown that the demolition of houses did not only affect the poor, but also economically better standing people who had squatted in nature reserves.
- The Barigui river has an intermediate size, i.e., it is manageable.
- The river borders were yet only partly colonized so that the riparian continuum can still be visualized.
6.3.3. The River-Chief System in China
6.3.4. Factors Affecting the Success of Top-Down Systems
- All involved institutions share a common idea about the targets of the restoration project
- Financial and administrative responsibilities are clear
- Larger areas (even entire catchments) can be dealt with
6.4. Interactive Drivers
6.4.1. Cultural and Emotional Linkages
6.4.2. Economical and Legal Drivers that Are Indirectly Linked to Hydrosystems
6.4.3. Integration of the Local Population into Jointly Used Restored Riparian Zones
6.4.4. Valuing of Ecosystem Services
7. Technical Responses: Which Practical Engineering Approaches Can Be Applied
8. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kibel, P.S. Bankside Urban: An Introduction. In Rivertown: Rethinking Urban Rivers; Kibel, P.S., Ed.; The MIT Press: Cambridge, MA, USA, 2007; pp. 1–22. [Google Scholar]
- Hering, D.; Borja, A.; Carstensen, J.; Carvalho, L.; Elliott, M.; Feld, C.K.; Heiskanen, A.S.; Johnson, R.K.; Moe, J.; Pont, D.; et al. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Sci. Total Environ. 2010, 408, 4007–4019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SER. The SER International Primer on Ecological Restoration; Society for Ecological Restoration International: Tucson, AZ, USA, 2004. [Google Scholar]
- McRae, L.; Deinet, S.; Freeman, R. The Diversity-Weighted Living Planet Index: Controlling for Taxonomic Bias in a Global Biodiversity Indicator. PLoS ONE 2017, 12, e0169156. [Google Scholar] [CrossRef] [PubMed]
- WWF. Living Planet Report-2018: Aiming Higher; WWF: Gland, Switzerland, 2018. [Google Scholar]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Booth, D.; Roy, A.; Smith, B.; Capps, K. Global perspectives on the urban stream syndrome. Freshw. Sci. 2015, 35, 412–420. [Google Scholar] [CrossRef]
- Capps, K.A.; Bentsen, C.N.; Ramírez, A. Poverty, urbanization, and environmental degradation: Urban streams in the developing world. Freshw. Sci. 2015, 35, 429–435. [Google Scholar] [CrossRef]
- Pringle, C.M. River conservation in tropical versus temperate latitudes. In Global Perspectives on River Conservation: Science, Policy and Practice; Boon, P.J., Davies, B.R., Petts, G.E., Eds.; Wiley: Chichester, UK, 2000; p. 548. [Google Scholar]
- Ramirez, A.; Pringle, C.M.; Wantzen, K.M. Tropical stream conservation. In Tropical Stream Ecology; Dudgeon, D., Ed.; Elsevier: London, UK, 2008; pp. 286–304. [Google Scholar]
- Gari, S.R.; Newton, A.; Icely, J.D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Grêt-Regamey, A.; Celio, E.; Klein, T.M.; Wissen Hayek, U. Understanding ecosystem services trade-offs with interactive procedural modeling for sustainable urban planning. Landsc. Urban Plan. 2013, 109, 107–116. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Ballouche, A.; Longuet, I.; Bao, I.; Bocoum, H.; Cissé, L.; Chauhan, M.; Girard, P.; Gopal, B.; Kane, A.; et al. River Culture: An eco-social approach to mitigate the biological and cultural diversity crisis in riverscapes. Ecohydrol. Hydrobiol. 2016, 16, 7–18. [Google Scholar] [CrossRef]
- Vollmer, D.; Pribadi, D.; Remondi, F.; Rustiadi, E.; Grêt-Regamey, A. Prioritizing ecosystem services in rapidly urbanizing river basins: A spatial multi-criteria analytic approach. Sustain. Cities Soc. 2016, 20, 237–252. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Pinto, P. The social connectivity of urban rivers. Geomorphology 2016, 277, 182–196. [Google Scholar] [CrossRef]
- Zingraff-Hamed, A.; Greulich, S.; Pauleit, S.; Wantzen, K.M. Urban and rural river restoration in France: A typology. Restor. Ecol. 2017, 25, 994–1004. [Google Scholar] [CrossRef]
- Morandi, B. La restauration des cours d’eau en France et à l’étranger: De la définition du concept à l’évaluation de l’action. Ph.D. Thesis, University of Lyon, Lyon, France, 2014. [Google Scholar]
- Zingraff-Hamed, A.; Greulich, S.; Wantzen, K.M.; Pauleit, S. Societal Drivers of European Water Governance: A Comparison of Urban River Restoration Practices in France and Germany. Water 2017, 9, 206. [Google Scholar] [CrossRef]
- Pander, J.; Geist, J. Ecological indicators for stream restoration success. Ecol. Indic. 2013, 30, 106–118. [Google Scholar] [CrossRef]
- Brooks, S.S.; Lake, P.S. River restoration in Victoria, Australia: Change is in the wind, and none too soon. Restor. Ecol. 2007, 15, 584–591. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J.; et al. Ecology-Synthesizing US river restoration efforts. Science 2005, 308, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, R.G.; Barnas, K.A.; Braatne, J.H.; Bernhardt, E.S.; Palmer, M.A.; Allan, J.D. Stream restoration databases and case studies: A guide to information resources and their utility in advancing the science and practice of restoration. Restor. Ecol. 2006, 14, 177–186. [Google Scholar] [CrossRef]
- UN. The World’s Cities in 2016; United Nations: Washington, DC, USA, 2016; p. 29. [Google Scholar]
- Hale, R.L.; Scoggins, M.; Smucker, N.J.; Suchy, A. Effects of climate on the expression of the urban stream syndrome. Freshw. Sci. 2015, 35, 421–428. [Google Scholar] [CrossRef]
- Oliveira, M.J.L.; Luna, R.M. O papel da alocação negociada de água na solução de conflitos em recursos Hídricos: O caso do conflito pelo uso da água do açude santo antônio de Aracatiaçu-CE. In Proceedings of the XX Simpósio Brasileiro de Recursos Hídricos, Bento Goncalves, Brazil, 12–22 November 2013; pp. 2318–2358. [Google Scholar]
- BBC. The 11 Cities Most Likely to Run Out of Drinking Water—Like Cape Town. Available online: https://www.bbc.com/news/world-42982959 (accessed on 11 February 2018).
- The Guardian. More Than 100 Chinese Cities Now Above 1 Million People. Available online: https://www.theguardian.com/cities/2017/mar/20/china-100-cities-populations-bigger-liverpool (accessed on 12 February 2019).
- Bhatta, B. Analysis of Urban Growth and Sprawl from Remote Sensing Data. In Advances in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 17–36. [Google Scholar]
- Thayer, D. Documental Rio Bogota. Available online: https://www.youtube.com/watch?v=usWI4UUXsT4 (accessed on 12 February 2019).
- Corcoran, E.; Nellemann, C.; Baker, E.; Bos, R.; Osborn, D.; Savelli, H. Sick Water? The Central Role of Wastewater Management in Sustainable Development. A Rapid Response Assessment; UNEP/GRID-Arendal: Arendal, Norway, 2010; Available online: http://www.unep.org/pdf/SickWater_screen.pdf (accessed on 12 February 2019).
- Safi, Z.; Buerkert, A. Heavy metal and microbial loads in sewage irrigated vegetables of Kabul, Afghanistan. J. Agric. Rural Dev. Trop. Subtrop. 2011, 112, 29–36. [Google Scholar]
- Herzer, H.; Gurevich, R. Construyendo el riesgo ambiental en la ciudad. Desastres Soc. Bogotá 1996, 4, 8–15. [Google Scholar]
- Temple, L.; Moustier, P. Les fonctions et contraintes de l’agriculture périurbaine dans quelques villes africaines (Yaoundé, Cotonou, Dakar). Cah. Agric. 2004, 13, 15–22. [Google Scholar]
- Page, B. Urban agriculture in Cameroon: An anti-politics machine in the making? Geoforum 2002, 33, 41–54. [Google Scholar] [CrossRef]
- Mbaye, E.; Badiane, S.D.; Coly, A.; Sall, F.; Ndiaye, B.; Diop, A. Contribution à l’évaluation des services écosystémiques des Niayes de Dakar. Quels apports face aux enjeux environnementaux en milieu urbain? In La Recomposition des Espaces Urbain et Périurbain Face Aux Changements Climatiques en Afrique de l’Ouest; Mbaye, E., Ed.; Harmattan: Paris, France, 2018; pp. 121–134. [Google Scholar]
- Diop, A.; Sambou, H.; Diop, C.; Ntiranyibagira, E.; Dacosta, H.; Sambou, B. Dynamique d’occupation du sol des zones humides urbanisées de Dakar (Sénégal) de 1942 à 2014. VertigO Rev. Électronique Sci. Environ. 2018, 18. Available online: http://journals.openedition.org/vertigo/20120 (accessed on 12 February 2019).
