Differential Tail Dependence between Crude Oil and Forex Markets in Oil-Importing and Oil-Exporting Countries during Recent Crisis Periods
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
2.2.1. Models for Marginal Distributions
2.2.2. Constant Copula Models
2.2.3. Generalized Autoregressive Score (GAS) in Time-Varying Copula
3. Empirical Results
3.1. Constant Copula Results
3.2. Time-Varying Copula Results
3.2.1. Time-Varying Copula Parameter Estimation Results
3.2.2. Time-Varying Tail and Linear Dependence Estimation from the Time-Varying Copula Model
3.3. Value-at-Risk and Expected Shortfall in the Time-Varying Copula Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
RUB | MXN | CAD | EUR | INR | KRW | WTI | |
---|---|---|---|---|---|---|---|
Conditional mean | |||||||
−0.0070 | −0.0109 | −0.0014 | −0.0039 | −0.0123 | −0.0023 | 0.0099 | |
0.6439 | 1.0352 | 0.2658 | |||||
−0.0038 | −0.8926 | 0.3274 | |||||
−0.1157 | −0.7940 | ||||||
0.1262 | |||||||
−0.5764 | −1.0080 | −0.2449 | |||||
0.8563 | −0.3791 | ||||||
−0.0157 | 0.7632 | ||||||
0.0972 | |||||||
Conditional variance | |||||||
0.0020 | 0.0090 | 0.0024 | 0.0010 | 0.0033 | 0.0031 | 0.1108 | |
0.8832 | 0.8794 | 0.9492 | 0.9654 | 0.8956 | 0.9253 | 0.8898 | |
0.0678 | 0.0581 | 0.0309 | 0.0201 | 0.0701 | 0.0407 | 0.0456 | |
0.0980 | 0.0959 | 0.0236 | 0.0229 | 0.0391 | 0.0521 | 0.0921 | |
Skew t density | |||||||
6.4138 | 9.3960 | 12.6340 | 11.5400 | 4.8923 | 6.9903 | 8.4159 | |
−0.0647 | −0.1643 | −0.0367 | −0.0317 | −0.0720 | −0.0564 | −0.1220 | |
GoF tests | |||||||
KS p value | 1.00 | 1.00 | 0.98 | 0.99 | 1.00 | 1.00 | 0.99 |
CvM p value | 0.90 | 0.80 | 0.26 | 0.06 | 0.25 | 0.58 | 0.56 |
Appendix B
RUB and WTI | MXN and WTI | CAD and WTI | EUR and WTI | INR and WTI | KRW and WTI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Para | Semi | Para | Semi | Para | Semi | Para | Semi | Para | Semi | Para | Semi | |
Normal Copula | ||||||||||||
0.3264 | 0.3269 | 0.2271 | 0.2276 | 0.3945 | 0.3940 | 0.1861 | 0.1867 | 0.1376 | 0.1378 | 0.1568 | 0.1574 | |
0.0120 | 0.0123 | 0.0134 | 0.0134 | 0.0114 | 0.0114 | 0.0138 | 0.0138 | 0.0141 | 0.0142 | 0.0140 | 0.0140 | |
log | 267.7100 | 269.0900 | 127.2800 | 127.8600 | 404.0000 | 402.9400 | 83.9010 | 84.4350 | 45.2500 | 45.4100 | 59.0310 | 59.4550 |
Clayton copula | ||||||||||||
0.3945 | 0.4166 | 0.2737 | 0.2795 | 0.5121 | 0.5178 | 0.2016 | 0.2031 | 0.1610 | 0.1626 | 0.1735 | 0.1777 | |
0.0214 | 0.0220 | 0.0200 | 0.0201 | 0.0230 | 0.0230 | 0.0196 | 0.0196 | 0.0185 | 0.0186 | 0.0186 | 0.0188 | |
log | 229.9800 | 237.0200 | 123.1300 | 125.9900 | 337.1400 | 339.6700 | 67.5390 | 68.0620 | 47.3730 | 47.6260 | 55.4550 | 56.3300 |
Rotated Gumbel copula | ||||||||||||
1.2394 | 1.2492 | 1.1550 | 1.1564 | 1.3170 | 1.3183 | 1.1208 | 1.1211 | 1.1000 | 1.1000 | 1.1000 | 1.1000 | |
0.0131 | 0.0134 | 0.0117 | 0.0117 | 0.0144 | 0.0144 | 0.0113 | 0.0113 | 0.0108 | 0.0109 | 0.0107 | 0.0107 | |
log | 261.6900 | 267.4400 | 126.6700 | 129.8000 | 385.3400 | 387.6000 | 81.2330 | 81.6260 | 46.6580 | 46.9570 | 56.6140 | 58.9110 |
Student’s copula | ||||||||||||
0.3266 | 0.3333 | 0.2304 | 0.2300 | 0.4008 | 0.4002 | 0.1942 | 0.1942 | 0.1391 | 0.1397 | 0.1578 | 0.1581 | |
