Can Mega Sporting Events Promote Urban Green Transformation? Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. The Environmental Effects of MSE
2.2. The Drivers of Urban Green Transformation
3. Methodology and Data
3.1. Model Settings
3.2. Variable Selection and Descriptive Statistics
3.2.1. Explained Variable
3.2.2. Explanatory Variable
3.2.3. Control Variables
4. Results of Empirical Analysis
4.1. Baseline Regression
4.2. Robustness Test
4.2.1. Parallel Trend Test
4.2.2. Sample Change
4.2.3. Considering Lag Effects
4.2.4. Adjustment Time Interval
4.2.5. Endogenous Treatment
4.3. Heterogeneity Discussion
4.4. Mechanism Exploration
5. Discussion
5.1. Comparison with Existing Results
5.2. Limitations of the Study and Future Research
6. Conclusions and Policy Recommendations
- With the international emphasis on the Olympic spirit, an increasing number of cities will have the opportunity to host various types of MSEs. The host countries and cities should embrace the long-term strategic goal of green and sustainable development. They should seize the opportunity to host MSEs with international influence to implement the IOC’s principles of sustainable development, strategies, roadmaps, and environmental protection standards. Simultaneously, they should innovate their institutional mechanisms, strengthen the urban governance capacity of government departments, and create a sustainable management model in line with their national conditions. The overall aim would be to minimize the negative impacts of MSE on the ecological environment while stimulating economic growth, successfully achieving both green sports and sustainable economic development, to promote the green transformation of the host city.
- Our empirical evidence showed that the Chinese government should prioritize coastal cities with high levels of public environmental concern when selecting host cities for MSEs. Choosing to hold MSEs in these cities can maximize the driving force of MSEs on urban green transformation while benefiting from international influence.
- The governments of host cities in China should actively promote the concept of green sports, thereby enhancing public environmental concern during the events. Additionally, they should implement effective policy measures to encourage residents to use public transportation, advance the digital economy, and expand tertiary industries. By increasing infrastructure quality, expanding the coverage of public services, adjusting the industrial structure, and upgrading the functions of cities, full advantage can be taken of the economic and social benefits of MSE. This accelerates urban renewal towards increased green efficiency, further enhancing the level of green economic development of the city and facilitating urban green transformation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emery, P.R. Bidding to host a major sports event: The local organising committee perspective. Int. J. Public Sect. Manag. 2002, 15, 316–335. [Google Scholar] [CrossRef]
- Allan, G.J.; Lecca, P.; Swales, K. The impacts of temporary but anticipated tourism spending: An application to the Glasgow 2014 Commonwealth Games. Tour. Manag. 2017, 59, 325–337. [Google Scholar] [CrossRef]