- Badiane, S.D.; Mbaye, E. Zones humides urbaines à double visage à Dakar: Opportunité ou menace? Rev. Sci. Eaux Territ. 2018. Available online: http://www.set-revue.fr/zones-humides-urbaines-double-visage-dakar-opportunite-ou-menace (accessed on 12 February 2019).
- Sène, A.; Sarr, M.A.; Kane, A.; Diallo, M. L’assèchement des lacs littoraux de la grande côte du Sénégal: Mythe ou réalité? Cas des lacs Thiourour, Warouwaye et Wouye de la banlieue de Dakar. J. Anim. Plant Sci. 2018, 35, 5623–5638. [Google Scholar]
- Sall, F. Urbanité et Biodiversité: Etude de la Résilience d’un Système Socio Ecologique en Milieu Estuarien (Saint-Louis du Sénégal); Université Gaston Berger: Saint-Louis, Senegal, 2017. [Google Scholar]
- Sedeño-Díaz, J.E.; Rodríguez-Romero, A.J.; Mendoza-Martínez, E.; López-López, E. Chemometric Analysis of Wetlands Remnants of the Former Texcoco Lake: A Multivariate Approach. In Lake Sciences and Climate Change; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar] [Green Version]
- Zambrano, L.; Pacheco-Muñoz, R.; Fernández, T. A spatial model for evaluating the vulnerability of water management in Mexico City, Sao Paulo and Buenos Aires considering climate change. Anthropocene 2017, 17, 1–12. [Google Scholar] [CrossRef]
- Hernández, R. Evolución Histórica del Lago de Texcoco. Available online: https://www.arcgis.com/apps/MapJournal/index.html?appid=ebcc98ca1ae6428b8ff04159605855b5# (accessed on 25 May 2019).
- CONAGUA. Proyecto Lago de Texcoco: Rescate Hidroecológico; Comisión Nacional del Agua, Gerencia Lago de Texcoco: Mexico City, Mexico, 2005; p. 140. [Google Scholar]
- INEGI. Manchas Urbanas y Rurales, 2015’, Escala: 1:250000. Edición: 2015. Obtenido de Cartografía Geoestadística Urbana y Rural Amanzanada. Cierre de la Encuesta Intercensal 2015; Geografía, I.N., Ed.; INEGI: Aguascalientes, Mexico, 2016.
- Biermann, F.; Boas, I. Preparing for a Warmer World: Towards a Global Governance System to Protect Climate Refugees. Glob. Environ. Politics 2010, 10, 60–88. [Google Scholar] [CrossRef]
- Zaryab, A.; Noori, A.R.; Wegerich, K.; Klove, B. Assessment of water quality and quantity trends in Kabul aquifers with an outline for future drinking water supplie. Cent. Asian J. Water Res. 2017, 3, 3–11. [Google Scholar]
- Döll, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B.R. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 2012, 59–60, 143–156. [Google Scholar] [CrossRef]
- Villar, P.C.; Ribeiro, W.C. The Agreement on the Guarani Aquifer: A new paradigm for transboundary groundwater management? Water Int. 2011, 36, 646–660. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999. [Google Scholar] [CrossRef]
- Chen, J. Holistic assessment of groundwater resources and regional environmental problems in the North China Plain. Environ. Earth Sci. 2010, 61, 1037–1047. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Taylor, R.G.; Longuevergne, L. Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin. Water Resour. Res. 2012, 48, 2. [Google Scholar] [CrossRef]
- Cunha, L.H.; Coelho, M.C.N. Política e Gestão Ambiental. In A Questão Ambiental. Diferentes Abordagens; Cunha, S.B., Guerra, J.T., Eds.; Bertrand Brasil: Rio de Janeiro, Brazil, 2003; pp. 43–80. [Google Scholar]
- EU. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. 2000, 327, 1–73. [Google Scholar]
- Siqueira, A.; Ricaurte, L.F.; Borges, G.A.; Nunes, G.M.; Wantzen, K.M. The role of private rural properties for conserving native vegetation in Brazilian Southern Amazonia. Reg. Environ. Chang. 2018, 18, 21–32. [Google Scholar] [CrossRef]
- Cook, B.R.; Spray, C.J. Ecosystem services and integrated water resource management: Different paths to the same end? J. Environ. Manag. 2012, 109, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Contraloria_de_Bogotá Evaluación del Programa de Saneamiento del río Bogotá 2008–2013. Available online: http://www.contraloriabogota.gov.co/sites/default/files/Contenido/Informes/Estructurales/Ambiente/2008-2013%20Programa%20de%20saneamiento%20del%20rio%20Bogot%C3%A1.pdf (accessed on 21 February 2019).
- Rodríguez, J.P.; Díaz-Granados Ortiz, M.A.; Camacho Botero, L.A.; Raciny, I.C.; Maksimovic, C.; McIntyre, N.E. Bogotá’s Urban Drainage System: Context, Research Activities and Perspectives, Proceedings of the BHS 10th National Hydrology Symposium, Exeter, England, 15–17 September 2008; BHS: Exeter, UK, 2008; pp. 378–386. [Google Scholar]
- ECLAC-CEPAL. Propuesta de Política Para la Descontaminación del río Bogotá, Cartagena de Indias, 27 de Agosto de 2010. Available online: https://www.cepal.org/ilpes/noticias/paginas/6/40506/Grupo_Agua.pdf (accessed on 20 February 2019).
- Bogotá, A.M.D. Un Río Bogotá Limpio en 2025 Gracias a la PTAR Canoas; City of Bogotá, Colombia, 2017. [Google Scholar]
- CAR. Borrador del Pomca Río Bogotá (2120) Resumen Ejecutivo Fase Prospectiva y Zonificación Ambiental. Contrato de Consultoría Nº. 1412 de 2014; Corporación Autónoma Regional de Cundinamarca—CAR: Bogotá, Colombia, 2018; p. 37. [Google Scholar]
- Díaz-Granados Ortiz, M.A.; Camacho Botero, L.A. Valoración de cambios hidrológicos en la cuenca del río Bogotá. Rev. Ing. 2012, 36, 77–85. [Google Scholar]
- Salud, S.D.D. Mapa de Riesgo de la Calidad del Agua Para Consumo Humano Sistema Tibitoc; Empresa De Acueducto De Bogotá—EAB: Bogotá, Colombia, 2015; p. 29. [Google Scholar]
- Zhan, J.V.; Qin, S. The Art of Political Ambiguity: Top-Down Intergovernmental Information Asymmetry in China. J. Chin. Gov. 2017, 2, 149–168. [Google Scholar] [CrossRef]
- Spijkers, O.; Li, X.; Dai, L. Public Participation in China’s Water Governance. Chin. J. Environ. Law 2018, 2, 28–56. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Rajão, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s Forest Code. Science 2014, 344, 363–364. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179. [Google Scholar] [CrossRef] [PubMed]
- Biggs, T.W.; Dunne, T.; Martinelli, L.A. Natural controls and human impacts on stream nutrient concentrations in a deforested region of the Brazilian Amazon basin. Biogeochemistry 2005, 68, 227–257. [Google Scholar] [CrossRef]
- CNN. Troubled Waters: Can India and Pakistan Bridge Differences Over River Pact? Available online: https://edition.cnn.com/2017/03/20/asia/india-pakistan-indus-river-water-talks/index.html (accessed on 10 May 2018).