0.0132 | 0.0134 | 0.0141 | 0.0141 | 0.0122 | 0.0123 | 0.0148 | 0.0148 | 0.0147 | 0.0148 | 0.0147 | 0.0147 | |
0.0909 | 0.0979 | 0.0569 | 0.0582 | 0.0836 | 0.0869 | 0.0966 | 0.0980 | 0.0481 | 0.0494 | 0.0502 | 0.0507 | |
0.0148 | 0.0157 | 0.0145 | 0.0153 | 0.0152 | 0.0154 | 0.0157 | 0.0160 | 0.0153 | 0.0165 | 0.0145 | 0.0163 | |
log | 292.6100 | 293.8300 | 135.6700 | 136.1300 | 423.8700 | 423.5300 | 108.2900 | 108.0900 | 50.8310 | 50.8230 | 65.1420 | 65.1210 |
References
- Ahmad, A.H.; Moran Hernandez, R. Asymmetric Adjustment between Oil Prices and Exchange Rates: Empirical Evidence from Major Oil Producers and Consumers. J. Int. Financ. Mark. Inst. Money 2013, 27, 306–317. [Google Scholar] [CrossRef]
- Baek, J. Does COVID-19 Play Any Role in the Asymmetric Relationship between Oil Prices and Exchange Rates? Evidence from South Korea. Econ. Anal. Policy 2022, 74, 553–559. [Google Scholar] [CrossRef]
- Basher, S.A.; Haug, A.A.; Sadorsky, P. The Impact of Oil Shocks on Exchange Rates: A Markov-Switching Approach. Energy Econ. 2016, 54, 11–23. [Google Scholar] [CrossRef]
- Beckmann, J.; Czudaj, R. Oil Prices and Effective Dollar Exchange Rates. Int. Rev. Econ. Financ. 2013, 27, 621–636. [Google Scholar] [CrossRef]
- Beckmann, J.; Czudaj, R. Is There a Homogeneous Causality Pattern between Oil Prices and Currencies of Oil Importers and Exporters? Energy Econ. 2013, 40, 665–678. [Google Scholar] [CrossRef]
- Chang, K.-L. The Symmetrical and Positive Relationship between Crude Oil and Nominal Exchange Rate Returns. N. Am. J. Econ. Financ. 2014, 29, 266–284. [Google Scholar] [CrossRef]
- Ding, L.; Vo, M. Exchange Rates and Oil Prices: A Multivariate Stochastic Volatility Analysis. Q. Rev. Econ. Financ. 2012, 52, 15–37. [Google Scholar] [CrossRef]
- Kilian, L.; Zhou, X. Oil Prices, Exchange Rates and Interest Rates. J. Int. Money Financ. 2022, 126, 102679. [Google Scholar] [CrossRef]
- Korhonen, I.; Juurikkala, T. Equilibrium Exchange Rates in Oil-Exporting Countries. J. Econ. Financ. 2008, 33, 71–79. [Google Scholar] [CrossRef]
- Krichene, N. A Simultaneous Equation Model for World Crude Oil and Natural Gas Markets; Working Paper WP/05/32; IMF: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Kumeka, T.T.; Uzoma-Nwosu, D.C.; David-Wayas, M.O. The Effects of COVID-19 on the Interrelationship among Oil Prices, Stock Prices and Exchange Rates in Selected Oil Exporting Economies. Resour. Policy 2022, 77, 102744. [Google Scholar] [CrossRef]
- Mao, S.; He, Q.; Xiao, X.; Rao, C. Study of the Correlation between Oil Price and Exchange Rate under the New State of the Economy. Sci. Iran. 2018, 26, 2472–2483. [Google Scholar] [CrossRef]
- Prabheesh, K.P.; Kumar, S. The Dynamics of Oil Prices, Exchange Rates, and the Stock Market under COVID-19 Uncertainty: Evidence from India. Energy Res. Lett. 2021, 2, 27015. [Google Scholar] [CrossRef]
- Prasad Bal, D.; Narayan Rath, B. Nonlinear Causality between Crude Oil Price and Exchange Rate: A Comparative Study of China and India. Energy Econ. 2015, 51, 149–156. [Google Scholar] [CrossRef]
