A Preliminary Geothermal Prospectivity Mapping Based on Integrated GIS, Remote-Sensing, and Geophysical Techniques around Northeastern Nigeria
Abstract
:1. Introduction
2. Description of the Study Area
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Structural Lineaments Mapping
3.2.2. Curie Point Depth/Geothermal Gradient Estimation
3.2.3. Geological Maps
3.2.4. Gravity Data Processing
3.2.5. Radiogenic Heat Production
3.2.6. Data Standardization
3.2.7. Weighting
3.2.8. Weighted Overlay (W.O.) Technique
- (a)
- Identification and selection of layers (input data) with varying geothermal influences;
- (b)
- Preparation of the data into a grid format and subsequent reclassification using a uniform scale of reference;
- (c)
- Allocating weight to each of the reclassified data grids;
- (d)
- The allocated weight value for each of the reclassified grid layers (Rec_GRID) is then multiplied by the allocated data type influence, which gives the significance of the layer in the generated model [17]. The individual values of the cell obtained were then summed up to get the final resultant (output) grid (Res_GRID) using the equation below:
4. Results
4.1. Integrated Structural Lineaments Map
4.2. Temperature Gradients
4.3. Residual Gravity Anomaly and Lithology Maps
4.4. Radiogenic Heat Flow
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Q.; Wang, Y. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. J. Volcanol. Geotherm. Res. 2012, 215–216, 61–73. [Google Scholar] [CrossRef]
- Baioumy, H.; Nawawi, M.; Wagner, K.; Arifin, M.H. Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia. J. Volcanol. Geotherm. Res. 2015, 290, 12–22. [Google Scholar] [CrossRef]
- Energy Commission of Nigeria, Federal Republic of Nigeria. National Energy Masterplan; Energy Commission of Nigeria: Abuja, Nigeria, 2014. [Google Scholar]
- Abraham, E.M.; Edet, E. Review of Geothermal Energy Research in Nigeria: The Geoscience Front. J. Earth Sci. Geophys. 2017, 3, 1–10. [Google Scholar] [CrossRef]
- Kiavarz, M.; Noorollahi, Y.; Samadzadegan, F.; Ali, M.; Itoi, R. Spatial data analysis for exploration of regional scale geothermal resources. J. Volcanol. Geotherm. Res. 2013, 266, 69–83. [Google Scholar] [CrossRef]
- Wibowo, H. Spatial Data Analysis and Integration for Regional-Scale Geothermal Prospectivity Mapping, West Java, Indonesia. Master’s Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands, 2006. [Google Scholar]
- Coolbaugh, M.F.; Kratt, C.; Fallacaro, A.; Calvin, W.M.; Taranik, J. V Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sens. Environ. 2007, 106, 350–359. [Google Scholar] [CrossRef]
- Zaher, M.A. Exploration of Geothermal Resources in Farafra Oasis, Western Desert, Egypt. In Proceedings of the 44th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 11–13 February 2019; pp. 1–4. [Google Scholar]
- Abdelzaher, M.; Nishijima, J.; El-Qady, G.; Aboud, E.; Masoud, O.; Soliman, M.; Ehara, S. Gravity and Magnetotelluric Investigations to Elicit the Origin of Hammam Faraun Hot Spring, Sinai Peninsula, Egypt. Acta Geophys. 2011, 59, 633–656. [Google Scholar] [CrossRef]
- Abdel, M.; Saibi, H.; El, M.; Ghamry, E.; Ehara, S. A preliminary regional geothermal assessment of the Gulf of Suez, Egypt. J. Afr. Earth Sci. 2011, 60, 117–132. [Google Scholar] [CrossRef]
- Abdel Zaher, M.; Saibi, H.; Mansour, K.; Khalil, A.; Soliman, M. Geothermal exploration using airborne gravity and magnetic data at Siwa Oasis, Western Desert, Egypt. Renew. Sustain. Energy Rev. 2017, 82, 3824–3832. [Google Scholar] [CrossRef]