- De Stefano, L.; Petersen-Perlman, J.D.; Sproles, E.A.; Eynard, J.; Wolf, A.T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Chang. 2017, 45, 35–46. [Google Scholar] [CrossRef]
- Gleick, P.H. Water, War & Peace in the Middle East. Environ. Sci. Policy Sustain. Dev. 1994, 36, 6–42. [Google Scholar]
- Wolf, A.T. Shared waters: Conflict and cooperation. Annu. Rev. Environ. Resour. 2007, 32, 241–269. [Google Scholar] [CrossRef]
- Bernauer, T.; Böhmelt, T. Basins at Risk: Predicting International River Basin Conflict and Cooperation. Glob. Environ. Politics 2014, 14, 116–138. [Google Scholar] [CrossRef] [Green Version]
- Bubeck, P.; Kreibich, H.; Penning-Rowsel, E.C.; Botzen, W.J.W.; Moel, H.; Klijn, F. Explaining differences in flood management approaches in Europe and in the USA—A comparative analysis. J. Flood Risk Manag. 2017, 10, 436–445. [Google Scholar] [CrossRef]
- Hegger, D.L.T.; Driessen, P.P.J.; Bakker, M.H.N. Researching Flood Risk Governance in Europe. In Flood Risk Management Strategies and Governance; Raadgever, T., Hegger, D., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–23. [Google Scholar]
- Bakker, M.H.N. Transboundary River Floods and Institutional Capacity1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 553–566. [Google Scholar] [CrossRef]
- Vollmer, D.; Prescott, M.F.; Padawangi, R.; Girot, C.; Grêt-Regamey, A. Understanding the value of urban riparian corridors: Considerations in planning for cultural services along an Indonesian river. Landsc. Urban Plan. 2015, 138, 144–154. [Google Scholar] [CrossRef]
- Plum, N.; Schulte-Wuelwer-Leidig, A. From a sewer into a living river: The Rhine between Sandoz and Salmon. Hydrobiologia 2014, 729, 95–106. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Uehlinger, U.; Van der Velde, G.; Leuven, R.S.E.W.; Schmitt, L.; Beisel, J.N. The Rhine River Basin. In Rivers of Europe, 2nd ed.; Tockner, K., Robinson, C.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; in press. [Google Scholar]
- Pueyo, Á.C.; Climent-López, E.; Ollero, A.; Pellicer, F.; Peña Monné, J.L.; Sebastián López, M. L’interaction entre Saragosse et ses cours d’eau: Évolution, conflits et perspectives. Sud-Ouest Eur. 2018, 44, 7–23. [Google Scholar] [CrossRef]
- Cottet, M.; Piegay, H.; Bornette, G. Does human perception of wetland aesthetics and healthiness relate to ecological functioning? J. Environ. Manag. 2013, 128, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Leite, M.F. Governance and the Societal Drivers for the Restoration of Rivers in Brazil; University of Tours: France, 2018. [Google Scholar]
- Nascimento, N.O.; Baptista, M.B.; Kauark-Leite, L.A. Stormwater management problems in a tropical city—The Belo Horizonte case study. In Impacts of Urban Growth on Surface Water and Groundwater Quality; Ellis, J.B., Ed.; IAHS: Wallingford, UK, 1999; Volume 259, pp. 299–305. [Google Scholar]
- Coy, M. Pioneer front and urban development. Social and economic differentiation of pioneer towns in Northern Mato Grosso (Brazil). Appl. Geogr. Dev. 1992, 39, 7–29. [Google Scholar]
- Hynes, H.B.N. The stream and its valley. Verh. Internat. Verein. Limnol. 1975, 19, 1–15. [Google Scholar] [CrossRef]
- Junk, W.J.; Wantzen, K.M. The Flood Pulse Concept: New Aspects, Approaches, and Applications—An Update. In Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Phnom Penh, Cambodia, 11–14 February 2003; Volume 2, pp. 117–149. [Google Scholar]
- Arthington, A.H. Environmental Flows—Saving Rivers in the Third Millennium; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 2012; p. 424. [Google Scholar]
- European_Commission. CIS Guidance Document No. 31—Ecological Flows in the Implementation of the Water Framework Directive; European_Commission: Luxembourg, 2015; p. 108. [Google Scholar]
- Roldán-Pérez, G. Macroinvertebrates as Bioindicators of Water Quality: Four Decades of Development in Colombia and Latin America. Rev. Acad. Colomb. Cienc. Exactas Fís. Nat. 2016, 40, 254–274. [Google Scholar] [CrossRef]
- Bellmore, R.J.; Duda, J.J.; Craig, L.S.; Greene, S.L.; Torgersen, C.E.; Collins, M.J.; Vittum, K. Status and trends of dam removal research in the United States. Wiley Interdiscip. Rev. Water 2017, 4, e1164. [Google Scholar] [CrossRef]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Boulton, A.J.; Boyero, L.; Covich, A.P.; Dobson, M.; Lake, P.S.; Pearson, R.G. Are Tropical Streams Ecologically Different from Temperate Streams? In Tropical Stream Ecology; Dudgeon, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 257–284. [Google Scholar] [Green Version]
- Wantzen, K.M.; Ramirez, A.; Winemiller, K.O. New vistas in Neotropical stream ecology—Preface. J. N. Am. Benthol. Soc. 2006, 25, 61–65. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Wagner, R. Detritus processing by invertebrate shredders: A neotropical-temperate comparison. J. N. Am. Benthol. Soc. 2006, 25, 216–232. [Google Scholar] [CrossRef]
- Boyero, L.; Pearson, R.G.; Dudgeon, D.; Graca, M.A.S.; Gessner, M.O.; Albarino, R.J.; Ferreira, V.; Yule, C.M.; Boulton, A.J.; Arunachalam, M.; et al. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 2011, 92, 1839–1848. [Google Scholar] [CrossRef] [Green Version]
- Silveira, R.M.L.; Moulton, T.P. Modelling the food web of a stream in Atlantic Forest. Acta Limnol. Bras. 2000, 12, 63–71. [Google Scholar]
- Dudgeon, D.; Cheung, F.K.W.; Mantel, S.K. Foodweb structure in small streams: Do we need different models for the tropics? J. N. Am. Benthol. Soc. 2010, 29, 395–412. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Junk, W.J. The importance of stream-wetland-systems for biodiversity: A tropical perspective. In Biodiversity in Wetlands: Assessment, Function and Conservation; Gopal, B., Junk, W.J., Davies, J.A., Eds.; Backhuys: Leiden, The Netherlands, 2000; pp. 11–34. [Google Scholar]
- Moulton, T.P.; Wantzen, K.M. Conservation of tropical streams—Special questions or conventional paradigms? Aquat. Conserv. 2006, 16, 659–663. [Google Scholar] [CrossRef]
- Meyer, J.L.; Paul, M.J.; Taulbee, W.K. Stream ecosystem function in urbanizing landscapes. J. N. Am. Benthol. Soc. 2005, 24, 602–612. [Google Scholar] [CrossRef]
- Feld, C.K.; Birk, S.; Bradley, D.C.; Hering, D.; Kail, J.; Marzin, A.; Melcher, A.; Nemitz, D.; Pedersen, M.L.; Pletterbauer, F.; et al. From Natural to Degraded Rivers and Back Again: A Test of Restoration Ecology Theory and Practice. In Advances in Ecological Research; Woodward, G., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 44, pp. 119–209. [Google Scholar]
- Wenger, S.J.; Roy, A.H.; Jackson, C.R.; Bernhardt, E.S.; Carter, T.L.; Filoso, S.; Gibson, C.A.; Hession, W.C.; Kaushal, S.S.; Martí, E.; et al. Twenty-six key research questions in urban stream ecology: An assessment of the state of the science. J. N. Am. Benthol. Soc. 2009, 28, 1080–1098. [Google Scholar] [CrossRef]
- Nakamura, K.; Tockner, K.; Amano, K. River and Wetland Restoration: Lessons from Japan. BioScience 2006, 56, 419–429. [Google Scholar] [CrossRef]
- WWT. Good Practices Handbook for Integrating Urban Development and Wetland Conservation; WWT: Slimbridge, UK, 2018; p. 50. [Google Scholar]