- Reboredo, J.C.; Rivera-Castro, M.A. A Wavelet Decomposition Approach to Crude Oil Price and Exchange Rate Dependence. Econ. Model. 2013, 32, 42–57. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Dar, A.B.; Bhanja, N. Oil Price and Exchange Rates: A Wavelet Based Analysis for India. Econ. Model 2013, 31, 414–422. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Mutascu, M.I.; Albulescu, C.T. The Influence of the International Oil Prices on the Real Effective Exchange Rate in Romania in a Wavelet Transform Framework. Energy Econ. 2013, 40, 714–733. [Google Scholar] [CrossRef]
- Turhan, M.I.; Sensoy, A.; Hacihasanoglu, E. A Comparative Analysis of the Dynamic Relationship between Oil Prices and Exchange Rates. J. Int. Financ. Mark. Inst. Money 2014, 32, 397–414. [Google Scholar] [CrossRef]
- Uddin, G.S.; Tiwari, A.K.; Arouri, M.; Teulon, F. On the Relationship between Oil Price and Exchange Rates: A Wavelet Analysis. Econ. Model 2013, 35, 502–507. [Google Scholar] [CrossRef]
- Villarreal-Samaniego, D. COVID-19, Oil Prices, and Exchange Rates: A Five-Currency Examination. SSRN Electron. J. 2020, 1–22. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chung, H.; Chang, Y.-H. The Economic Value of Co-Movement between Oil Price and Exchange Rate Using Copula-Based GARCH Models. Energy Econ. 2012, 34, 270–282. [Google Scholar] [CrossRef]
- Beckmann, J.; Berger, T.; Czudaj, R. Oil Price and FX-Rates Dependency. Quant. Financ. 2015, 16, 477–488. [Google Scholar] [CrossRef]
- Chen, S.-S.; Chen, H.-C. Oil Prices and Real Exchange Rates. Energy Econ. 2007, 29, 390–404. [Google Scholar] [CrossRef]
- Huang, B.-N.; Lee, C.-C.; Chang, Y.-F.; Lee, C.-C. Dynamic Linkage between Oil Prices and Exchange Rates: New Global Evidence. Empir. Econ. 2020, 61, 719–742. [Google Scholar] [CrossRef]
- Kim, J.-M.; Jung, H. Dependence Structure between Oil Prices, Exchange Rates, and Interest Rates. Energy J. 2018, 39, 259–280. [Google Scholar] [CrossRef]
- Lizardo, R.A.; Mollick, A.V. Oil Price Fluctuations and U.S. Dollar Exchange Rates. Energy Econ. 2010, 32, 399–408. [Google Scholar] [CrossRef]
- Reboredo, J.C. Modelling Oil Price and Exchange Rate Co-Movements. J. Policy Model 2012, 34, 419–440. [Google Scholar] [CrossRef]
- Shang, J.; Hamori, S. Do Crude Oil Prices and the Sentiment Index Influence Foreign Exchange Rates Differently in Oil-Importing and Oil-Exporting Countries? A Dynamic Connectedness Analysis. Resour. Policy 2021, 74, 102400. [Google Scholar] [CrossRef]
- He, Y.; Nakajima, T.; Hamori, S. Can BRICS’s currency be a hedge or a safe haven for energy portfolio? An evidence from vine copula approach. Singap. Econ. Rev. 2020, 65, 805–836. [Google Scholar] [CrossRef]
- Yang, L.; Cai, X.J.; Hamori, S. Does the Crude Oil Price Influence the Exchange Rates of Oil-Importing and Oil-Exporting Countries Differently? A Wavelet Coherence Analysis. Int. Rev. Econ. Financ. 2017, 49, 536–547. [Google Scholar] [CrossRef]
- Rajwani, S.; Kumar, D. Measuring Dependence between the USA and the Asian Economies: A Time-Varying Copula Approach. Glob. Bus. Rev. 2019, 20, 962–980. [Google Scholar] [CrossRef]
- Goel, A.; Mehra, A. Analyzing Contagion Effect in Markets during Financial Crisis Using Stochastic Autoregressive Canonical Vine Model. Comput. Econ. 2017, 53, 921–950. [Google Scholar] [CrossRef]
