How Does Digital Transformation Facilitate Enterprise Total Factor Productivity? The Multiple Mediators of Supplier Concentration and Customer Concentration
Abstract
:1. Introduction
- Does digital transformation directly facilitate enterprise total factor productivity?
- How does digital transformation indirectly boost enterprise total factor productivity through the decreasing of supplier concentration?
- How does digital transformation indirectly enhance enterprise total factor productivity through the increasing of customer concentration?
2. Theoretical Background and Hypotheses Development
2.1. Digital Transformation and Total Factor Productivity
2.2. Digital Transformation, Supplier Concentration and Total Factor Productivity
2.2.1. Digital Transformation and Supplier Concentration
2.2.2. Supplier Concentration and Total Factor Productivity
2.2.3. The Mediating Effects of Supplier Concentration
2.3. Digital Transformation, Customer Concentration and Total Factor Productivity
2.3.1. Digital Transformation and Customer Concentration
2.3.2. Customer Concentration and Total Factor Productivity
2.3.3. The Mediating Effects of Customer Concentration
3. Methodology
3.1. Sample Selection and Data Sources
3.2. Variable Measurements
3.2.1. Measurements of Digital Transformation
3.2.2. Measurements of Total Factor Productivity
3.2.3. Measurement of Customer Concentration and Supplier Concentration
3.3. Model Construction
3.3.1. Models of Main Effects
3.3.2. Models of Mediating Effects
4. Results
4.1. Results of Descriptive Statistics
4.2. Results of Correlation Analysis
4.3. Structural Equation Model Results of the Main Effects
4.4. Structural Equation Model Results of the Mediating Effects
4.4.1. Results of the Mediating Effects
4.4.2. Results of Difference Tests of Mediating Path Coefficients
5. Discussion
5.1. Discussion of the Empirical Results
5.2. Theoretical Implications
5.3. Practical Implications
5.4. Limitations and Directions for Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Majchrzak, A.; Markus, M.L.; Wareham, J. Designing for digital transformation: Lessons for information systems research from the study of ICT and societal challenges. MIS Quart. 2016, 40, 267–277. [Google Scholar] [CrossRef]
- Vial, G. Understanding digital transformation: A review and a research agenda. J. Strategic Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Frank, A.G.; Mendes, G.H.S.; Ayala, N.F.; Ghezzi, A. Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technol. Forecast. Soc. 2019, 141, 341–351. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Rubio, F.; Valero, F. Impact of digital transformation on the automotive industry. Technol. Forecast. Soc. 2021, 162, 120343. [Google Scholar] [CrossRef] [PubMed]
- Guenzi, P.; Habel, J. Mastering the Digital Transformation of Sales. Calif. Manage. Rev. 2020, 62, 57–85. [Google Scholar] [CrossRef]
- Henderson, D. Demand-side broadband policy in the context of digital transformation: An examination of SME digital advisory policies in Wales. Telecommun. Policy 2020, 44, 102024. [Google Scholar] [CrossRef]
- Pan, W.R.; Xie, T.; Wang, Z.W.; Ma, L.S. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2021, 139, 303–311. [Google Scholar] [CrossRef]
- Zeng, G.Y.; Lei, L.X. Digital transformation and corporate total factor productivity: Empirical evidence based on listed enterprises. Discrete. Dyn. Nat. Soc. 2021, 2021, 9155861. [Google Scholar] [CrossRef]
- Feng, C.; Huang, J.B.; Wang, M. Analysis of green total-factor productivity in China’s regional metal industry: A meta-frontier approach. Resour. Policy 2018, 58, 219–229. [Google Scholar] [CrossRef]