- Wetzel, R.G. Limnology: Lake and River Ecosystems; Academic Press: San Diego, CA, USA, 2001; Volume 3, p. 1005. [Google Scholar]
- Hamilton, S.K. Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia 2010, 657, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Wantzen, K.M.; Junk, W.J.; Rothhaupt, K.O. An extension of the floodpulse concept (FPC) for lakes. Hydrobiologia 2008, 613, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Junk, W.J.; Piedade, M.T.F.; Lourival, R.; Wittmann, F.; Kandus, P.; Lacerda, L.D.; Bozelli, R.L.; Esteves, F.A.; Da Cunha, C.N.; Maltchik, L.; et al. Brazilian wetlands: Their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 24, 5–22. [Google Scholar] [CrossRef]
- ACTU Environnement. Le Conseil d’Etat Remet en Cause la Définition des Zones Humides; ACTU Environnement: Paris, France, 2017. [Google Scholar]
- Zohary, T.; Ostrovsky, I. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 2011, 1, 47–59. [Google Scholar] [CrossRef]
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding—A Guide to Integrated Flood Risk Managment for the 21st Century; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Wheater, H.; Evans, E. Land use, water management and future flood risk. Land Use Policy 2009, 26, 251–264. [Google Scholar] [CrossRef]
- Dunne, T.; Leopold, L. Water in Environment Planning; W.H. Freeman and Company: San Francisco, CA, USA, 1978; p. 818. [Google Scholar]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Porto, R.L.; Zahed Filho, K.; Tucci, C.E.M.; Bidone, F. Drenagem urbana. In Hidrologia: Ciência e Aplicação, 2nd ed.; Tucci, C.E.M., Ed.; Universidade UFRGS & ABRH: Porto Alegre, Brazil, 2000; pp. 805–848. [Google Scholar]
- Wantzen, K.M.; Yule, C.; Tockner, K.; Junk, W.J. Riparian wetlands of tropical streams. In Tropical Stream Ecology; Dudgeon, D., Ed.; Elsevier: London, UK, 2008; pp. 199–218. [Google Scholar]
- Ramirez, A.; Engman, A.; Rosas, K.G.; Perez-Reyes, O.; Martino-Cardona, D.M. Urban impacts on tropical island streams: Some key aspects influencing ecosystem response. Urban Ecosyst. 2012, 15, 315–325. [Google Scholar] [CrossRef]
- Datry, T.; Larned, S.T.; Tockner, K. Intermittent Rivers: A Challenge for Freshwater Ecology. BioScience 2014, 64, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Maltchik, L.; Silva-Filho, M. Resistance and Resilience of the Macroinvertebrate Community to Disturbance by Flood and Drought in a Brazilian Semiarid Ephemeral Stream. Acta Biol. Leopoldensia 2000, 22, 171–184. [Google Scholar]
- Hassall, C.; Anderson, S. Stormwater ponds can contain comparable biodiversity to unmanaged wetlands in urban areas. Hydrobiologia 2015, 745, 137–149. [Google Scholar] [CrossRef]
- Woltersdorf, L.; Zimmermann, M.; Deffner, J.; Gerlach, M.; Liehr, S. Benefits of an integrated water and nutrient reuse system for urban areas in semi-arid developing countries. Resour. Conserv. Recycl. 2018, 128, 382–393. [Google Scholar] [CrossRef]
- Mulholland, P.J.; Fellows, C.S.; Tank, J.L.; Grimm, N.B.; Webster, J.R.; Hamilton, S.K.; Mart¡, E.A.L.; Bowden, W.B.; Dodds, W.K.; McDowell, W.H.; et al. Inter-biome comparison of factors controlling stream metabolism. Freshw. Biol. 2001, 46, 1503–1517. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, F.M.B.; Silveira, R.M.L.; Girard, P.; Da Silva, C.J.; Abdo, M.; Wantzen, K.M. Hydrochemistry of lakes, rivers and groundwater. In The Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Seasonal Wetland; Junk, W.J., Da Silva, C.J., Nunes da Cunha, C., Wantzen, K.M., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2011; pp. 167–198. [Google Scholar]
- Hamilton, S.K.; Sippel, S.J.; Calheiros, D.F.; Melack, J.M. An anoxic event and other biogeochemical effects of the Pantanal wetland on the Paraguay River. Limnol. Oceanogr. 1997, 42, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Wantzen, K.M.; Junk, W.J. Aquatic-terrestrial linkages from streams to rivers: Biotic hot spots and hot moments. Arch. Hydrobiol. Suppl. 2006, 158, 595–611. [Google Scholar] [CrossRef]
- Mowe, M.A.D.; Mitrovic, S.M.; Lim, R.P.; Furey, A.; Yeo, D.C.J. Tropical cyanobacterial blooms: A review of prevalence, problem taxa, toxins and influencing environmental factors. J. Limnol. 2015, 74, 205–224. [Google Scholar] [CrossRef]
- Rosado-García, F.M.; Guerrero-Flórez, M.; Karanis, G.; Hinojosa, M.D.C.; Karanis, P. Water-borne protozoa parasites: The Latin American perspective. Int. J. Hyg. Environ. Health 2017, 220, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.; McIver, L.; Kim, Y.; Hashizume, M.; Iddings, S.; Chan, V. Water-Borne Diseases and Extreme Weather Events in Cambodia: Review of Impacts and Implications of Climate Change. Int. J. Environ. Res. Public Health 2015, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Wantzen, K.M.; Mol, J. Soil erosion from agriculture and mining: A threat to tropical stream ecosystems. Agriculture 2013, 3, 660–683. [Google Scholar] [CrossRef]
- Fischer, H.; Kloep, F.; Wilczek, S.; Pusch, M. A river’s liver—Microbial processes within the hyporheic zone of a large lowland river. Biogeochemistry 2005, 76, 1–23. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Blettler, M.C.M.; Marchese, M.R.; Amsler, M.L.; Bacchi, M.; Ezcurra de Drago, I.D.; Drago, E.E. Sandy rivers: A review on general ecohydrological patterns of benthic invertebrate assemblages across continents. Int. J. River Basin Manag. 2014, 12, 163–174. [Google Scholar] [CrossRef]
- Hölker, F.; Wolter, C.; Perkin, E.; Tockner, K. Light Pollution as a Biodiversity Threat. Trends Ecol. Evol. 2010, 25, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Henn, M.; Nichols, H.; Zhang, Y.; Bonner, T.H. Effect of artificial light on the drift of aquatic insects in urban central Texas streams. J. Freshw. Ecol. 2014, 29, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Longcore, T.; Rich, C. Ecological light pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Ramirez, A.; Rosas, K.G.; Lugo, A.E.; Ramos-Gonzalez, O.M. Spatio-temporal variation in stream water chemistry in a tropical urban watershed. Ecol. Soc. 2014, 19, 2. [Google Scholar] [CrossRef]
- Ometto, J.P.; Martinelli, L.A.; Ballester, M.V.; Gessner, A.; Krusche, A.V.; Vict¢ria, R.L.; Williams, M. Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba river basin, south-east Brazil. Freshw. Biol. 2000, 44, 327–337. [Google Scholar] [CrossRef]
- Kern, J.; Darwich, A.; Furch, K.; Junk, W.J. Seasonal Denitrification in flooded and exposed sediments from the amazon floodplain at Lago Camalao. Microb. Ecol. 1996, 32, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Guest, J.S.; Skerlos, S.J.; Barnard, J.L.; Beck, M.B.; Daigger, G.T.; Hilger, H.; Jackson, S.J.; Karvazy, K.; Kelly, L.; Macpherson, L.; et al. A New Planning and Design Paradigm to Achieve Sustainable Resource Recovery from Wastewater. Environ. Sci. Technol. 2009, 43, 6126–6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Report on Urban Health: Equitable Healthier Cities for Sustainable Development; World Health Organization: Geneva, Switzerland, 2016; p. 239. ISBN 978924156527. [Google Scholar]
- IBGE. Censo Demográfico 2000; IBGE: Rio de Janeiro, Brazil, 2002.
- IBGE. Censo Demográfico 2010; IBGE: Rio de Janeiro, Brazil, 2011.