- Aboud, E.; Salem, A.; Mekkawi, M. Curie depth map for Sinai Peninsula, Egypt deduced from the analysis of magnetic data. Tectonophysics 2011, 506, 46–54. [Google Scholar] [CrossRef]
- Yalcin, M.; Kilic, F. A GIS-based multi criteria decision analysis approach for exploring geothermal resources: Akarcay basin (Afyonkarahisar). Geothermics 2017, 67, 18–28. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Ghasempour, R.; Jalilinasrabady, S. GIS integration model for geothermal exploration and well siting. Geothermics 2008, 37, 107–131. [Google Scholar] [CrossRef]
- Meng, F.; Liang, X.; Xiao, C.; Wang, G. Geothermal resource potential assessment utilizing GIS—Based multi criteria decision analysis method. Geothermics 2021, 89, 101969. [Google Scholar] [CrossRef]
- Abuzied, S.M.; Kaiser, M.F.; Shendi, E.H.; Abdel-fattah, M.I. Multi-criteria decision support for geothermal resources exploration based on remote sensing, GIS and geophysical techniques along the Gulf of Suez coastal area, Egypt. Geothermics 2020, 88, 101893. [Google Scholar] [CrossRef]
- Procesi, M.; Buttinelli, M.; Pignone, M. Geothermal favourability mapping by advanced geospatial overlay analysis: Tuscany case study (Italy). Energy 2015, 90, 1377–1387. [Google Scholar] [CrossRef]
- Yousefi, H.; Noorollahi, Y.; Ehara, S.; Itoi, R.; Yousefi, A. Developing the geothermal resources map of Iran. Geothermics 2010, 39, 140–151. [Google Scholar] [CrossRef]
- Calvin, W.M.; Littlefield, E.F.; Kratt, C. Remote sensing of geothermal-related minerals for resource exploration in Nevada. Geothermics 2015, 53, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Nishar, A.; Richards, S.; Breen, D.; Robertson, J.; Breen, B. Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei e Tauhara geothermal fi eld, Taupo, New Zealand. Renew. Energy 2016, 86, 1256–1264. [Google Scholar] [CrossRef]
- Littlefield, E.F.; Calvin, W.M. Geothermal exploration using imaging spectrometer data over Fish Lake Valley, Nevada. Remote Sens. Environ. 2014, 140, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Obande, G.E.; Lawal, K.M.; Ahmed, L.A. Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm Spring, north-east Nigeria. Geothermics 2014, 50, 85–90. [Google Scholar] [CrossRef]
- Ayuba, R.A.; Nur, A. Determination of Curie Depth Isotherm and Geothermal Studies over Parts of Nasarawa and Environs, North Central Nigeria. Int. J. Energy Environ. Sci. 2018, 3, 69–81. [Google Scholar] [CrossRef]
- Aliyu, A.; Salako, K.A.; Adewumi, T.; Mohammed, A. Interpretation of High Resolution Aeromagnetic Data to Estimate the Curie Point Depth Isotherm of Parts of Middle Benue Trough, North-East, Nigeria. Phys. Sci. Int. J. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Anakwuba, E.K.; Chinwuko, A.I. One Dimensional Spectral Analysis and Curie Depth Isotherm of Eastern Chad Basin, Nigeria. J. Nat. Sci. Res. 2015, 5, 14–22. [Google Scholar]
- Kasidi, S.; Nur, A. Curie depth isotherm deduced from spectral analysis of Magnetic data over sarti and environs of North-Eastern Nigeria. Sch. J. Biotechnol. 2012, 1, 49–56. [Google Scholar]
- Abraham, E.M.; Obande, E.G.; Chukwu, M.; Chukwu, C.G. Estimating depth to the bottom of magnetic sources at Wikki Warm Spring region, northeastern Nigeria, using fractal distribution of sources approach. Turk. J. Earth Sci. 2015, 24, 494–512. [Google Scholar] [CrossRef]
- Epuh, E.; Nwilo, P.C.; Olorode, D.; Ezeigbo, C. Multivariate Statistical Analysis of Gongola Basin Residual Gravity Anomalies for Hydrocarbon Exploration. J. Comput. Model. 2012, 2, 53–76. [Google Scholar]