- Amri, F.; Ben Zaied, Y.; Ben Lahouel, B. ICT, total factor productivity, and carbon dioxide emissions in Tunisia. Technol. Forecast. Soc. 2019, 146, 212–217. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, H.Q.; Liu, S.S.; Zhang, H.B. Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod. 2019, 211, 61–69. [Google Scholar] [CrossRef]
- Du, K.R.; Li, J.L. Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energ. Policy 2019, 131, 240–250. [Google Scholar] [CrossRef]
- Wang, H.R.; Cui, H.R.; Zhao, Q.Z. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean. Prod. 2021, 288, 125624. [Google Scholar] [CrossRef]
- Song, M.L.; Peng, L.C.; Shang, Y.P.; Zhao, X. Green technology progress and total factor productivity of resource-based enterprises: A perspective of technical compensation of environmental regulation. Technol. Forecast. Soc. 2022, 174, 121276. [Google Scholar] [CrossRef]
- Gaglio, C.; Kraemer-Mbula, E.; Lorenz, E. The effects of digital transformation on innovation and productivity: Firm-level evidence of South African manufacturing micro and small enterprises. Technol. Forecast. Soc. 2022, 182, 121785. [Google Scholar] [CrossRef]
- Ferreira, J.J.M.; Fernandes, C.I.; Ferreira, F.A.F. To be or not to be digital, that is the question: Firm innovation and performance. J. Bus. Res. 2019, 101, 583–590. [Google Scholar] [CrossRef]
- Nambisan, S.; Wright, M.; Feldman, M. The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Res. Policy 2019, 48, 103773. [Google Scholar] [CrossRef]
- Barney, J.B. The resource-based theory of the firm. Organ. Sci. 1996, 7, 469. [Google Scholar] [CrossRef]
- Barney, J.B. Strategic management: From informed conversation to academic discipline. Acad. Manag. Perspect. 2002, 16, 53–57. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strategic Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Teece, D.; Peteraf, M.; Leih, S. Dynamic capabilities and organizational agility: Risk, uncertainty and entrepreneurial management in the innovation economy. Calif. Manag. Rev. 2016, 58, 13–35. [Google Scholar] [CrossRef] [Green Version]
- Porter, M.E. How competitive forces shape strategy. Harvard Bus. Rev. 1979, 57, 137. [Google Scholar]
- Williamson, O.E. Markets and Hierarchies: Analysis and Antitrust Implications, 1st ed.; Free Press: New York, NY, USA, 1975. [Google Scholar]
- Aubert, B.A.; Rivard, S.; Patry, M. A transaction cost approach to outsourcing behavior: Some empirical evidence. Inform. Manag.-Amster. 1996, 30, 51–64. [Google Scholar] [CrossRef]
- Liu, D.Y.; Chen, S.W.; Chou, T.C. Resource fit in digital transformation. Manage. Decis. 2012, 49, 1728–1742. [Google Scholar] [CrossRef]
- Kretschmer, T.; Khashabi, P. Digital transformation and organization design: An integrated approach. Calif. Manag. Rev. 2020, 62, 86–104. [Google Scholar] [CrossRef]
- Jafari-Sadeghi, V.; Garcia-Perez, A.; Candelo, E.; Couturier, J. Exploring the impact of digital transformation on technology entrepreneurship and technological market expansion: The role of technology readiness, exploration and exploitation. J. Bus. Res. 2021, 124, 100–111. [Google Scholar] [CrossRef]
- Yang, M.Y.; Fu, M.T.; Zhang, Z.H. The adoption of digital technologies in supply chains: Drivers, process and impact. Technol. Forecast. Soc. 2021, 169, 120795. [Google Scholar] [CrossRef]
- Wu, F.; Hu, H.Z.; Lin, H.Y.; Ren, X.Y. Enterprise digital transformation and capital market performance: Empirical evidence from stock liquidity. Manag. World 2021, 37, 130–144+10. [Google Scholar]
- Elia, S.; Giuffrida, M.; Mariani, M.M.; Bresciani, S. Resources and digital export: An RBV perspective on the role of digital technologies and capabilities in cross-border e-commerce. J. Bus. Res. 2021, 132, 158–169. [Google Scholar] [CrossRef]