- Macedo, D.R.; Magalhães, A.P., Jr. Social perception in a urban stream restoration project in Belo Horizonte. Soc. Nat. 2011, 23, 51–63. [Google Scholar] [CrossRef]
- Laabs, V.; Amelung, W.; Pinto, A.A.; Wantzen, M.; da Silva, C.J.; Zech, W. Pesticides in surface water, sediment, and rainfall of the northeastern Pantanal basin, Brazil. J. Environ. Qual. 2002, 31, 1636–1648. [Google Scholar] [CrossRef] [PubMed]
- Malmqvist, B.; Rundle, S. Threats to the running water ecosystems of the world. Environ. Conserv. 2002, 29, 134–153. [Google Scholar] [CrossRef]
- Pires, N.L.; Muniz, D.H.D.F.; Kisaka, T.B.; Simplicio, N.D.C.S.; Bortoluzzi, L.; Lima, J.E.F.W.; Oliveira-Filho, E.C. Impacts of the Urbanization Process on Water Quality of Brazilian Savanna Rivers: The Case of Preto River in Formosa, Goiás State, Brazil. Int. J. Environ. Res. Public Health 2015, 12, 10671–10686. [Google Scholar] [CrossRef] [PubMed]
- Muniz, D.H.F.; Moraes, A.S.; Freire, I.S.; Cruz, C.J.D.; Lima, J.E.F.; Oliveira-Filho, E.C. Evaluation of water quality parameters for monitoring natural, urban, and agricultural areas in the Brazilian Cerrado. Acta Limnol. Bras. 2012, 23, 3. [Google Scholar] [CrossRef]
- Couceiro, S.R.M.; Hamada, N.; Luz, S.L.B.; Forsberg, B.R.; Pimentel, T.P. Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia 2007, 575, 271–284. [Google Scholar] [CrossRef]
- Sekabira, K.; Origa, H.O.; Basamba, T.A.; Mutumba, G.; Kakudidi, E. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int. J. Environ. Sci. Technol. 2010, 7, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Matagi, S.V. The effect of pollution on benthic macroinvertebrates in a Ugandan stream. Arch. Fur Hydrobiol. 1996, 137, 537–549. [Google Scholar]
- Mathooko, J.M.; Dobson, M. Conservation of streams in tropical Africa: The importance of the socio-economic dimension in effective conservation management. Freshw. Rev. 2009, 2, 153–165. [Google Scholar] [CrossRef]
- Furlan, N.; Esteves, K.E.; Quinaglia, G.A. Environmental factors associated with fish distribution in an urban neotropical river (Upper Tiete River Basin, Sao Paulo, Brazil). Environ. Biol. Fishes 2013, 96, 77–92. [Google Scholar] [CrossRef]
- Alexandre, C.V.; Esteves, K.E.; Mello, M. Analysis of fish communities along a rural-urban gradient in a neotropical stream (Piracicaba River Basin, So Paulo, Brazil). Hydrobiologia 2010, 641, 97–114. [Google Scholar] [CrossRef]
- Girija, T.R.; Mahanta, C.; Chandramouli, V. Water Quality Assessment of an Untreated Effluent Impacted Urban Stream: The Bharalu Tributary of the Brahmaputra River, India. Environ. Monit. Assess. 2007, 130, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Bunch, M.J. Soft Systems Methodology and the Ecosystem Approach: A System Study of the Cooum River and Environs in Chennai, India. Environ. Manag. 2003, 31, 0182–0197. [Google Scholar] [CrossRef] [PubMed]
- Ganasan, V.; Hughes Robert, M. Application of an index of biological integrity (IBI) to fish assemblages of the rivers Khan and Kshipra (Madhya Pradesh), India. Freshw. Biol. 2002, 40, 367–383. [Google Scholar] [CrossRef]
- Lee, J.Y.; Anderson, C.D. The Restored Cheonggyecheon and the Quality of Life in Seoul. J. Urban Technol. 2013, 20, 3–22. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, P. Environmental flows in India: Towards sustainable water management. Hydrol. Sci. J. 2014, 59, 751–769. [Google Scholar] [CrossRef]
- Pompeu, P.; Santos, H.A.; Alves, C.B.; Leal, G.L.; Chaves, C.; Junqueira, N.T. Rehabilitation of velhas river for fish, Minas Gerais state, Brazil. In Proceedings of the 7th ISE & 8th HIC, Concepción, Chile, 12–16 January 2009; p. 9. [Google Scholar]
- Hegger, D.L.T.; Mees, H.L.P.; Driessen, P.P.J.; Runhaar, H.A.C. The Roles of Residents in Climate Adaptation: A systematic review in the case of the Netherlands. Environ. Policy Gov. 2017, 27, 336–350. [Google Scholar] [CrossRef]
- Palmer, M.A.; Hondula, K.L.; Koch, B.J. Ecological Restoration of Streams and Rivers: Shifting Strategies and Shifting Goals. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 247. [Google Scholar] [CrossRef]
- Serra-Llobet, A.; Simons, P. Our Community’s Future. Restoring the Creeks in Quito; University of California: Berkeley, CA, USA, 2013. [Google Scholar]
- Alves, C.B.; Pompeu, P. Historical Changes in the Rio das Velhas Fish Fauna—Brazil. In American Fisheries Society Symposium; American Fisheries Society: Bethesda, MD, USA, 2005; pp. 587–602. [Google Scholar]
- Lisboa, A.H. A participação do Projeto Manuelzão na elaboração, implementação e crítica de políticas públicas. In Projeto Manuelzão: A história da Mobilização que Começou em Torno de um Rio; Lisboa, A.H., Goulart, E.M.E., Diniz, L.F.M., Eds.; Instituto Guaicuy: Belo Horizonte, Brazil, 2008; pp. 235–246. [Google Scholar]
- Pompeu, P.; Alves, C.B.; Mason Hughes, R. Restoration of the das Velhas River Basin, Brazil: Challenges and Potential. In Proceedings of the 5th International Symposium on Ecohydraulics, Madrid, Spain, 12–17 September 2004. [Google Scholar]
- Rivière-Honegger, A.; Cottet, M.; Morandi, B. Connaître les Perceptions et Représentations: Quels Apports Pour la Gestion des Milieux Aquatiques; ONEMA: Paris, France, 2014; p. 180. [Google Scholar]
- Macedo, D.R.; Magalhães, A.P., Jr. Evaluation of an urban stream restoration project through water quality analysis and survey of the neighborhood residents. NOVATECH 2010, 2010, 1–9. [Google Scholar]
- BRASIL. Resolução no 357 de 17 de Março de 2005 do Conselho Nacional do Meio Ambiente. Available online: http://www2.mma.gov.br/port/conama/res/res05/res35705.pdf (accessed on 20 January 2018).
- MinasGerais Deliberação Normativa Conjunta COPAM/CERH-MG No 1, de 05 de Maio de 2008. Available online: http://www.siam.mg.gov.br/sla/download.pdf?idNorma=8151 (accessed on 20 January 2019).
- Alves, C.B.M.; Pompeu, P.S. 18 anos de biomonitoramento de peixes na bacia do rio das Velhas. Rev. Man. 2018, 82, 4–5. [Google Scholar]
- Van den Brandeler, F.; Gupta, J.; Hordijk, M. Megacities and rivers: Scalar mismatches between urban water management and river basin management. J. Hydrol. 2018, 573, 1067–1074. [Google Scholar] [CrossRef]
- Gorski, M.C.B. Rios e Cidades: Ruptura e Reconciliação; Universidade Presbiteriana Mackenzie: Sao Paulo, Brazil, 2008; Available online: http://tede.mackenzie.br/jspui/bitstream/tede/2632/1/Maria%20Cecilia%20Barbieri%20Gorski1.pdf (accessed on 12 February 2019).
- BID. Programa de Recuperación Ambiental de Belo Horizonte (Drenurbs): Propuesta de Préstamo. Available online: http://www.iadb.org/exr/doc98/apr/br1563s.pdf (accessed on 9 April 2018).
- Champs, J.R.B.; Aroeira, R.M.; Nascimento, N.O. Visão de Belo Horizonte. In Gestão do Território e Manejo Integrado das Águas Urbanas; Ministério das Cidades: Brasília, Brazil, 2005; pp. 21–48. [Google Scholar]
- PBH Prefeitura de Belo Horizonte. Plano Municipal de Saneamento de Belo Horizonte 2008–2011. Available online: https://prefeitura.pbh.gov.br/sites/default/files/estrutura-de-governo/obras-e-infraestrutura/2018/documentos/volumei_texto_2010_0.pdf (accessed on 9 November 2018).
- CURITIBA. Barigui River Revitalisation. Available online: http://www.biocidade.curitiba.pr.gov.br/biocity/12.html (accessed on 11 May 2018).