- Wang, M.; Bao, H.X. Mega-event effects on the housing market: Evidence from the Beijing 2008 Olympic Games. Cities 2018, 72, 207–216. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, X.; Zhou, B.; Zhao, Z. Impacts of a mega sporting event on local carbon emissions: A case of the 2014 Nanjing Youth Olympics. China Econ. Rev. 2022, 73, 101782. [Google Scholar] [CrossRef]
- Pearce, D. Green economics. Environ. Values 1992, 1, 3–13. [Google Scholar] [CrossRef]
- Parris, T.M.; Kates, R.W. Characterizing and measuring sustainable development. Annu. Rev. Environ. Resour. 2003, 28, 559–586. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, H.; Wheaton, B. The olympic games, agenda 2020 and action sports: The promise, politics and performance of organisational change. Int. J. Sport Policy Politics 2019, 11, 465–483. [Google Scholar] [CrossRef]
- Agha, N.; Fairley, S.; Gibson, H. Considering legacy as a multi-dimensional construct: The legacy of the Olympic Games. Sport Manag. Rev. 2012, 15, 125–139. [Google Scholar] [CrossRef]
- Gran, T.J., Jr. Green monsters: Examining the environmental impact of sports stadiums. Vill. Envtl. LJ 2014, 25, 149. [Google Scholar]
- Zhu, J.; Liang, Z.; Zhang, C.; Wei, X. How are sports management, renewable energy, and green finance related? A survey evidence. Renew. Energy 2023, 206, 39–46. [Google Scholar] [CrossRef]
- Dolf, M.; Teehan, P. Reducing the carbon footprint of spectator and team travel at the University of British Columbia’s varsity sports events. Sport Manag. Rev. 2015, 18, 244–255. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing. Energy Policy 2008, 36, 3422–3426. [Google Scholar] [CrossRef]
- Duan, J.; Yi, X.; Kunzmann, K.R. Big Events and Urban Governance in China: Experience from the Youth Olympic Games in Nanjing. disP-Plan. Rev. 2016, 52, 18–30. [Google Scholar] [CrossRef]
- Liu, G.; Bian, S.; Lu, X. Green technologies behind the Beijing 2022 Olympic and Paralympic winter games. Environ. Sci. Ecotechnol. 2023, 16, 100262. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.; Leskinen, A.; Abbaszade, G.; Orasche, J.; Sainio, M.; Mikkonen, S.; Koponen, H.; Rönkkö, T.; Ruusunen, J.; Kuuspalo, K.; et al. PM2.5 concentration and composition in the urban air of Nanjing, China: Effects of emission control measures applied during the 2014 Youth Olympic Games. Sci. Total Environ. 2019, 652, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Chen, B.; Park, B. Effect of 2008’s Beijing Olympic Games on environmental efficiency of 268 China’s cities. J. Clean. Prod. 2018, 172, 1423–1432. [Google Scholar] [CrossRef]
- Kobierecki, M.M.; Strożek, P. Sports mega-events and shaping the international image of states: How hosting the Olympic Games and FIFA World Cups affects interest in host nations. Int. Politics 2021, 58, 49–70. [Google Scholar] [CrossRef]
- Preuss, H. Lasting effects of major sporting events. Inst. Sport Sci. 2006, 1–11. Available online: https://idrottsforum.org/articles/preuss/preuss061213.pdf (accessed on 12 December 2006).
