Do Grazing Systems and Species Composition Affect Root Biomass and Soil Organic Matter Dynamics in Temperate Grassland Swards?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Treatments and Design
2.2. Harvesting and Processing of Samples
2.2.1. Biomass Samples
2.2.2. Soil Samples
2.3. Statistical Analysis
3. Results
3.1. Root Biomass
3.2. Soil Organic Matter Dynamics
4. Discussion
4.1. Effects of Grazing Systems on Root Biomass and SOM Dynamics
4.2. Effects of Species Composition and Fertilization on Root Biomass and SOM Dynamics
4.3. Temporary Grasslands as Potential Carbon Sinks?
4.4. Comparison of the Experiment with on-Farm Grasslands
5. Conclusions
- No effects of different simulated grazing systems in terms of cutting height and frequency on root biomass were observed in both the sandy and loamy soils during the first two years of the experiment.
- Root biomass was greatest under monocultures of tall fescue, which was also reflected in the largest SOM accumulation rates in the 30–60 cm soil layer of the sandy soil.
- SOM increases tended to be higher (in some cases significantly) under lenient strip grazing than under rotational grazing, most likely due to a larger input of aboveground plant residues.
- No consistent effects of species composition were found across different soil layers, except for tall fescue in dry sandy subsoils.
- No causal relationships could be established between root biomass and SOM rates of change in both soils (0–30 cm soil layer) during the first two years, probably as a consequence of declining SOM stocks in the 10–30 cm soil layer and large variation in both root biomass and initial SOM stocks.
- Fertilization appeared to be crucial to increase SOM stocks. In this particular experiment with simulated grazing systems, the conversion from arable land to grassland did only lead to an increase in SOM after five years (sandy soil) in the treatments with fertilization and considering the 0–60 cm soil profile.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.; Kirk, J.D. Carbon losses from all soils across England and Wales 1978–2000. Nature 2005, 437, 245–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleutel, S.; De Neve, S.; Hofman, G. Assessing causes of recent organic carbon losses from cropland soils by means of regional-scaled input balances for the case of Flanders (Belgium). Nutr. Cycl. Agroecosystems 2007, 78, 265–278. [Google Scholar] [CrossRef]
- Reijneveld, J.A.; Van Wensum, J.; Oenema, O. Trends in soil organic carbon content of agricultural land in the Netherlands between 1984 and 2004. Geoderma 2009, 152, 231–238. [Google Scholar] [CrossRef]
- Royal Dutch Weather Institute. Climate Observations, Hourly Weather data of The Netherlands. 2012. Available online: http://www.knmi.nl/klimatologie/uurgegevens/ (accessed on 30 November 2012).
- Lenderink, G.; Mok, H.Y.; Lee, T.C.; Van Oldenborgh, G.J. Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and The Netherlands. Hydrol. Earth Syst. Sci. 2011, 15, 3033–3041. [Google Scholar] [CrossRef] [Green Version]
- Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Chang. Biol. 2014, 20, 2708–2711. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Join the 4‰ Initiative: Soils for food Security and Climate. 2016. Available online: Newsroom.unfccc.int/media/408539/4-per-1000-initiative.pdf. (accessed on 29 December 2016).