- Machado, K.S.; Figueira, R.C.L.; Côcco, L.C.; Froehner, S.; Fernandes, C.V.S.; Ferreira, P.A.L. Sedimentary record of PAHs in the Barigui River and its relation to the socioeconomic development of Curitiba, Brazil. Sci. Total Environ. 2014, 482–483, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Wantzen, K.M.; Siqueira, A.; Nunes da Cunha, C. Stream-valley systems of the Brazilian Cerrado: Impact assessment and conservation scheme. Aquat. Conserv. 2006, 16, 713–732. [Google Scholar] [CrossRef]
- Wang, L.F.; Li, Y. Chinese scheme to resolve the current complicated water issues: River chief system (RCS). Earth Environ. Sci. 2018. [Google Scholar] [CrossRef]
- Liu, D.; Richards, K. The He-Zhang (River chief/keeper) system: An innovation in China’s water governance and management. Int. J. River Basin Manag. 2019, 17, 263–270. [Google Scholar] [CrossRef]
- Liao, S.; Zhong, J.; Fu, X. Research on River Chiefs System in China: Effect Evaluation, Defects and Future Prospects. Int. J. Nat. Resour. Ecol. Manag. 2018, 3, 24–31. [Google Scholar] [CrossRef]
- Merlinsky, M.G. Política, Derechos y Justicia Ambiental. El Conflicto del Riachuelo; Fondo de Cultura Económica: Buenos Aires, Argentina, 2013. [Google Scholar]
- Grêt-Regamey, A.; Weibel, B.; Kienast, F.; Rabe, S.E.; Zulian, G. A tiered approach for mapping ecosystem services. Ecosyst. Serv. 2015, 13, 16–27. [Google Scholar] [CrossRef]
- Reichert, P.; Borsuk, M.; Hostmann, M.; Schweizer, S.; Spörri, C.; Tockner, K.; Truffer, B. Concepts of decision support for river rehabilitation. Environ. Model. Softw. 2007, 22, 188–201. [Google Scholar] [CrossRef] [Green Version]
- Ricaurte, L.F.; Wantzen, K.M.; Agudelo, E.; Betancourt, B.; Jokela, J. Participatory rural appraisal of ecosystem services of wetlands in the Amazonian Piedmont of Colombia: Elements for a sustainable management concept. Wetl. Ecol. Manag. 2014, 22, 343–361. [Google Scholar] [CrossRef]
- Van Den Berg, A.E.; Hartig, T.; Staats, H. Preference for Nature in Urbanized Societies: Stress, Restoration, and the Pursuit of Sustainability. J. Soc. Issues 2007, 63, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, D.S.S.; Cruz, D.A.O.; Polignano, M.V.; Villela, L.C.M.; Guerra, V.A. Revitalização da Bacia do Ribeirão do Izidora: Educação ambiental como estratégia. Saúde Debate 2017, 41, 347–358. [Google Scholar] [CrossRef]
- Purcell, A.H.; Friedrich, C.; Resh, V.H. An assessment of a small urban stream restoration project in northern California. Restor. Ecol. 2002, 10, 685–694. [Google Scholar] [CrossRef]
- Che, Y.; Yang, K.; Chen, T.; Xu, Q.X. Assessing a riverfront rehabilitation project using the comprehensive index of public accessibility. Ecol. Eng. 2012, 40, 80–87. [Google Scholar] [CrossRef]
- O’Connor, P. The sound of silence: Valuing acoustics in heritage conservation. Geogr. Res. 2008, 46, 361–373. [Google Scholar] [CrossRef]
- Burkart, J.M.; Hrdy, S.B.; Van Schaik, C.P. Cooperative Breeding and Human Cognitive Evolution. Evol. Anthropol. 2009, 18, 175–186. [Google Scholar] [CrossRef]
- Hoeppner, C.; Frick, J.; Buchecker, M. Assessing psycho-social effects of participatory landscape planning. Landsc. Urban Plan. 2007, 83, 196–207. [Google Scholar] [CrossRef]
- Palmer, M.; Allan, J.D.; Meyer, J.; Bernhardt, E.S. River Restoration in the Twenty-First Century: Data and Experiential Knowledge to Inform Future Efforts. Restor. Ecol. 2007, 15, 472–481. [Google Scholar] [CrossRef]
- Berkes, F. The Commons. In Companion to Environmental Studies; Castree, N., Hulme, M., Proctor, J.D., Eds.; Taylor & Francis: Routledge, UK, 2018; pp. 53–557. [Google Scholar]
- Ivester, S. Removal, resistance and the right to the Olympic city: The case of Vila Autodromo in Rio de Janeiro. J. Urban Aff. 2017, 39, 970–985. [Google Scholar] [CrossRef]
- Serra-Llobet, A.; Hermida, M.A. Opportunities for green infrastructure under Ecuador’s new legal framework. Landsc. Urban Plan. 2017, 159, 1–4. [Google Scholar] [CrossRef]
- Serra-Llobet, A.; Hermida, M.A.; Green, G.J. Green Infrastructure for Stormwater in an Intermediate-Sized Andean City: Opportunities and Challenges in Urban and Peri-Urban Cuenca, Ecuador. unpublished manuscript.
- Schmidt, M.A. Expansión de la frontera urbana y áreas de protección ambiental en la región metropolitana de Buenos Aires, Argentina. Pap. Coyunt. 2016, 42, 138–161. [Google Scholar]
- Florianopolis Parque Linear Córrego Grande em Florianópolis, SC. Available online: https://sites.google.com/site/parqueslineares/projeto-parque-linear-corrego-grande-florianopolis (accessed on 12 February 2019).
- Recife O Que é o Parque Capibaribe? Available online: http://parquecapibaribe.org/ (accessed on 11 May 2018).
- Silva, S.S.L.; Loges, V.; Campello, A.; Monteiro, C.; Alecnar, A.; Cavalcanti, R.; Machry, S. How to converge urban planning and urban design in areas of permanent preservation. Parque Capibaribe, a new approach for the city of Recife (in portuguese). In III Seminario Nacional sobre o Tratamento de Areas de Peservacao em Meio Urbano; ANPUR Agencia Nacional de Planificacao Urbana (Brazil): Belém do Para, Brazil, 2014; pp. 1–18. [Google Scholar]
- Liu, L.; Jensen, M.B. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 2018, 74, 126–133. [Google Scholar] [CrossRef]
- Fernandes, A.; Sousa, J.F.; Brito, S.S.; Neves, B.; Vicente, T. Preparing Waterfront Brownfields Redevelopment for Climate Change: The Water City Project, Almada (Portugal). J. Coast. Res. 2018, 85, 1531–1535. [Google Scholar] [CrossRef]
- Zurich-Group. European Floods: Using Lessons Learned to Reduce Risks; Zurich-Group: Zürich, Switzerland, 2013; p. 14. [Google Scholar]
- Castello, L.; Viana, J.P.; Watkins, G.; Pinedo-Vasquez, M.; Luzadis, V.A. Lessons from Integrating Fishers of Arapaima in Small-Scale Fisheries Management at the Mamiraua Reserve, Amazon. Environ. Manag. 2009, 43, 197–209. [Google Scholar] [CrossRef] [PubMed]
- On the Commons Elinor Ostrom’s 8 Principles for Managing A Commmons. Available online: http://www.onthecommons.org/magazine/elinor-ostroms-8-principles-managing-commmons#sthash.3cSlTnJN.dpbs (accessed on 20 March 2019).
- Nikolaïdou, S.; Klöti, T.; Tappert, S.; Drilling, M. Urban Gardening and Green Space Governance: Towards New Collaborative Planning Practices. Urban Plan. 2016, 1, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Gottgens, J.F.; Perry, J.E.; Fortney, R.H.; Meyer, J.E.; Benedict, M.; Rood, B.E. The Paraguay-Paraná Hidrovía: Protecting the Pantanal with Lessons from the PastLarge-scale channelization of the northern Paraguay-Paraná seems to be on hold, but an ongoing multitude of smaller-scale activities may turn the Pantanal into the next example of the “tyranny of small decisions”. BioScience 2001, 51, 301–308. [Google Scholar]
- Hrelja, R. The Tyranny of Small Decisions. Unsustainable Cities and Local Day-to-Day Transport Planning. Plan. Theory Pract. 2011, 12, 511–524. [Google Scholar] [CrossRef]
- Zellhuber, A.; Siqueira, R. Rio São Francisco em descaminho: degradação e revitalização. Cadernos do CEAS 2007, 227, 21. [Google Scholar]
- Sa Costa, L.; Vescina, L.; Barcellos, D.P.M. Environmental restoration of urban rivers in the metropolitan region of Rio de Janeiro, Brazil. Urban Environ. 2010, 4, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Rio_de_Janeiro Projeto Iguaçu: Ações visam ao controle de inundações e à recuperação ambiental das bacias dos rios Iguaçu, Botas e Sarapuí, na Baixada Fluminense. Available online: http://www.rj.gov.br/web/informacaopublica/exibeconteudo?article-id=1043614 (accessed on 12 February 2019).