- He, G.; Fan, M.; Zhou, M. The effect of air pollution on mortality in China: Evidence from the 2008 Beijing Olympic Games. J. Environ. Econ. Manag. 2016, 79, 18–39. [Google Scholar] [CrossRef]
- Yu, M.; Jing, W. Progress made in researches on issues about big sports events and ecological environment in China. J. Phys. Educ. 2014, 21, 57–60. [Google Scholar]
- Zhao, H.; Zheng, Y.; Li, T. Air quality and control measures evaluation during the 2014 Youth Olympic Games in Nanjing and its surrounding cities. Atmosphere 2017, 8, 100. [Google Scholar] [CrossRef]
- Liu, L.; Ogunc, A. Beijing Blue: Impact of the 2008 Olympic Games and 2014 APEC Summit on Air Quality. Atl. Econ. J. 2023, 51, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllidis, S.; Davakos, H. Growing cities and mass participant sport events: Traveling behaviors and carbon dioxide emissions. C 2019, 5, 49. [Google Scholar] [CrossRef]
- Chen, Y.; Long, X.; Salman, M. Did the 2014 Nanjing Youth Olympic Games enhance environmental efficiency? New evidence from a quasi-natural experiment. Energy Policy 2021, 159, 112581. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, S.; Xu, J.; Zhu, T. The CO2 reduction effects and climate benefit of Beijing 2008 Summer Olympics green practice. Energy Procedia 2011, 5, 280–296. [Google Scholar] [CrossRef]
- Ito, E.; Higham, J.; Cheer, J. Carbon emission reduction and the Tokyo 2020 Olympics. Ann. Tour. Res. Empir. Insights 2022, 3, 100056. [Google Scholar] [CrossRef]
- Barbier, E. The policy challenges for green economy and sustainable economic development. Nat. Resour. Forum 2011, 35, 233–245. [Google Scholar] [CrossRef]
- Asongu, S.A.; Odhiambo, N.M. Economic development thresholds for a green economy in sub-Saharan Africa. Energy Explor. Exploit. 2020, 38, 3–17. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Measuring the green economic growth in China: Influencing factors and policy perspectives. Energy 2022, 241, 122518. [Google Scholar] [CrossRef]
- Xia, F.; Xu, J. Green total factor productivity: A re-examination of quality of growth for provinces in China. China Econ. Rev. 2020, 62, 101454. [Google Scholar] [CrossRef]
- Lee, C.C.; Lee, C.C. How does green finance affect green total factor productivity? Evidence from China. Energy Econ. 2022, 107, 105863. [Google Scholar] [CrossRef]
- Fu, J.; Xiao, G.; Wu, C. Urban green transformation in Northeast China: A comparative study with Jiangsu, Zhejiang and Guangdong provinces. J. Clean. Prod. 2020, 273, 122551. [Google Scholar] [CrossRef]
- Brown, D.; McGranahan, G. The urban informal economy, local inclusion and achieving a global green transformation. Habitat Int. 2016, 53, 97–105. [Google Scholar] [CrossRef]
- Stobbelaar, D.J.; van der Knaap, W.; Spijker, J. Transformation towards green cities: Key conditions to accelerate change. Sustainability 2022, 14, 6410. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, C.; Che, L.; Wang, B. Spatio-temporal evolution and influencing factors of urban green development efficiency in China. J. Geogr. Sci. 2020, 30, 724–742. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C.V.D. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Liu, S. The policy outcomes of low-carbon city construction on urban green development: Evidence from a quasi-natural experiment conducted in China. Sustain. Cities Soc. 2021, 66, 102699. [Google Scholar] [CrossRef]