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1994; pp. 1–23. [Google Scholar]
- Hanegraaf, M.C.; Hoffland, E.; Kuikman, P.J.; Brussaard, L. Trends in soil organic matter contents in Dutch grasslands and maize fields on sandy soils. Eur. J. Soil Sci. 2009, 60, 213–222. [Google Scholar] [CrossRef]
- Hopkins, D.W.; Waite, I.S.; Mc Nicol, J.W.; Poulton, P.R.; Macdonald, A.J.; O’Donnell, A.G. Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Glob. Chang. Biol. 2009, 15, 1739–1754. [Google Scholar] [CrossRef]
- Van Eekeren, N.; Boer, H.; Bloem, J.; Schouten, T.; Rutgers, M.; De Goede, R.G.M.; Brussaard, L. Soil biological quality of grassland fertilized with adjusted cattle manure slurries in comparison with organic and inorganic fertilizers. Biol. Fertil. Soils 2009, 45, 595–608. [Google Scholar] [CrossRef]
- Maillard, É.; Angers, D.A. Animal manure application and soil organic carbon stocks: A meta-analysis. Glob. Chang. Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
- Verloop, J.; Hilhorst, G.J.; Pronk, A.A.; Šebek, L.B.; Van Keulen, H.; Janssen, B.H.; Van Ittersum, M.K. Organic matter dynamics in an intensive dairy production system on a Dutch Spodosol. Geoderma 2015, 237, 159–167. [Google Scholar] [CrossRef]
- Whitehead, D.C.; Bristow, A.W.; Lockyer, D.R. Organic matter and nitrogen in the unharvested fractions of grass swards in relation to the potential for nitrate leaching after ploughing. Plant Soil 1990, 123, 39–49. [Google Scholar] [CrossRef]
- Dormaar, J.F. Decomposition as a process in natural grasslands. In Natural Grasslands Introduction and Western Hemisphere; Coupland, R.T., Ed.; Ecosystems of the world 8a; Elsevier: Amsterdam, The Netherlands, 1992; pp. 121–136. [Google Scholar]
- Janssen, B.H. Organic Matter and Soil Fertility; J100–225; Wageningen Agricultural University: Wageningen, The Netherlands, 2002; p. 248. [Google Scholar]
- Rasse, D.P.; Rumpel, C.; Dignac, M.F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ennik, G.C.; Gillet, M.; Sibma, L. Effect of high nitrogen supply on sward deterioration and root mass. In The Role of Nitrogen in Intensive Grassland Production; Prins, W.H., Arnold, G.H., Eds.; Institute for soil fertility: Haren, The Netherlands, 1980; pp. 67–76. [Google Scholar]
- Reeder, J.D.; Franks, C.D.; Milchunas, D.G. Root biomass and microbial processes. In The Potential of U.S. Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect; Follet, R.F., Kimble, J.M., Lal, R., Eds.; CRC Press: Boca Raton, LA, USA, 2001; pp. 163–190. [Google Scholar]
- Deinum, B. Root mass of grass swards in different grazing systems. Neth. J. Agric. Sci. 1985, 33, 377–384. [Google Scholar]
- Lantinga, E.A. Productivity of Grasslands under Continuous and Rotational Grazing. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1985; p. 111. [Google Scholar]
- Crider, F.J. Root-Growth Stoppage Resulting for Defoliation of Grass; USDA Tech. Bull. No. 1102; US Department of Agriculture: Washington, DC, USA, 1955. Available online: http://books.google.nl/books?hl=nl&lr=&id=HLIXAAAAYAAJ&oi=fnd&pg=PA3&dq=Root-growth+stoppage+resulting+for+defoliation+of+grass&ots=I9JNl1fx9A &sig=0WFR11gMs5OC6_AAooxxrjPzbr8#v=onepage&q=Root-growth%20stoppage%20 resulting%20for%20defoliation%20of%20grass&f=false (accessed on 27 November 2014).
- Steinbeiss, S.; Beßler, H.; Engels, C.; Temperton, V.M.; Buchmann, N.; Roscher, C.; Kreutziger, Y.; Baade, J.; Habekost, M.; Gleixner, G. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob. Chang. Biol. 2008, 14, 2937–2949. [Google Scholar] [CrossRef]
- Isselstein, J.; Jeangros, B.; Pavlu, V. Agronomic aspects of biodiversity targeted management of temperate grasslands in Europe: A review. Agron. Res. 2005, 3, 139–151. [Google Scholar]
- De Wit, J.; Van Eekeren, N.; Wagenaar, J.; Smeding, F.W. Diverse grassland mixtures for higher yields and more stable sward quality. In Proceedings of the 17th Symposium of the European Grassland Federation, Akureyri, Iceland, 23–26 June 2013; Available online: http://www.louisbolk.org/downloads/2791.pdf (accessed on 26 November 2014).