- Ares, J.; Serra, J. Selection of sustainable projects for floodplain restoration and urban wastewater management at the lower Chubut River valley (Argentina). Landsc. Urban Plan. 2008, 85, 215–227. [Google Scholar] [CrossRef]
- Coca_Cola_Argentina Ingeniería verde: la clave para recuperar la cuenca del Río Chubut. Available online: https://www.cocacoladeargentina.com.ar/historias/medio-ambiente-ingenieria-verde (accessed on 12 February 2019).
- Espíndola, E.L.; Barbosa, D.S.; Mendiondo, E.M. Diretrizes Ecológicas Em Projetos De Recuperação De Rios Urbanos Tropicais: Estudo De Caso No Rio Tijuco Preto (São Carlos-Sp, Brasil). Available online: http://www.aprh.pt/7_silusba/ARTIGOS/11B.PDF (accessed on 12 February 2019).
- Garcias, C.; Augusto Callado Afonso, J. REVITALIZAÇÃO DE RIOS URBANOS. REVITALIZAÇÃO DE RIOS URBANOS. 2013, 1, 131. [Google Scholar]
- Prefeitura de Rio Branc. Available online: www.riobranco.ac.gov.br (accessed on 12 February 2019).
- Silva-Sánchez, S.; Manetti, C. Experiência de reconversão urbana e ambiental da bacia do córrego Água Podre. Parque Linear Água Podre. In Seminário nacional sobre o tratamento de áreas de preservação permanente em meio urbano e restrições ambientais ao parcelamento do solo–appurbana; Available online: https://www.mprs.mp.br/media/areas/urbanistico/arquivos/livroresumos.pdf (accessed on 12 February 2019).
- Prefeitura de Sorocaba. Available online: www.sorocaba.sp.gov.br (accessed on 12 February 2019).
- Prefeitura de São José dos Pinhais. Available online: www.sjp.pr.gov.br (accessed on 12 February 2019).
- Prefeitura de Florianópolis. Available online: www.pmf.sc.gov.br (accessed on 12 February 2019).
- Sabesp. Available online: http://site.sabesp.com.br/site/Default.aspx (accessed on 12 February 2019).
- Parque Capibaribe. Available online: http://parquecapibaribe.org (accessed on 12 February 2019).
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Jinadasa, K.B.S.N.; Gersberg, R.M.; Liu, Y.; Tan, S.K.; Ng, W.J. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). J. Environ. Sci. 2015, 30, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Zalewski, M. Ecohydrology and Hydrologic Engineering: Regulation of Hydrology-Biota Interactions for Sustainability. J. Hydrol. Eng. 2015, 20, 1. [Google Scholar] [CrossRef]
- Miguez, M.G.; Veról, A.P.; Mascarenhas, F.C.B.; Santos, R.B.; Martingil, M.C. Compensatory technique s on urban drainage for flood control with the aid of mathematical modelling: A case study in Rio de Janeiro City. WIT Trans. Built Environ. 2012, 122, 227–238. [Google Scholar]
- Van Rooijen, D.J.; Turral, H.; Wade Biggs, T. Sponge city: Water balance of mega-city water use and wastewater use in Hyderabad, India. Irrig. Drain. 2005, 54, S81–S91. [Google Scholar] [CrossRef]
- Zevenbergen, C.; Fu, D.; Pathirana, A. Transitioning to Sponge Cities: Challenges and Opportunities to Address Urban Water Problems in China. Water 2018, 10, 1230. [Google Scholar] [CrossRef]
- Chan, F.; Griffiths, J.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.T.; Xu, Y.; Thorne, C. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, in press. [Google Scholar] [CrossRef]
- Espinosa, P.; De Meulder, B.; Ollero, A. River restoration and rehabilitation as a new urban design strategy: Learning to re-see urban rivers. Int. J. Constr. Environ. 2016, 7, 57–73. [Google Scholar] [CrossRef]
- Hrdalo, I.; Tomic, D.; Perekovic, P. Implementation of Green Infrastructure Principles in Dubrovnik, Croatia to Minimize Climate Change Problems. Urbani Izziv 2015, 26, S38–S49. [Google Scholar] [CrossRef]
- Bala, R. Green and Blue Corridor and Vulnerability Assessment to Flood Case of Tours, France and Kinshasa, DR-Congo; University and PolyTech Tours: Tours, France, 2018. [Google Scholar]
- Hawley, R.J. Making Stream Restoration More Sustainable: A Geomorphically, Ecologically, and Socioeconomically Principled Approach to Bridge the Practice with the Science. BioScience 2018, 68, 517–528. [Google Scholar] [CrossRef]
Impact Type (Specific Agent) | City Center | Outskirts | Rural Zones |
---|---|---|---|
Water Pollution | |||
Tanneries (chrome) | xx | x | 0 |
Chemical industry (pesticides, side-products, acids) | xxx | x | 0 |
Slaughterhouse organic pollution (proteins), | x | xx | 0 |
Breweries and paper mills (cellulose) | x | xxx | x |
Hospitals wastewater (pathogens) | xxx | x | 0 |
Household wastewater (fecal bacteria, BOD) | xxx | xx | x |
Agriculture (nutrients, pesticides) | x | xx | xxx |
Physical Impacts on Habitats | |||
Solid waste (plastic bags, cans, tires) | xxx | x | 0 |
Canalization (loss of hydromorphological diversity) | xxx | xx | 0 |
Construction of buildings on the banks/shores | xxx | ||
Construction of roads on the banks/shores | xxx | x | |
Low head dam construction | xx | xx | xxx |
Large hydropower reservoirs | 0 | 0 | xxx |
Sand removal for habitat construction | x | xx | x |
Agriculture and gold mining (siltation) | x | xxx | |
Agriculture (water abstraction for irrigation) | x | xx | xxx |
Terrestrialization or removal of wetlands | xxx | xx | x |
Direct Impact on Aquatic Biota | |||
Hunting aquatic birds, mammals, or reptiles | x | xx | xxx |
Fishing | xx | xx | xx |
Invasive species | xxx | xx | x |
Deforestation of riparian vegetation | x-xxx | xxx | xxx |
Light pollution and road kills | xxx | xx | x |
Roles for Local Governments | Who Initiates, Coordinates, and Decides | Practices of Local Government Roles |
---|---|---|
Regulating | Government regulates interventions | Policy making, organizing traditional public participation, and sanctioning in case of non-compliance |
Network steering | Government (co-)initiates and creates a network of public and private stakeholders; decisions are co-decided in the network | Process coordination, fostering of dialogue, and negotiation among stakeholders |
Stimulating | Government actively stimulates; initiatives coordinate and decide independently from government | Provision of structural (financial) support during a longer period of time |
Enabling & facilitating | Initiatives are self-initiated, and the government has an interest to make them happen | Process facilitation, helping the initiative to find its way in the municipal organization, providing a limited amount of resources |
Letting go | Initiatives are self-initiated, self-coordinated and self-governed without the help of government | None, government is not participating in any way |
Elements of Ecosystem | Ecosystem Service (Type) | Quantifiable Indicators |
---|---|---|
Vegetated surface (in the city and in the upper catchment) | Bank protection, erosion control, reduction of siltation (regulating) | Size of area (ha) that does (not) suffer from erosion or siltation, canopy cover (%) |
Floodable area | Flood reduction (regulating) | Volume (m³) of stored water |
Water body and aquifer | Drinking water supply, increased base flow (provisioning) | Volume (m³) of percolated water |
Water body and flood plain | Nutrient reduction, carbon fixation (regulating) | Concentration change per surface unit of floodplain (mg (substance) l−1 m−2) |
Vegetated and humid area | Moisturizing and cooling of air (regulating) | Change in °C, %RH (averages and maxima/minima) |
Riparian landscape and park space | Benefits of visiting such as stress reduction, health improvement, leisure, sports, creativity, inspiration (recreational, cultural) | Public healthcare costs, revenues by tourism, contentedness (hedonic pricing) |
Water body | Transport route (provisioning) | Time saved for transport, number of persons transported |
Animals and plants | Biodiversity (provisioning), Control of invasive species (regulating), pollination (provisioning) | Species numbers and abundances (e.g., of rare, sensitive, pollinator, conservation target, or exotic species) |
Plants | Use of individual species as food, ornaments, medicine, fodder, construction material, or for handicraft such as wattling (provisioning) | Market value of the refined product |
Animals | Use of individual species as food (fish, shrimp, subsistence, or commercial) | Market value of the refined product |
Name and Type (Stream/Wetland) City | Country | Short Description of the Measures that have Taken Place | Dimensions and Cost Estimation (Total Size, Total Costs, and Costs per Meter River/Wetland Bank) | Major Drivers for the Project | Major Success/Elements of Sustainability for the Project |
---|---|---|---|---|---|