- Dechezleprêtre, A.; Sato, M. The impacts of environmental regulations on competitiveness. Rev. Environ. Econ. Policy 2017, 11, 183–206. [Google Scholar] [CrossRef]
- Bian, Z.; Liu, J.; Zhang, Y.; Peng, B.; Jiao, J. A green path towards sustainable development: The impact of carbon emissions trading system on urban green transformation development. J. Clean. Prod. 2024, 442, 140943. [Google Scholar] [CrossRef]
- Mensah, C.N.; Long, X.; Dauda, L.; Boamah, K.B.; Salman, M.; Appiah-Twum, F.; Tachie, A.K. Technological innovation and green growth in the Organization for Economic Cooperation and Development economies. J. Clean. Prod. 2019, 240, 118204. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y. Has technological innovation capability addressed environmental pollution from the dual perspective of FDI quantity and quality? Evidence from China. J. Clean. Prod. 2020, 258, 120941. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, X.; Wei, J.; Gao, X. Industrial structure upgrading, green total factor productivity and carbon emissions. Sustainability 2022, 14, 1009. [Google Scholar] [CrossRef]
- Li, R.; Wang, Q.; Liu, Y.; Jiang, R. Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade structural changes. Sustain. Prod. Consum. 2021, 27, 1149–1164. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, M.; Zhou, Y.; Wang, P.; Sheng, J.; He, K.; Wei, Y.-M.; Xie, R. Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach. Energy Policy 2019, 134, 110946. [Google Scholar] [CrossRef]
- Bissoon, O. Can better institutions attract more foreign direct investment (FDI)? Evidence from developing countries. Int. Res. J. Financ. Econ. 2012, 82, 142–158. [Google Scholar]
- Wang, H.; Dong, C.; Liu, Y. Beijing direct investment to its neighbors: A pollution haven or pollution halo effect? J. Clean. Prod. 2019, 239, 118062. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.; Bao, G.; Xiao, H. Heterogeneous spatial effects of FDI on CO2 emissions in China. Earth’s Future 2022, 10, e2021EF002331. [Google Scholar] [CrossRef]
- Beck, T.; Levine, R.; Levkov, A. Big bad banks? The winners and losers from bank deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- Song, M.; Wang, S.; Liu, Q. Environmental efficiency evaluation considering the maximization of desirable outputs and its application. Math. Comput. Model. 2013, 58, 1110–1116. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Lin, S.; Zhou, Z.; Hu, X.; Chen, S.; Huang, J. How can urban economic complexity promote green economic growth in China? The perspective of green technology innovation and industrial structure upgrading. J. Clean. Prod. 2024, 450, 141807. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, G.Z.; Kumar, N.; Shi, G. The promise of Beijing: Evaluating the impact of the 2008 Olympic Games on air quality. J. Environ. Econ. Manag. 2013, 66, 424–443. [Google Scholar] [CrossRef]