- Cougnon, M.; Baert, J.; Van Waes, C.; Reheul, D. Performance and quality of tall fescue (Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.) and mixtures of both species grown with or without white clover (Trifolium repens L.) under cutting management. Grass Forage Sci. 2014, 69, 666–677. [Google Scholar] [CrossRef] [Green Version]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Carruthers, V.R.; Henderson, H.V. Grazing management and pasture composition on paired farms which differed in the incidence of bloat. New Zealand J. Agric. Res. 1994, 37, 535–545. [Google Scholar] [CrossRef]
- Baert, J.; Vliegherf, A.D.; Hulle, S.V.; Waes, C.V.; Muylle, H.; Warda, M. Biomass yield and composition from semi-extensively cultivated perennial fodder grasses. Grassland―a European Resource? Proceedings of the 24th General Meeting of the European Grassland Federation. Available online: https://pure.ilvo.be/portal/files/435292/3102.pdf (accessed on 7 February 2020).
- Karsten, H.D.; MacAdam, J.W. Effect of drought on growth, carbohydrates, and soil water use by perennial ryegrass, tall fescue, and white clover. Crop Sci. 2001, 41, 156–166. [Google Scholar] [CrossRef]
- Cougnon, M.; Deru, J.; Van Eekeren, N.; Baert, J.; Reheul, D. Root depth and biomass of tall fescue vs. perennial ryegrass. In Proceedings of the 17th Symposium of the European Grassland Federation, Akureyri, Iceland, 23–26 June 2013; Available online: http://www.europeangrassland.org/fileadmin/media/EGF2013.pdf (accessed on 26 November 2014).
- Visscher, J.; Radersma, S.; Van Den Pol-Van Dasselaar, A. Innovations in Grazing Systems (In Dutch: Innovaties in Beweidingssystemen). 2011. Available online: http://edepot.wur.nl/202654 (accessed on 2 October 2012).
- Royal Dutch Weather Institute. Daily data of the Weather in The Netherlands. In Dutch: Daggegevens van het weer in Nederland. 2016. Available online: https://www.knmi.nl/nederland-nu/klimatologie/daggegevens (accessed on 2 January 2017).
- Deru, J.; Van Eekeren, N.; De Wit, J.; De Boer, H. Effect of Grass Species and N-Fertilization Level on Production, Rooting and Mineral N in Autumn: Field Trial on Sandy Soil with Perennial Ryegrass, Cocksfoot and tall Fescue (In Dutch: Effect van Grassoort en N-Bemestingsniveau op Productie, Beworteling en N-Mineraal in de Herfst: Veldproef op Zandgrond met Engels Raaigras, Kropaar en Rietzwenkgras); Rapport 2011-017 LbD.; Louis Bolk Instituut: Driebergen, The Netherlands, 2011. [Google Scholar]
- Lorentz, C.; Lal, R. The Depth Distribution of Soil Organic Carbon in Relation to Land Use and Management and The Potential of Carbon Sequestration in Subsoil Horizons; Carbon Management and Sequestration Center: Columbus, OH, USA, 2005; Available online: http://tinread.usarb.md:8888/tinread/fulltext/lal/depth.pdf (accessed on 27 November 2014).