- Epuh, E.E.; Joshua, E.O. Basement Depth and Sedimentary Velocity Structure in Gongola Basin. J. Geol. Geophys. 2017, 6, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Epuh, E.; Joshua, E.O. Gongola Basin Crust-Mantle Structural Analysis For Hydrocarbon Investigation Using Isostatic Residual Gravity Anomalies. Niger. J. Basic Appl. Sci. 2017, 25, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Bassey, N.E.; Barka, J.; Musa, H.; Takana, A. Hydrocarbon Prospect o f Nigeria ’ s Gongola Basin Based on Gravity Data Interpretation. J. Appl. Geol. Geophys. 2017, 5, 68–77. [Google Scholar] [CrossRef]
- Shemang, E.; Jacoby, W.; Ajayi, C. Gravity Anomalies Over The Gongola Arm, Upper Benue Trough, Nigeria. Glob. J. Geol. Sci. 2005, 3, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, B.U.; Rai, J.K.; Olaitan, O.M.; Musa, Y.A. A Review of the Correlation between Geology and Geothermal Energy in North-Eastern Nigeria. IOSR J. Appl. Geol. Geophys. 2014, 2, 74–83. [Google Scholar] [CrossRef]
- Musa, O.K.; Kurowska, E.E.; Schoeneich, K.; Alagbe, S.A.; Ayok, J. Tectonic control on the distribution of onshore mud volcanoes in parts of the Upper Benue Trough, northeastern Nigeria. Contemp. Trends Geosci. 2016, 5, 28–45. [Google Scholar] [CrossRef]
- Kurowska, E.; Schoeneich, K. Geothermal Exploration in Nigeria. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–29 April 2010; pp. 25–29. [Google Scholar]
- Obaje, N.G. Geology and Mineral Resources of Nigeria; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Shettima, B.; Buba, I.Y.; Sidi, M.W.; Abdulganiyu, Y.; Hamidu, H.; Abubakar, U. Reservoir Potentials of the Cretaceous Gombe Sandstone, Gongola Basin, Upper Benue Trough, North Eastern Nigeria. J. Appl. Geol. Geophys. 2016, 4, 66–77. [Google Scholar] [CrossRef]
- Giraud, R.; Bosworth, W. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: Synthesis and implications to plate-scale tectonics. Tectonophysics 1997, 282, 39–82. [Google Scholar] [CrossRef]
- Guiraud, R.; Maurin, J.C. Early Cretaceous rifts of Western and Central Africa: An overview. Tectonophysics 1992, 213, 153–168. [Google Scholar] [CrossRef]
- Cratchley, C.R.; Louis, P.; Ajakaiye, D.E. Geophysical and geological evidence for the Benue-Chad Basin Cretaceous rift valley system and its tectonic implications. J. Afr. Earth Sci. 1984, 2, 141–150. [Google Scholar] [CrossRef]
- Burke, K.C.; Dessauvagie, T.F.J.; Whiteman, A. Opening of the Gulf of Guinea and geological history of the Benue depression and Niger delta. Nat. Phys. Sci. 1971, 233, 51–55. [Google Scholar] [CrossRef]
- Olade, M.A. Evolution of Nigeria’s Benue Trough (Aulacogen): A tectonic model. Geol. Mag. 1975, 112, 575–583. [Google Scholar] [CrossRef]
- Erdi-Krausz, G.; Matolin, M.; Minty, B.; Nicolet, J.P.; Reford, W.S.; Schetselaar, E.M. Guidelines for radioelement mapping using gamma ray spectrometry data. In Geophysics; International Atomic Energy Agency: Vienna, Austria, 2003; pp. 1–152. [Google Scholar]
- Hanano, M. Two different roles of fractures in geothermal development. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000; pp. 1–3. [Google Scholar]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Publication of Monographs on Statistics and Applied Probability; Chapman Hall: London, UK, 1986; pp. 1–22. [Google Scholar]
- Cordell, L.; Grauch, V.J. Mapping basement magnetization zones from Aeromagnetic Data in the San Juan basin, New Mexico. SEG 1982, 181–197. [Google Scholar] [CrossRef]