Manuelzão Project, Belo Horizonte (MG) [166] | Brazil | Implementation and expansion of Sewage Treatment Plants (STP) | political mobilization US$ 100.000 | Basin committee *University, Minas Gerais State Government, Belo Horizonte Municipal Government, civil society | Environmental education, human health, ecosystem health |
Restoration of the das Velhas River basin, Ouro Preto (MInas Gerais, Brazil) | Brazil | Engineering; Sewage; Recovery of springs; Preparation of sanitation plan | US$ 50 millions | State Government and Sanitation Company Resources raised by the cost of water use | environmental education, human health, water quality improvement, public leisure |
Revitalization of the Rio São Francisco [209] | Brazil | Basic and environmental sanitation sewage treatment engineering improving the navigability and recovery of riparian forest | US$ 3.3 millions | Federal Government | human health, water quality improvement, public leisure |
DRENURBS, Belo Horizonte (MG) [172] | Brazil | Engineering sewage collection margin stabilization riparian restoration riverside population relocation | US$ 77.5 million (first phase)140 km | Municipal government and Banco Interamericano de Desenvolvimento | water quality improvement, public leisure, public health, some biological diversity improvement |
Project Iguaçu at Rio de Janeiro (RJ) [210,211] | Brazil | Dredging of rivers and channels, establishment of 6 River Parks, sewage and solid waste collection, margin stabilization, replant riparian vegetation, relocation of 1700 (planned: 2500) families | US$ 5 millions | Federal Government through PAC (Growth Acceleration Program) | First part human health water quality improvement, public leisure Seconded part is in process yet |
Paranaíba river restoration | Brazil | Engineering sewage treatment destruction of buildings in inappropriate places (APP) riparian restoration | State Government | water quality improvement, public leisure, human health, some biological diversity improvement, vegetation restored | |
Chubut river restoration [212,213] | Argentina | Green engineeringreforestation irrigation optimization herd rotation | private initiative (Coca Cola) | water quality improvement, public leisure, human health, some biological diversity improvement, vegetation restored | |
ReNaturalizeProject of Mangaraí river (ES) | Brazil | Restoration using wood trunks and structures in the riverbed | private initiative | water quality improvement human health, some biological diversity improvement | |
Linear Park Uberabinha River (MG) | Brazil | Planting of native seedlings for reconstitution of riparian forest, construction of artificial lakes, recreation area | US$ 610,000 | State Government | water quality improvement, public leisure, human health |
Beira-Rio Project (SP) | Brazil | Replacement and improvement of sewage systems, drainage and street lighting, design and implementation of extensive landscaping project of green areas and margin recovery with native vegetation (formerly dominated by invasive species) and construction of a pedestrian walkway | Prefecture of Piracicaba | water quality improvement, public leisure, human health | |
Pró-Tijuco Project (SP) [214] | Brazil | Completion of the drainage system, solid waste removal, use of geotextiles for stream bank stabilization, construction of Linear Park Tijuco Preto with urban equipment (sidewalk for walking and a bike path, lighting and landscaping of the site) | Prefecture of São Carlos | water quality improvement, public leisure, human health | |
The Tietê Ecological Park (SP) [215] | Brazil | Maintenance of damping capacity of floods in floodplains of the River, and, as a by-product, use of the neighboring areas for leisure activities, sport, and culture for the preservation of fauna and flora | State Government | water quality improvement human health, some biological diversity improvement | |
OWL Park (SP) | Brazil | Improvement of drainage, use for recreation and motorized circulation in the stretch | Private Initiative | water quality improvement, public leisure, human health | |
Mangal das Garças Park (PA) | Brazil | Riverside animal recovery with the re-creation of lowland forests, implementation of the recreation area | water quality improvement, public leisure, human health | ||
The Park Set Manoel Julião (APP) (AC) [216] | Brazil | Improving the degradation of a preservation area with clearance of igarapé, implementation, and awareness of local people about the importance of conservation of natural resources and recycling as a whole | Prefecture of Rio Branco | water quality improvement, public leisure, human health | |
Recovery of riparian forests of the Bayou Fund (AC) | Brazil | Cleaning and clearing of the bed, replacing invasive species by indigenous environmental education project | Federal Government | water quality improvement human health, some biological diversity improvement | |
100 Parks Program for São Paulo [217] | Brazil | Removal of buildings, construction of affordable housing, sewer collector system deployment throughout the stream, resetting the riparian forest deployment of recreational areas and public equipment | Private initiative and State Government | water quality improvement human health, some biological diversity improvement | |
River Basin plan Cabuçu (SP) [171] | Brazil | Improvement in the drainage system, implementation of collection and treatment of sewage, rainwater filtering, environmental education, urban works | Private initiative and State Government | water quality improvement human health, some biological diversity improvement | |
Stone Creek Linear Park (SP) | Brazil | Recovery of riparian forests, environmental education, care of the wildlife, flood control, sanitation and the implementation of basin bicycle trail/hiking trail and green areas of enjoyment of the population, formation of an ecological corridor | US$ 82.2 million | Prefecture of Campinas, State Government and private initiative | water quality improvement human health, some biological diversity improvement |
Programa de revitalização do Rio Sorocaba (SP) [218] | Brazil | Urbanization works Green engineering Recovery of the riparian Woods and springs Environmental education | Prefecture of Sorocaba | water quality improvement human health | |
Parque Linear do Rio Ressaca (PR) [219] | Brazil | Water cleaning Engineering sewage collection, margin stabilization riparian restoration riverside population relocation | US$ 113 million | Prefecture of São José dos Pinhais | water quality improvement human health |
Viva Barigui Project (PR) | Brazil | Water cleaning, Environmental education, Urbanization works | US$ 22.5 million | French Development Agency | water quality improvement human health |
Parque Linear do Córrego Grande (SC) [220] | Brazil | Recovery of water quality, creating a green recreational corridor along the entire length of the River, connecting two ecosystems that comprise the areas of preservation, source and mouth | Prefecture of Florianópolis | water quality improvement human health, some biological diversity improvement | |
Programa Várzeas do Tietê (SP) [221] | Brazil | Restoring floodplain areas, engineering sewage collection margin stabilization riparian restoration riverside population relocation | US$ 199.780.000 | State Government and BDI | water quality improvement human health, some biological diversity improvement |
Capibaribe Park (PE) [222] | Brazil | Revitalization and urban development of the edge of the river | Prefecture of Recife and INCITI-research and innovation for the cities | water quality improvement human health |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wantzen, K.M.; Alves, C.B.M.; Badiane, S.D.; Bala, R.; Blettler, M.; Callisto, M.; Cao, Y.; Kolb, M.; Kondolf, G.M.; Leite, M.F.; et al. Urban Stream and Wetland Restoration in the Global South—A DPSIR Analysis. Sustainability 2019, 11, 4975. https://doi.org/10.3390/su11184975
Wantzen KM, Alves CBM, Badiane SD, Bala R, Blettler M, Callisto M, Cao Y, Kolb M, Kondolf GM, Leite MF, et al. Urban Stream and Wetland Restoration in the Global South—A DPSIR Analysis. Sustainability. 2019; 11(18):4975. https://doi.org/10.3390/su11184975
Chicago/Turabian StyleWantzen, Karl M., Carlos Bernardo Mascarenhas Alves, Sidia Diaouma Badiane, Raita Bala, Martín Blettler, Marcos Callisto, Yixin Cao, Melanie Kolb, G. Mathias Kondolf, Marina Fernandes Leite, and et al. 2019. "Urban Stream and Wetland Restoration in the Global South—A DPSIR Analysis" Sustainability 11, no. 18: 4975. https://doi.org/10.3390/su11184975