- Giustiziero, G.; Kretschmer, T.; Somaya, D.; Wu, B. Hyperspecialization and hyperscaling: A resource-based theory of the digital firm. Strateg. Manag. J. 2022; early access. [Google Scholar] [CrossRef]
- Schilke, O.; Hu, S.; Helfat, C.E. Quo Vadis, Dynamic Capabilities? A Content Analytic Review of the Current State of Knowledge and Recommendations for Future Research. Acad. Manag. Ann. 2018, 12, 390–439. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.R.; Zhang, J.; Zhang, J.H.; Ma, J.H.; Zhang, Y.L. Total factor productivity assessment of tourism industry: Evidence from China. Asia. Pac. J. Tour. Res. 2015, 20, 280–294. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The race between man and machine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef] [Green Version]
- Tu, W.; He, J. Can digital transformation facilitate firms’ M&A: Empirical discovery based on machine learning. Emerg. Mark. Financ. Tr. 2022, 59, 113–128. [Google Scholar]
- Ansari, F. Cost-based text understanding to improve maintenance knowledge intelligence in manufacturing enterprises. Comput. Ind. Eng. 2020, 141, 106319. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef] [Green Version]
- Schweidel, D.A.; Bart, Y.; Inman, J.J.; Stephen, A.T.; Libai, B.; Andrews, M.; Rosario, A.B.; Chae, I.; Chen, Z.; Kupor, D.; et al. How consumer digital signals are reshaping the customer journey. J. Acad. Market. Sci. 2022, 50, 1257–1276. [Google Scholar] [CrossRef]
- Gupta, M.; George, J.F. Toward the development of a big data analytics capability. Inform. Manag.-Amster. 2016, 53, 1049–1064. [Google Scholar] [CrossRef]
- Ghezzi, A.; Cavallo, A. Agile business model innovation in digital entrepreneurship: Lean startup approaches. J. Bus. Res. 2020, 110, 519–537. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.L.; Li, H.H.; Zhong, K.Y. Digital economy development, industrial structure upgrading and green total factor productivity: Empirical evidence from China’s cities. Int. J. Env. Res. Pub. He. 2022, 19, 2414. [Google Scholar] [CrossRef]
- Lu, X.H.; Jiang, X.; Gong, M.Q. How land transfer marketization influence on green total factor productivity from the approach of industrial structure? Evidence from China. Land Use Policy 2020, 95, 104610. [Google Scholar] [CrossRef]
- Yu, B.B. The impact of the internet on industrial green productivity: Evidence from China. Technol. Forecast. Soc. 2022, 177, 121527. [Google Scholar] [CrossRef]
- Mohapatra, S. IT and Porter’s competitive forces model and strategies, information systems theory: Explaining and predicting our digital society. Integr. Ser. Inf. Syst. 2010, 28, 265–281. [Google Scholar]
- Obal, M.; Lancioni, R.A. Maximizing buyer-supplier relationships in the digital era: Concept and research agenda. Ind. Market. Manag. 2013, 42, 851–854. [Google Scholar] [CrossRef]
- Cavalcante, I.M.; Frazzon, E.M.; Forcellini, F.A.; Ivanov, D. A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. Int. J. Inform. Manag. 2019, 49, 86–97. [Google Scholar] [CrossRef]
- Zhang, X.D.; Zou, M.F.; Liu, W.M.; Zhang, Y.F. Does a firm’s supplier concentration affect its cash holding? Econ. Model. 2020, 90, 527–535. [Google Scholar] [CrossRef]
- Tang, X.; Rai, A. The moderating effects of supplier portfolio characteristics on the competitive performance impacts of supplier-facing process capabilities. J. Oper. Manag. 2012, 30, 85–98. [Google Scholar] [CrossRef]
- Slack, N.; Brandon-Jones, A.; Johnston, R. Essentials of Operations Management, 1st ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Cheng, Z.; Nault, B.R. Relative industry concentration and customer-driven IT spillovers. Inform. Syst. Res. 2012, 23, 340–355. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.; Haefner, B.; Biehler, M.; Lanza, G. Digital DNA in quality control cycles of high-precision products. CIRP Ann-Manuf. Techn. 2020, 69, 373–376. [Google Scholar] [CrossRef]