- Li, W.; Yang, G.; Li, X. Correlation between PM2.5 pollution and its public concern in China: Evidence from Baidu Index. J. Clean. Prod. 2021, 293, 126091. [Google Scholar] [CrossRef]
- Ceder, A.A.; Perera, S. Detecting and improving public-transit connectivity with case studies of two world sport events. Transp. Policy 2014, 33, 96–109. [Google Scholar] [CrossRef]
- Duffy, M.; Mair, J. Festival Encounters: Theoretical Perspectives on Festival Events; Routledge: London, UK, 2017. [Google Scholar]
- Ding, X.; Liu, X. Renewable energy development and transportation infrastructure matters for green economic growth? Empirical evidence from China. Econ. Anal. Policy 2023, 79, 634–646. [Google Scholar] [CrossRef]
- Holland, C.P. Internet and Social Media Strategy in Sports Marketing; ECIS: Munich, Germany, 2015. [Google Scholar]
- Wang, W.; Yang, X.; Cao, J.; Bu, W.; Adebayo, T.S.; Dilanchiev, A.; Ren, S. Energy internet, digital economy, and green economic growth: Evidence from China. Innov. Green Dev. 2022, 1, 100011. [Google Scholar] [CrossRef]
- Solberg, H.A.; Preuss, H. Major sport events and long-term tourism impacts. J. Sport Manag. 2007, 21, 213–234. [Google Scholar] [CrossRef]
- Ristova, C. Sports event tourism-an evolving business opportunity for the hotel industry. Act. Phys. Educ. Sport 2020, 10, 6–9. [Google Scholar]
- Xu, S.; Zhou, Y. OFDI, industrial structure upgrading and green development—Spatial effect based on China’s evidence. Sustainability 2023, 15, 2810. [Google Scholar] [CrossRef]
- Squicciarini, M.P. Devotion and development: Religiosity, education, and economic progress in nineteenth-century France. Am. Econ. Rev. 2020, 110, 3454–3491. [Google Scholar] [CrossRef]
- Lindau, L.A.; Petzhold, G.; Tavares, V.B.; Facchini, D. Mega events and the transformation of Rio de Janeiro into a mass-transit city. Res. Transp. Econ. 2016, 59, 196–203. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Data Source |
---|---|---|
Input indicators | Capital | The perpetual inventory method is used to measure the capital stock |
Labor | Year-end employment | |
Energy | Annual electricity consumption | |
Desirable output indicators | GDP | Deflating GDP for each year with 2000 as the base period |
Undesirable output indicators | Waste Water | Industrial wastewater discharge |
Smoke | Industrial soot emissions | |
Sulfur Dioxide | Industrial sulfur dioxide emissions |
Type | Variable | Symbol | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|---|
Explained variable | Green total factor productivity | GTFP | 6048 | 0.6593 | 0.0375 | 0.5431 | 0.7730 |
Explanatory variable | Six MSEs held in China | DID | 6048 | 0.0094522 | 0.096771 | 0 | 1 |
Control variables | Urban population density | POP | 6048 | 6.4631 | 0.9777 | 2.6390 | 9.5506 |
Gross domestic product per capita | PERGDP | 6048 | 9.9240 | 0.9025 | 4.6051 | 13.0556 | |
Foreign direct investment | FDI | 6048 | 9.1084 | 2.4068 | 0 | 14.9412 | |
Pollution control investment | PCI | 6048 | 10.1275 | 1.8735 | 0 | 15.3734 | |
R&D expenditure | R&D | 6048 | 0.1636 | 0.0498 | 0.0069 | 0.3647 | |
Human capital | HC | 6048 | 4.5855 | 1.0897 | 1.0612 | 9.7486 | |