- Hoogsteen, M.J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; Tittonell, P.A. Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
- Van Eekeren, N.; Bos, M.; De Wit, J.; Keidel, H.; Bloem, J. Effect of individual grass species and grass species mixtures on soil quality as related to root biomass and grass yield. Appl. Soil Ecol. 2010, 45, 275–283. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Carbon and nitrogen storage by deep-rooted tall fescue (Lolium arundinaceum) in the surface and subsurface soil of a fine sandy loam in eastern Canada. Agric. Ecosyst. Environ. 2010, 136, 125–132. [Google Scholar] [CrossRef]
- Gill, J.; Burcke, I.C.; Milchumas, D.G.; Laueenroth, W.K. Relationship between roots and soil organic matter pools in the shortgrass steppe of eastern Colorado. Ecosystems 1999, 2, 226–236. [Google Scholar]
- Don, A.; Scholten, T.; Schulze, E.D. Conversion of cropland into grassland: Implications for soil organic-carbon stocks in two soils with different texture. J. Plant Nutr. Soil Sci. 2009, 172, 53–62. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R.; Coleman, K. Soil organic matter: Its importance in sustainable agriculture and carbon dioxide fluxes. Adv. Agron. 2009, 101, 1–57. [Google Scholar]
- Maillard, É.; Angers, D.A.; Chantigny, M.; Bittman, S.; Rochette, P.; Lévesque, G.; Hunt, D.; Parent L, É. Carbon accumulates in organo-mineral complexes after long-term liquid dairy manure application. Agric. Ecosyst. Environ. 2015, 202, 108–119. [Google Scholar] [CrossRef]
- Soussana, J.F.; Allard, V.; Pilegaard, K.; Ambus, P.; Amman, C.; Campbell, C.; Valentini, R. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric. Ecosyst. Environ. 2007, 121, 121–134. [Google Scholar] [CrossRef]
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [Green Version]
- Ward, S.E.; Smart, S.M.; Quirk, H.; Tallowin JR, B.; Mortimer, S.R.; Shiel, R.S.; Wilby, A.; Bardgett, R.D. Legacy effects of grassland management on soil carbon to depth. Glob. Chang. Biol. 2016, 22, 2929–2938. [Google Scholar] [CrossRef]
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM, National Institute for Public Health and the Environment, The Netherlands). Agricultural Practices and Water Quality at Grassland Farms Registered for Derogation in 2014 (In Dutch: Landbouwpraktijk en waterkwaliteit op landbouwbedrijven aangemeld voor derogatie in 2014); National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2016. [Google Scholar]
- De Haan, J.J.; van Geel, W.C.A. Manual on Soil and Fertilization (In Dutch: Handboek Bodem en Bemesting). 2019. Available online: https://www.handboekbodemenbemesting.nl/nl/handboekbodemen bemesting/Handeling/Organische-stofbeheer/Samenstelling-en-werking-organische-meststoffen/Samenstelling-organische-meststoffen.htm (accessed on 20 July 2019).
- Conijn, J.G.; Lesschen, J.P. Soil Organic Matter in the Netherlands: Quantification of Stocks and Flows in the Top Soil; PRI Report 619/Lterra Report 2663; Research Institute Praktijkonderzoek Plant & Omgeving/Plant Research International, Wageningen UR (University & Research centre): Wageningen, The Netherlands, 2015. [Google Scholar]