- Buyukozkan, G.; Gocer, F. Digital supply chain: Literature review and a proposed framework for future research. Comput. Ind. 2018, 97, 157–177. [Google Scholar] [CrossRef]
- Kopalle, P.K.; Kumar, V.; Subramaniam, M. How legacy firms can embrace the digital ecosystem via digital customer orientation. J. Acad. Market. Sci. 2020, 48, 114–131. [Google Scholar] [CrossRef]
- Ma, X.F.; Wang, W.M.; Wu, J.G.; Zhang, W.L. Corporate customer concentration and stock price crash risk. J. Bank Financ. 2020, 119, 105903. [Google Scholar] [CrossRef]
- Huang, H.H.; Lobo, G.J.; Wang, C.; Xie, H. Customer concentration and corporate tax avoidance. J. Bank Financ. 2016, 72, 184–200. [Google Scholar] [CrossRef]
- Wang, J.H.; Mao, N. Customer and tax behaviour: How customer concentration affects suppliers’ tax avoidance. Account. Forum 2021, 45, 363–388. [Google Scholar] [CrossRef]
- Shen, H.Y.; Xia, N.; Zhang, J. Customer-based concentration and firm innovation. Asia-Pac. J. Financ. St. 2018, 47, 248–279. [Google Scholar] [CrossRef]
- Peng, X.A.; Wang, X.Y.; Yan, L.N. How does customer concentration affect informal financing? Int. Rev. Econ. Financ. 2019, 63, 152–162. [Google Scholar] [CrossRef]
- Zhao, W.X.; Wang, C.Y.; Wan, L.; Wang, Q.; Luo, B.A. Customer concentration and exploratory innovation: The mediating effect of perceived performance-reducing threats. J Bus. Econ. Manag. 2021, 22, 940–957. [Google Scholar] [CrossRef]
- Zhang, J.C.; Long, J.; Schaewen, A.M.E. How does digital transformation improve organizational resilience? Findings from PLS-SEM and fsQCA. Sustainability 2021, 13, 11487. [Google Scholar] [CrossRef]
- Qian, X.; Kang, J.; Tang, Y. Industrial policy, efficiency of capital allocation and firm’s total factor productivity: Evidence from a natural experiment in China. China Ind. Econ. 2018, 35, 42–59. [Google Scholar]
- Levinsohn, J.; Petrin, A. Estimating production functions using inputs to control for un-observables. Rev. Econ. Stud. 2003, 70, 317–341. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, S.P.; Li, Q. How does the development of digital financial inclusion affect the total factor productivity of listed companies? Evidence from China. Financ. Res. Lett. 2022, 47, 102956. [Google Scholar] [CrossRef]
- Dhaliwal, D.; Judd, J.S.; Serfling, M.; Shaikh, S. Customer concentration risk and the cost of equity capital. J. Account. Econ. 2016, 61, 23–48. [Google Scholar] [CrossRef]
- Campello, M.; Gao, J. Customer concentration and loan contract terms. J. Financ. Econ. 2017, 123, 108–136. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. Specification, evaluation, and interpretation of structural equation models. J. Acad. Market. Sci. 2012, 40, 8–34. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Hess, T.; Matt, C.; Benlian, A.; Wiesbock, F. Options for formulating a digital transformation strategy. MIS Quart. 2016, 15, 123–139. [Google Scholar]
- Rupeika-Apoga, R.; Petrovska, K.; Bule, L. The effect of digital orientation and digital capability on digital transformation of SMEs during the COVID-19 pandemic. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 669–685. [Google Scholar] [CrossRef]
- Ren, Y.J.; Zhang, X.; Chen, H. The impact of new energy enterprises’ digital transformation on their total factor productivity: Empirical evidence from China. Sustainability 2022, 14, 13928. [Google Scholar] [CrossRef]
- Li, N.; Wang, X.H.; Wang, Z.R.; Luan, X.Y. The impact of digital transformation on corporate total factor productivity. Front. Psychol. 2022, 13, 1071986. [Google Scholar] [CrossRef]
Type | Variable | Symbol | Measurement |
---|---|---|---|