- Dunlop, D.J.; Özdemir, Ö. Rock Magnetism Fundamentals and Frontiers; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Hsieh, H.; Chen, C.; Lin, P.; Yen, H. Curie point depth from spectral analysis of magnetic data in Taiwan. J. Asian Earth Sci. 2014, 90, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Okubo, Y.; Graf, R.J.; Hansen, R.O.; Ogawa, K.; Tsu, H. Curie point depths of the Island of Kyushu and surrounding areas, Japan. Geophysics 1985, 53, 481–494. [Google Scholar] [CrossRef]
- Tanaka, A.Ł.; Okubo, Y.; Matsubayashi, O. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 1999, 306, 461–470. [Google Scholar] [CrossRef]
- Elbarbary, S.; Zaher, M.A.; Mesbah, H.; El-shahat, A.; Embaby, A. Curie point depth, heat fl ow and geothermal gradient maps of Egypt deduced from aeromagnetic data. Renew. Sustain. Energy Rev. 2018, 91, 620–629. [Google Scholar] [CrossRef]
- Salem, A.; Furuya, S.; Aboud, E.; Elawadi, E.; Jotaki, H.; Ushijima, K. Subsurface Structural Mapping Using Gravity Data of Hohi Geothermal Area, Central Kyushu, Japan. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 24–29. [Google Scholar]
- Kohrn, S.B.; Bonet, C.; DiFrancesco, D.; Gibson, H. Geothermal exploration using gravity gradiometry—A Salton Sea example. Trans. Geotherm. Resour. Counc. 2011, 35, 1699–1702. [Google Scholar]
- Rybach, B.L. Radioactive Heat Production in Rocks and its Relation to other Petrophysical Parameters 1). Pure Appl. Geophys. 1976, 114, 309–317. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Kiavarz, M.; Samadzadegan, F.; Noorollahi, Y. Geothermics Spatial analysis and multi-criteria decision making for regional-scale geothermal favorability map. Geothermics 2014, 50, 189–201. [Google Scholar]
- Saleh, S.; Salk, M.; Pamukçu, O. Estimating Curie Point Depth and Heat Flow Map for Northern Red Sea Rift of Egypt and Its Surroundings, from Aeromagnetic Data. Pure Appl. Geophys. 2013, 170, 863–885. [Google Scholar] [CrossRef]
- Saada, S.A. Curie point depth and heat flow from spectral analysis of aeromagnetic data over the northern part of Western Desert, Egypt. J. Appl. Geophys. 2016, 134, 100–111. [Google Scholar] [CrossRef]
- Mono, J.A.; Ndougsa-Mbarga, T.; Tarek, Y.; Ngoh, J.D.; Owono Amougou, O.U.I. Estimation of Curie-point depths, geothermal gradients and near-surface heat flow from spectral analysis of aeromagnetic data in the Loum—Minta area (Centre-East Cameroon). Egypt. J. Pet. 2018, 27, 1291–1299. [Google Scholar] [CrossRef]
- Zaher, M.A.; Elbarbary, S.; El-shahat, A.; Mesbah, H.; Embaby, A. Geothermal resources in Egypt integrated with GIS-based analysis. J. Volcanol. Geotherm. Res. 2018. [Google Scholar] [CrossRef]
- Oshin, I.O.; Rahaman, M.A. Uranium favourability study in Nigeria. J. Afr. Earth Sci. 1986, 5, 167–175. [Google Scholar] [CrossRef]
- Suh, C.E.; Dada, S.S. Mesostructural and Microstructural Evidences for a Two Stage Tectono-Metallogenetic Model for the Uranium Deposit at Mika, Northeastern Nigeria: A Research Note. Nonrenewable Resour. 1998, 7, 75–83. [Google Scholar] [CrossRef]
- Suh, C.E.; Dada, S.S.; Ajayi, T.R.; Matheis, G. Integrated structural and mineral alteration study of the Zona uranium anomaly, northeast Nigeria. J. Afr. Earth Sci. 1998, 27, 129–140. [Google Scholar] [CrossRef]
- Haruna, I.V.; Ahmed, H.A.; Ahmed, A.S. Geology and tectono-sedimentary disposition of the Bima sandstone of the Upper Benue Trough (Nigeria): Implications for sandstone-hosted Uranium deposits. J. Geol. Min. Res. 2012, 4, 168–173. [Google Scholar] [CrossRef]