- Skinner, R.H.; Dell, C.J. Yield and soil carbon sequestration in grazed pastures sown with two or five forage species. Crop Sci. 2016, 56, 2035–2044. [Google Scholar] [CrossRef]
Sandy Soil | Loamy Soil | |||
---|---|---|---|---|
Sand (%) | 89 | 15 | ||
Silt (%) | 6 | 59 | ||
Clay (%) | 5 | 26 | ||
pH-CaCl2 | 5.1 | 7.3 | ||
Soil layer | Bulk density | SOMi | Bulk density | SOMi |
(g cm−3) | (Mg ha−1) | (g cm−3) | (Mg ha−1) | |
0–10 cm | 1.31 (0.05) | 42.6 (0.4) | 1.30 (0.04) | 40.0 (0.4) |
10–30 cm | 1.50 (0.01) | 79.7 (0.7) | 1.46 (0.01) | 72.5 (1.5) |
30–60 cm | 1.60 (0.01) | 71.7 (2.8) | 1.43 (0.01) | 70.4 (2.7) |
Grazing System | Cutting Height (cm) | Average Cutting Interval in 2012–2013 (Days) | Average Grass Height at Defoliation in 2013 (cm) |
---|---|---|---|
Continuous (CG) | 4 | 23 | 11 |
Lenient strip (LG) | 10 | 32 | 17 |
Rotational (RG) | 4 | 48 | 18 |
Date | SOM Measurement | Root Biomass Measurement | Time Indication |
---|---|---|---|
19-9-2011 | L + S | ||
22-5-2012 | L + S | ||
25-9-2012 | L + S | 2 years | |
28-1-2013 | L + S | (19 September 2011 until 27 January 2014) | |
27-5-2013 | L + S | ||
23-9-2013 | L + S | ||
27-1-2014 | L + S | ||
21-3-2016 | S | 5 years | |
20-5-2016 | S | (19 September 2011 until 20 May 2016) | |
July 2013 | L + S | ||
March 2014 | L + S |
Soil Layer (cm) | 0–10 | 10–30 | 30–60 | |||||
---|---|---|---|---|---|---|---|---|
Sand | df1 | df2 | F | P | F | P | F | P |
Intercept | 1 | 6 | 1751 | 0.00 | 792 | 0.00 | 206 | 0.00 |
Grazing system | 2 | 6 | 1.8 | 0.25 | 0.6 | 0.59 | 0.6 | 0.59 |
Block | 3 | 6 | 0.3 | 0.82 | 0.5 | 0.71 | 0.3 | 0.82 |
Grazing system × Block | 6 | 27 | 0.8 | 0.61 | 1.7 | 0.16 | 2.6 | 0.04 |
Species composition | 3 | 27 | 6.6 | 0.00 | 9.1 | 0.01 | 38 | 0.00 |
Species composition × Grazing system | 6 | 27 | 0.8 | 0.56 | 1.9 | 0.11 | 2.5 | 0.05 |
Loam | df1 | df2 | F | P | F | P | F | P |
Intercept | 1 | 6 | 1249 | 0.00 | 3199 | 0.00 | 373 | 0.00 |
Grazing system | 2 | 6 | 4.8 | 0.06 | 1.1 | 0.40 | 2.1 | 0.21 |
Block | 3 | 6 | 5.2 | 0.04 | 0.1 | 0.96 | 1.5 | 0.30 |
Grazing system × Block | 6 | 27 | 0.1 | 1.00 | 2.7 | 0.03 | 0.4 | 0.86 |
Species composition | 3 | 27 | 24 | 0.00 | 32 | 0.00 | 14 | 0.00 |
Species composition × Grazing system | 6 | 27 | 0.7 | 0.73 | 2.0 | 0.11 | 0.3 | 0.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoogsteen, M.J.J.; Bakker, E.-J.; van Eekeren, N.; Tittonell, P.A.; Groot, J.C.J.; van Ittersum, M.K.; Lantinga, E.A. Do Grazing Systems and Species Composition Affect Root Biomass and Soil Organic Matter Dynamics in Temperate Grassland Swards? Sustainability 2020, 12, 1260. https://doi.org/10.3390/su12031260
Hoogsteen MJJ, Bakker E-J, van Eekeren N, Tittonell PA, Groot JCJ, van Ittersum MK, Lantinga EA. Do Grazing Systems and Species Composition Affect Root Biomass and Soil Organic Matter Dynamics in Temperate Grassland Swards? Sustainability. 2020; 12(3):1260. https://doi.org/10.3390/su12031260
Chicago/Turabian StyleHoogsteen, Martine J. J., Evert-Jan Bakker, Nick van Eekeren, Pablo A. Tittonell, Jeroen C. J. Groot, Martin K. van Ittersum, and Egbert A. Lantinga. 2020. "Do Grazing Systems and Species Composition Affect Root Biomass and Soil Organic Matter Dynamics in Temperate Grassland Swards?" Sustainability 12, no. 3: 1260. https://doi.org/10.3390/su12031260