Public policy | POLICY | 6048 | 0.52662 | 0.4993 | 0 | 1 |
GTFP | DID | POP | PERGDP | FDI | PCI | R&D | HC | POLICY | |
---|---|---|---|---|---|---|---|---|---|
GTFP | 1.0000 | ||||||||
DID | 0.1503 * | 1.0000 | |||||||
POP | 0.3698 * | 0.0454 * | 1.0000 | ||||||
PERGDP | 0.7365 * | 0.1403 * | 0.1473 * | 1.0000 | |||||
FDI | 0.6969 * | 0.1461 * | 0.4336 * | 0.6289 * | 1.0000 | ||||
PCI | 0.4411 * | 0.1068 * | 0.1919 * | 0.4152 * | 0.3947 * | 1.0000 | |||
R&D | 0.0355 * | −0.0359 * | −0.1694 * | −0.0395 * | −0.0832 * | −0.0077 | 1.0000 | ||
HC | 0.4075 * | 0.1402 * | 0.3301 * | 0.4721 * | 0.4568 * | 0.2224 * | −0.2015 * | 1.0000 | |
POLICY | 0.3738 * | 0.0766 * | 0.1802 * | 0.3372 * | 0.3248 * | 0.8648 * | 0.0144 | 0.1976 * | 1.0000 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Variables | GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | GTFP |
DID | 0.0433 *** | 0.0368 *** | 0.0264 *** | 0.0222 *** | 0.0221 *** | 0.0224 *** | 0.0201 *** | 0.0201 *** |
(0.0037) | (0.0035) | (0.0031) | (0.0030) | (0.0030) | (0.0030) | (0.0030) | (0.0030) | |
POP | 0.0117 *** | 0.0091 *** | 0.0071 *** | 0.0069 *** | 0.0070 *** | 0.0063 *** | 0.0063 *** | |
(0.0004) | (0.0004) | (0.0004) | (0.0004) | (0.0004) | (0.0004) | (0.0004) | ||
PERGDP | 0.0201 *** | 0.0164 *** | 0.0158 *** | 0.0166 *** | 0.0143 *** | 0.0143 *** | ||
(0.0006) | (0.0006) | (0.0006) | (0.0006) | (0.0007) | (0.0007) | |||
FDI | 0.0038 *** | 0.0037 *** | 0.0037 *** | 0.0034 *** | 0.0034 *** | |||
(0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | ||||
PCI | 0.0012 *** | 0.0012 *** | 0.0012 *** | 0.0009 *** | ||||
(0.0002) | (0.0002) | (0.0002) | (0.0003) | |||||
R&D | 0.0433 *** | 0.0495 *** | 0.0492 *** | |||||
(0.0067) | (0.0067) | (0.0067) | ||||||
HC | 0.0026 *** | 0.0026 *** | ||||||
(0.0003) | (0.0003) | |||||||
POLICY | 0.0016 * | |||||||
(0.0009) | ||||||||
Constant | 0.6246 *** | 0.5477 *** | 0.3845 *** | 0.4019 *** | 0.3990 *** | 0.3844 *** | 0.3984 *** | 0.4008 *** |
(0.0014) | (0.0031) | (0.0054) | (0.0052) | (0.0052) | (0.0057) | (0.0059) | (0.0061) | |
N | 6048 | 6048 | 6048 | 6048 | 6048 | 6048 | 6048 | 6048 |
R-squared | 0.598 | 0.649 | 0.718 | 0.740 | 0.742 | 0.744 | 0.747 | 0.747 |
Time trend | YES | YES | YES | YES | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES | YES | YES |
Sample Change | Considering Lag Effects | |||
---|---|---|---|---|
Variables | GTFP | GTFP | GTFP | GTFP |
DID_xb | 0.0233 *** | 0.0116 *** | ||
(0.0027) | (0.0022) | |||
L.DID | 0.0435 *** | 0.0195 *** | ||
(0.0040) | (0.0032) | |||
POP | 0.0062 *** | 0.0063 *** | ||
(0.0004) | (0.0004) | |||
PERGDP | 0.0142 *** | 0.0144 *** | ||
(0.0007) | (0.0007) | |||
FDI | 0.0035 *** | 0.0035 *** | ||
(0.0002) | (0.0002) | |||
PCI | 0.0009 *** | 0.0009 *** | ||
(0.0003) | (0.0003) | |||
R&D | 0.0503 *** | 0.0477 *** | ||
(0.0069) | (0.0069) | |||
HC | 0.0027 *** | 0.0027 *** | ||
(0.0004) | (0.0004) | |||
POLICY | 0.0019 ** | 0.0013 | ||
(0.0009) | (0.0009) | |||
Constant | 0.6246 *** | 0.4014 *** | 0.6266 *** | 0.4003 *** |
(0.0014) | (0.0062) | (0.0014) | (0.0063) | |
N | 6048 | 6048 | 6048 | 6048 |
R-squared | 0.590 | 0.743 | 0.584 | 0.739 |