- Bute, S.I. Uranium Ore Deposits in Northeastern Nigeria: Geology And Prospect. Cont. J. Earth Sci. 2013, 8, 21–28. [Google Scholar] [CrossRef]
- Bute, S.I. Petrography, geochemistry and Alteration Studies of Kanawa Uranium. J. Geol. Geophys. 2017, 6, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Bolarinwa, A.T.; Ibrahim, S.B. Petrochemical and Tectonogenesis of Granitoids in the Wuyo-Gubrunde Petrochemical and Tectonogenesis of Granitoids in the Wuyo-Gubrunde Horst, Northeastern Nigeria: Implication for Uranium Enrichment. Nat. Resour. Res. 2016, 25, 197–210. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Jalaladdin, S.; Dehshiri, H.; Shahabaddin, S.; Dehshiri, H.; Jahangiri, M.; Techato, K. A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan. Sustainabiltiy 2020, 12, 8397. [Google Scholar] [CrossRef]
- Abdullahi, M.; Singh, U.K.; Roshan, R. Mapping magnetic lineaments and subsurface basement beneath parts of Lower Benue Trough (LBT), Nigeria: Insights from integrating gravity, magnetic and geologic data. J. Earth Syst. Sci. 2019, 128, 12040. [Google Scholar] [CrossRef] [Green Version]
- Ross, H.E.; Blakely, R.J.; Zoback, M.D. Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics 2006, 71, 51–59. [Google Scholar] [CrossRef]
- Nwankwo, C.N.; Ekine, A.S. Geothermal gradients in the Chad Basin, Nigeria, from bottom hole temperature logs. Int. J. Phys. Sci. 2009, 4, 777–783. [Google Scholar]
Thematic Layer | Class Ranges | Degree | Class Rank | Class Weight Value (Wt) | Consistency Ratio (C.R.) |
---|---|---|---|---|---|
Lineament density map | 0–3163.00 | Low | 1 | 9 | 0.03 |
3163.0–7275.92 | Moderate | 2 | 18 | ||
7275.92–13,128.285 | High | 3 | 27 | ||
13,128.285–40,333.89 | Very High | 4 | 46 | ||
Heat flow | 1.330–1.587 0 | Low | 1 | 8 | 0.04 |
1.5870–1.6099 | Moderate | 2 | 14 | ||
1.6068–1.6990 | High | 3 | 33 | ||
1.6990–1.9489 | Very High | 4 | 45 | ||
Temperature gradients | 10.62–40.230 | Low | 4 | 9 | 0.02 |
40.23–50.696 | Moderate | 3 | 13 | ||
50.696–62.062 | High | 2 | 29 | ||
62.062–86.886 | Very High | 1 | 50 | ||
Gravity | −85.47–−56.75 | Very low | 1 | 6 | 0.03 |
−56.75–−46.63 | low | 2 | 10 | ||
−46.63–−39.24 | Moderate | 3 | 16 | ||
−39.24–−31.037 | High | 4 | 26 | ||
−31.037–−15.72 | Very high | 5 | 42 | ||
Lithology | Volcanic | Very High | 3 | 56 | 0.02 |
Plutonic | High | 2 | 32 | ||
Sedimentary | low | 1 | 12 |
Scale | Meanings |
---|---|
1 | Zi is as significant as Zj |
3 | Zi is slightly more important than Zj |
5 | Zi is obviously more important than Zj |
7 | Zi is more important than Xj |
9 | Zi is extremely important compared to Zj |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusuf, A.; San, L.H.; Abir, I.A. A Preliminary Geothermal Prospectivity Mapping Based on Integrated GIS, Remote-Sensing, and Geophysical Techniques around Northeastern Nigeria. Sustainability 2021, 13, 8525. https://doi.org/10.3390/su13158525
Yusuf A, San LH, Abir IA. A Preliminary Geothermal Prospectivity Mapping Based on Integrated GIS, Remote-Sensing, and Geophysical Techniques around Northeastern Nigeria. Sustainability. 2021; 13(15):8525. https://doi.org/10.3390/su13158525
Chicago/Turabian StyleYusuf, Abubakar, Lim Hwee San, and Ismail Ahmad Abir. 2021. "A Preliminary Geothermal Prospectivity Mapping Based on Integrated GIS, Remote-Sensing, and Geophysical Techniques around Northeastern Nigeria" Sustainability 13, no. 15: 8525. https://doi.org/10.3390/su13158525