- Ji, Q.; Liu, B.-Y.; Fan, Y. Risk Dependence of CoVaR and Structural Change between Oil Prices and Exchange Rates: A Time-Varying Copula Model. Energy Econ. 2019, 77, 80–92. [Google Scholar] [CrossRef]
- Mensah, P.O.; Adam, A.M. Copula-Based Assessment of Co-Movement and Tail Dependence Structure among Major Trading Foreign Currencies in Ghana. Risks 2020, 8, 55. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Aye, G.C.; Gupta, R.; Gkillas, K. Gold-Oil Dependence Dynamics and the Role of Geopolitical Risks: Evidence from a Markov-Switching Time-Varying Copula Model. Energy Econ. 2020, 88, 104748. [Google Scholar] [CrossRef]
- Hanif, W.; Hernandez, J.M.; Sadorsky, P.; Yoon, S.-M. Are the Interdependence Characteristics of the US and Canadian Energy Equity Sectors Nonlinear and Asymmetric? N. Am. J. Econ. Financ. 2020, 51, 101065. [Google Scholar] [CrossRef]
- Echaust, K.; Just, M. Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic. Energies 2021, 14, 4147. [Google Scholar] [CrossRef]
- Liu, G.; Cai, X.-J.; Hamori, S. Modeling the Dependence Structure of Share Prices among Three Chinese City Banks. J. Risk Financ. Manag. 2018, 11, 57. [Google Scholar] [CrossRef]
- Jarque, C.M.; Bera, A.K. Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals. Econ. Lett. 1980, 6, 255–259. [Google Scholar] [CrossRef]
- Laurent, S.; Rombouts, J.V.K.; Violante, F. On the Forecasting Accuracy of Multivariate GARCH Models. J. Appl. Econ. 2011, 27, 934–955. [Google Scholar] [CrossRef]
- Brownlees, C.; Engle, R.; Kelly, B. A Practical Guide to Volatility Forecasting through Calm and Storm. J. Risk 2011, 14, 3–22. [Google Scholar] [CrossRef]
- Patton, A.J. Copula Methods for Forecasting Multivariate Time Series. In Handbook of Economic Forecasting; Elsevier: New York, NY, USA, 2013; Volume 2, pp. 899–960. [Google Scholar] [CrossRef]
- Hansen, B.E. Autoregressive Conditional Density Estimation. Int. Econ. Rev. 1994, 35, 705. [Google Scholar] [CrossRef]
- Jondeau, E.; Rockinger, M. Conditional Volatility, Skewness, and Kurtosis: Existence, Persistence, and Comovements. J. Econ. Dyn. Control. 2003, 27, 1699–1737. [Google Scholar] [CrossRef]
- Sklar, M. Fonctions de Répartition à N Dimensions et Leurs Marges. Annales de L’ISUP 1959, 8, 229–231. Available online: https://hal.science/hal-04094463/document (accessed on 6 July 2023).
- Gumbel, E.J. Bivariate Exponential Distributions. J. Am. Stat. Assoc. 1960, 55, 698–707. [Google Scholar] [CrossRef]
- Creal, D.; Koopman, S.J.; Lucas, A. Generalized autoregressive score models with applications. J. Appl. Econ. 2012, 28, 777–795. [Google Scholar] [CrossRef]
- Patton, A.J. Modelling Asymmetric Exchange Rate Dependence. Int. Econ. Rev. 2006, 47, 527–556. [Google Scholar] [CrossRef]
- Genest, C.; Rémillard, B. Validity of the Parametric Bootstrap for Goodness-of-Fit Testing in Semiparametric Models. Ann. L’institut Henri Poincaré Probab. Stat. 2008, 44, 1096–1127. [Google Scholar] [CrossRef]
Mean | Variance | Skewness | Kurtosis | Correlation with WTI (Linear/Rank) | JB | p Value | ||
---|---|---|---|---|---|---|---|---|
RUB | −0.0200 | 1.0929 | −2.6087 | 65.5400 | 0.2600 | 0.3358 | 781,290 | 0.0000 |
MXN | −0.0109 | 0.7799 | −0.9215 | 14.4520 | 0.2244 | 0.2329 | 26,958 | 0.0000 |