Time trend | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES |
(1) 2001–2020 | (2) 2002–2020 | (3) 2000–2019 | (4) 2000–2018 | |
---|---|---|---|---|
Variables | GTFP | GTFP | GTFP | GTFP |
DID | 0.0198 *** | 0.0196 *** | 0.0206 *** | 0.0213 *** |
(0.0030) | (0.0030) | (0.0032) | (0.0034) | |
POP | 0.0063 *** | 0.0064 *** | 0.0062 *** | 0.0060 *** |
(0.0004) | (0.0004) | (0.0004) | (0.0004) | |
PERGDP | 0.0144 *** | 0.0144 *** | 0.0143 *** | 0.0142 *** |
(0.0007) | (0.0007) | (0.0007) | (0.0007) | |
FDI | 0.0035 *** | 0.0035 *** | 0.0034 *** | 0.0035 *** |
(0.0002) | (0.0002) | (0.0002) | (0.0002) | |
PCI | 0.0009 *** | 0.0011 *** | 0.0009 *** | 0.0009 *** |
(0.0003) | (0.0003) | (0.0003) | (0.0003) | |
R&D | 0.0477 *** | 0.0444 *** | 0.0509 *** | 0.0527 *** |
(0.0069) | (0.0071) | (0.0069) | (0.0071) | |
HC | 0.0027 *** | 0.0026 *** | 0.0026 *** | 0.0027 *** |
(0.0004) | (0.0004) | (0.0004) | (0.0004) | |
POLICY | 0.0013 | 0.0007 | 0.0017 * | 0.0019 ** |
(0.0009) | (0.0010) | (0.0009) | (0.0009) | |
Constant | 0.4006 *** | 0.4018 *** | 0.4016 *** | 0.4024 *** |
(0.0063) | (0.0065) | (0.0062) | (0.0064) | |
N | 5760 | 5472 | 5760 | 5472 |
R-squared | 0.740 | 0.728 | 0.744 | 0.739 |
Time trend | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES |
(1) 2SLS | (2) GMM | (3) LIML | |
---|---|---|---|
Variables | GTFP | GTFP | GTFP |
DID | 0.0200 *** | 0.0200 *** | 0.0200 *** |
(0.0032) | (0.0032) | (0.0032) | |
POP | 0.0063 *** | 0.0063 *** | 0.0063 *** |
(0.0004) | (0.0004) | (0.0004) | |
PERGDP | 0.0144 *** | 0.0144 *** | 0.0144 *** |
(0.0007) | (0.0007) | (0.0007) | |
FDI | 0.0035 *** | 0.0035 *** | 0.0035 *** |
(0.0002) | (0.0002) | (0.0002) | |
PCI | 0.0009 *** | 0.0009 *** | 0.0009 *** |
(0.0003) | (0.0003) | (0.0003) | |
R&D | 0.0477 *** | 0.0477 *** | 0.0477 *** |
(0.0068) | (0.0068) | (0.0068) | |
HC | 0.0027 *** | 0.0027 *** | 0.0027 *** |
(0.0003) | (0.0003) | (0.0003) | |
POLICY | 0.0013 | 0.0013 | 0.0013 |
(0.0009) | (0.0009) | (0.0009) | |
Constant | 0.4279 *** | 0.4279 *** | 0.4279 *** |
(0.0082) | (0.0082) | (0.0082) | |
N | 5760 | 5760 | 5760 |
R-squared | 0.740 | 0.740 | 0.740 |
Time trend | YES | YES | YES |
Province FE | YES | YES | YES |
Time FE | YES | YES | YES |
Public_H | Public_L | |||
---|---|---|---|---|
Variables | GTFP | GTFP | GTFP | GTFP |
DID | 0.0526 *** | 0.0205 *** | 0.0447 *** | 0.0194 *** |
(0.0051) | (0.0042) | (0.0078) | (0.0062) | |
POP | 0.0068 *** | 0.0055 *** | ||
(0.0006) | (0.0005) | |||
PERGDP | 0.0169 *** | 0.0120 *** | ||
(0.0011) | (0.0009) | |||
FDI | 0.0034 *** | 0.0037 *** | ||
(0.0003) | (0.0002) | |||
PCI | 0.0008 * | 0.0012 *** | ||
(0.0005) | (0.0003) | |||
R&D | 0.0339 *** | 0.0550 *** | ||
(0.0111) | (0.0088) | |||
HC | 0.0025 *** | 0.0023 *** | ||
(0.0005) | (0.0005) | |||
POLICY | 0.0002 | 0.0033 *** | ||
(0.0015) | (0.0012) | |||
Constant | 0.6220 *** | 0.3837 *** | 0.6239 *** | 0.4214 *** |
(0.0065) | (0.0114) | (0.0014) | (0.0079) | |
N | 2562 | 2562 | 3486 | 3486 |
R-squared | 0.534 | 0.707 | 0.526 | 0.701 |
Time trend | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES |
City_C | City_L | |||
---|---|---|---|---|