Explanatory variables | Digital technology | digte | Use PYTHON to conduct text analysis of the annual reports of listed firms to form keyword frequency statistics |
Digital application | digap | Use PYTHON to conduct text analysis of the annual reports of listed firms to form keyword frequency statistics | |
Explained variable | Total factor productivity | totfp | Calculate efficiency of enterprises transforming various inputs (net fixed assets, employee wages, cash for purchasing goods and paying services) into outputs (main business income) |
Mediating variables | Supplier concentration | supco | Purchases from the firms’ top five suppliers divided by the total purchases |
Customer concentration | cusco | Sales to the firms’ top five customers divided by the total sales |
Variables | Number | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
digte | 21,799 | 0.889 | 1.254 | 0.000 | 6.140 |
digap | 21,799 | 0.948 | 1.156 | 0.000 | 6.033 |
totfp | 21,799 | 9.067 | 1.095 | 5.568 | 13.530 |
supco (%) | 21,799 | 34.100 | 19.680 | 0.330 | 99.860 |
cusco (%) | 21,799 | 30.310 | 21.540 | 0.010 | 99.990 |
Variables | Digte | Digap | Supco | Cusco | Totfp |
---|---|---|---|---|---|
digte | 1 | ||||
digap | 0.594 *** | 1 | |||
supco | −0.077 *** | −0.095 *** | 1 | ||
cusco | −0.032 *** | −0.108 *** | 0.263 *** | 1 | |
totfp | 0.086 *** | 0.157 *** | −0.169 *** | −0.199 *** | 1 |
Effects | Coefficients | Standard Error | Z Value | p Value | 95% CI | |
---|---|---|---|---|---|---|
c1 | −0.012 | 0.008 | −1.410 | 0.159 | −0.028 | 0.005 |
c2 | 0.164 | 0.008 | 20.000 | 0.000 | 0.148 | 0.180 |
constant | 8.151 | 0.041 | 198.080 | 0.000 | 8.071 | 8.232 |
Effects | Coefficients | Standard Error | Z Value | p Value | 95% CI | |
---|---|---|---|---|---|---|
a1 | −0.031 | 0.008 | −3.670 | 0.000 | −0.047 | −0.014 |
a3 | −0.077 | 0.008 | −9.250 | 0.000 | −0.094 | −0.061 |
constant | 1.818 | 0.012 | 152.990 | 0.000 | 1.795 | 1.841 |
a2 | 0.049 | 0.008 | 5.870 | 0.000 | 0.033 | 0.065 |
a4 | −0.137 | 0.008 | −16.500 | 0.000 | −0.153 | −0.121 |
constant | 1.485 | 0.011 | 135.910 | 0.000 | 1.463 | 1.506 |
b1 | −0.117 | 0.007 | −17.190 | 0.000 | −0.130 | −0.104 |
b2 | −0.155 | 0.007 | −22.870 | 0.000 | −0.168 | −0.142 |
c1′ | −0.008 | 0.008 | −0.950 | 0.342 | −0.024 | 0.008 |
c2′ | 0.135 | 0.008 | 16.560 | 0.000 | 0.119 | 0.151 |
constant | 8.631 | 0.042 | 204.240 | 0.000 | 8.549 | 8.714 |
Effects | Coefficients | Standard Error | Z Value | p Value | 95% CI | |
---|---|---|---|---|---|---|
a1 × b1 | 0.004 | 0.001 | 3.590 | 0.000 | 0.002 | 0.006 |
a3 × b1 | 0.009 | 0.001 | 8.140 | 0.000 | 0.007 | 0.011 |
a3 × b2 | −0.008 | 0.001 | −5.690 | 0.000 | −0.010 | −0.005 |
a4 × b2 | 0.021 | 0.002 | 13.350 | 0.000 | 0.018 | 0.024 |
Effects | Coefficients | Standard Error | Z Value | p Value | 95% CI | |
---|---|---|---|---|---|---|
a1 × b1 − a3 × b2 | 0.004 | 0.002 | 2.380 | 0.017 | 0.001 | 0.007 |
a3 × b1 − a4 × b2 | 0.012 | 0.002 | 6.060 | 0.000 | 0.008 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, Q. How Does Digital Transformation Facilitate Enterprise Total Factor Productivity? The Multiple Mediators of Supplier Concentration and Customer Concentration. Sustainability 2023, 15, 1896. https://doi.org/10.3390/su15031896
Zhang H, Zhang Q. How Does Digital Transformation Facilitate Enterprise Total Factor Productivity? The Multiple Mediators of Supplier Concentration and Customer Concentration. Sustainability. 2023; 15(3):1896. https://doi.org/10.3390/su15031896
Chicago/Turabian StyleZhang, Hua, and Qiwang Zhang. 2023. "How Does Digital Transformation Facilitate Enterprise Total Factor Productivity? The Multiple Mediators of Supplier Concentration and Customer Concentration" Sustainability 15, no. 3: 1896. https://doi.org/10.3390/su15031896