CAD | −0.0014 | 0.5757 | −0.1378 | 5.7763 | 0.3717 | 0.3982 | 1549 | 0.0000 |
EUR | −0.0039 | 0.5897 | 0.0096 | 5.2078 | 0.1632 | 0.1945 | 967 | 0.0000 |
INR | −0.0123 | 0.4442 | −0.1516 | 9.5251 | 0.1356 | 0.1401 | 8422 | 0.0000 |
KRW | −0.0028 | 0.6797 | 0.0324 | 35.6190 | 0.1455 | 0.1578 | 210,280 | 0.0000 |
WTI | 0.0132 | 2.7639 | −1.1095 | 36.8600 | - | - | 230,720 | 0.0000 |
RUB and WTI | MXN and WTI | CAD and WTI | EUR and WTI | INR and WTI | KRW and WTI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Para | Semi | Para | Semi | Para | Semi | Para | Semi | Para | Semi | Para | Semi | |
Rotated Gumbel copula | ||||||||||||
−0.0075 | −0.0073 | −0.0912 | −0.0854 | −0.0087 | −0.0088 | −0.0027 | −0.0969 | −0.1006 | −0.0975 | −0.0150 | −0.0139 | |
0.0046 | 0.0000 | 0.0020 | 0.0014 | 0.0005 | 0.0116 | 0.0006 | 0.0043 | 0.0019 | 0.0041 | 0.0177 | 0.0048 | |
0.0650 | 0.0667 | 0.1988 | 0.2041 | 0.0525 | 0.0531 | 0.0474 | 0.1739 | 0.1951 | 0.1972 | 0.0580 | 0.0553 | |
0.0166 | 0.0001 | 0.0153 | 0.0194 | 0.0120 | 0.0285 | 0.0079 | 0.0332 | 0.0321 | 0.0284 | 0.0298 | 0.0208 | |
0.9956 | 0.9957 | 0.9545 | 0.9569 | 0.9927 | 0.9926 | 0.9988 | 0.9603 | 0.9600 | 0.9619 | 0.9938 | 0.9943 | |
0.0028 | 0.0007 | 0.0002 | 0.0016 | 0.0029 | 0.0098 | 0.0002 | 0.0020 | 0.0012 | 0.0025 | 0.0057 | 0.0011 | |
log | 339.23 | 345.98 | 161.34 | 164.18 | 432.02 | 434.17 | 124.35 | 108.75 | 66.093 | 66.554 | 67.861 | 70.042 |
Student’s copula | ||||||||||||
0.0045 | 0.0046 | 0.0030 | 0.0030 | 0.0094 | 0.0095 | 0.0013 | 0.0013 | 0.0009 | 0.0008 | 0.0016 | 0.0016 | |
0.0060 | 0.0012 | 0.0008 | 0.0005 | 0.0008 | 0.0019 | 0.0001 | 0.0007 | 0.0001 | 0.0001 | 0.0033 | 0.0003 | |
0.0444 | 0.0466 | 0.0315 | 0.0315 | 0.0397 | 0.0401 | 0.0259 | 0.0258 | 0.0196 | 0.0199 | 0.0151 | 0.0151 | |
0.0153 | 0.0079 | 0.0073 | 0.0061 | 0.0072 | 0.0572 | 0.0125 | 0.0069 | 0.0022 | 0.0114 | 0.0350 | 0.0283 | |
0.9928 | 0.9927 | 0.9935 | 0.9933 | 0.9892 | 0.9889 | 0.9964 | 0.9964 | 0.9967 | 0.9965 | 0.9950 | 0.9950 | |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | |
0.0714 | 0.0746 | 0.0527 | 0.0537 | 0.0693 | 0.0696 | 0.0784 | 0.0791 | 0.0365 | 0.0365 | 0.0493 | 0.0493 | |
0.0872 | 0.0120 | 0.0081 | 0.0099 | 0.0272 | 0.0000 | 0.0587 | 0.0207 | 0.0040 | 0.0163 | 0.0865 | 0.0633 | |
log | 379.70 | 382.11 | 175.79 | 176.66 | 475.14 | 475.25 | 154.89 | 154.35 | 82.572 | 82.847 | 79.017 | 78.939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, J.; Hamori, S. Differential Tail Dependence between Crude Oil and Forex Markets in Oil-Importing and Oil-Exporting Countries during Recent Crisis Periods. Sustainability 2023, 15, 14445. https://doi.org/10.3390/su151914445
Shang J, Hamori S. Differential Tail Dependence between Crude Oil and Forex Markets in Oil-Importing and Oil-Exporting Countries during Recent Crisis Periods. Sustainability. 2023; 15(19):14445. https://doi.org/10.3390/su151914445
Chicago/Turabian StyleShang, Jin, and Shigeyuki Hamori. 2023. "Differential Tail Dependence between Crude Oil and Forex Markets in Oil-Importing and Oil-Exporting Countries during Recent Crisis Periods" Sustainability 15, no. 19: 14445. https://doi.org/10.3390/su151914445