Variables | GTFP | GTFP | GTFP | GTFP |
DID | 0.0575 *** | 0.0294 *** | 0.0333 *** | 0.0148 *** |
(0.0062) | (0.0055) | (0.0046) | (0.0037) | |
POP | 0.0077 *** | 0.0060 *** | ||
(0.0013) | (0.0004) | |||
PERGDP | 0.0147 *** | 0.0141 *** | ||
(0.0022) | (0.0007) | |||
FDI | 0.0045 *** | 0.0035 *** | ||
(0.0007) | (0.0002) | |||
PCI | 0.0023 *** | 0.0007 *** | ||
(0.0006) | (0.0003) | |||
R&D | 0.0335 ** | 0.0460 *** | ||
(0.0166) | (0.0074) | |||
HC | 0.0019 * | 0.0025 *** | ||
(0.0010) | (0.0004) | |||
POLICY | −0.0079 *** | 0.0032 *** | ||
(0.0024) | (0.0010) | |||
Constant | 0.6471 *** | 0.3739 *** | 0.6202 *** | 0.4070 *** |
(0.0034) | (0.0211) | (0.0015) | (0.0065) | |
N | 987 | 987 | 5061 | 5061 |
R-squared | 0.633 | 0.752 | 0.578 | 0.732 |
Time trend | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES |
PT | DE | IU | ||||
---|---|---|---|---|---|---|
Variables | GTFP | GTFP | GTFP | GTFP | GTFP | GTFP |
DID | 1.0224 *** | 0.5205 *** | 0.1812 *** | |||
(0.1078) | (0.0871) | (0.0270) | ||||
PT | 0.0080 *** | |||||
(0.0004) | ||||||
DE | 0.0155 *** | |||||
(0.0004) | ||||||
IU | 0.0096 *** | |||||
(0.0015) | ||||||
POP | 0.3357 *** | 0.0036 *** | 0.1814 *** | 0.0035 *** | 0.0186 *** | 0.0061 *** |
(0.0142) | (0.0004) | (0.0115) | (0.0004) | (0.0036) | (0.0004) | |
PERGDP | 0.5011 *** | 0.0104 *** | 0.1925 *** | 0.0114 *** | −0.1569 *** | 0.0159 *** |
(0.0237) | (0.0007) | (0.0192) | (0.0006) | (0.0059) | (0.0007) | |
FDI | 0.0907 *** | 0.0028 *** | 0.1137 *** | 0.0017 *** | 0.0229 *** | 0.0033 *** |
(0.0067) | (0.0002) | (0.0055) | (0.0002) | (0.0017) | (0.0002) | |
PCI | 0.0427 *** | 0.0005 ** | 0.0337 *** | 0.0003 | −0.0019 | 0.0009 *** |
(0.0092) | (0.0002) | (0.0075) | (0.0002) | (0.0023) | (0.0003) | |
R&D | 0.2489 | 0.0471 *** | 1.1923 *** | 0.0307 *** | −0.2735 *** | 0.0517 *** |
(0.2393) | (0.0064) | (0.1934) | (0.0060) | (0.0600) | (0.0067) | |
HC | 0.3450 *** | −0.0000 | 0.2401 *** | −0.0010 *** | 0.0914 *** | 0.0019 *** |
(0.0123) | (0.0004) | (0.0099) | (0.0003) | (0.0031) | (0.0004) | |
POLICY | −0.0341 | 0.0019** | 0.0349 | 0.0011 | −0.0081 | 0.0017 * |
(0.0318) | (0.0009) | (0.0257) | (0.0008) | (0.0080) | (0.0009) | |
Constant | −3.6837 *** | 0.4291 *** | −3.6291 *** | 0.4558 *** | 4.3485 *** | 0.3572 *** |
(0.2179) | (0.0060) | (0.1762) | (0.0057) | (0.0547) | (0.0090) | |
N | 6048 | 6048 | 6048 | 6048 | 6048 | 6048 |
R-squared | 0.706 | 0.766 | 0.818 | 0.796 | 0.471 | 0.747 |
Time trend | YES | YES | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Lin, S.; Shi, J.; Huang, J.; Han, X. Can Mega Sporting Events Promote Urban Green Transformation? Evidence from China. Sustainability 2024, 16, 6109. https://doi.org/10.3390/su16146109
Zhou Z, Lin S, Shi J, Huang J, Han X. Can Mega Sporting Events Promote Urban Green Transformation? Evidence from China. Sustainability. 2024; 16(14):6109. https://doi.org/10.3390/su16146109
Chicago/Turabian StyleZhou, Zihao, Shanlang Lin, Jianfeng Shi, Junpei Huang, and Xiaoxin Han. 2024. "Can Mega Sporting Events Promote Urban Green Transformation? Evidence from China" Sustainability 16, no. 14: 6109. https://doi.org/10.3390/su16146109