Understanding Zinc Transport in Estuarine Environments: Insights from Sediment Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Points
2.2. Sediment Sample Groups
2.3. Physical and Chemical Property Tests
2.4. Isothermal Adsorption Experiment
- Qe—adsorption amount, mg/g;
- C0—initial concentration of Zn in solution, mg/L;
- Ce—concentration of Zn in solution after adsorption equilibrium, mg/L;
- V—volume of solution, L;
- M—sample mass, g.
- Qmax—maximum adsorption capacity;
- KL—adsorption constant.
- 1/n—the affinity of the adsorbent to the adsorbent; the smaller the value, the higher the affinity of adsorption;
- KF—adsorption capacity of the adsorbent to the adsorbent; the larger the value, the stronger the adsorption capacity.
- RL—to determine whether it is favourable for the adsorption equilibrium, the smaller its value, the more favourable it is to adsorption
- RL > 1—unfavourable adsorption
- RL = 1—linear adsorption
- 0 < RL < 1—favourable adsorption
- RL < 0—irreversible adsorption
2.5. Characterisation of Sediment Complexes before and after Zn Adsorption
2.5.1. Scanning Electron Microscope (SEM)
2.5.2. Extra-Fourier Spectrometer (FTIR)
2.5.3. X-ray Diffraction (XRD)
2.6. Data Analysis
3. Results
3.1. Basic Physical and Chemical Properties
3.2. Isothermal Adsorption Model
3.3. SEM
3.4. FT-IR
3.5. XRD
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Jiang, M.; Liu, Y.; Shen, X. Heavy metals inter-annual variability and distribution in the Yangtze River estuary sediment, China. Mar. Pollut. Bull. 2019, 141, 514–520. [Google Scholar] [CrossRef]
- Ma, X.; Liu, L.; Fang, Y.; Sun, X. The adsorption characteristics of Cu(II) and Zn(II) on the sediments at the mouth of a typical urban polluted river in Dianchi Lake: Taking Xinhe as an example. Sci. Rep. 2021, 11, 17067. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, F.; Meng, F.; Jiang, L.; Li, G.; Zhou, R. Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index. Mar. Pollut. Bull. 2018, 126, 293–303. [Google Scholar] [CrossRef]
- Ouyang, W.; Wang, Y.; Lin, C.; He, M.; Hao, F.; Liu, H.; Zhu, W. Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Sci. Total Environ. 2018, 637–638, 208–220. [Google Scholar] [CrossRef]
- Zhuang, S.; Lu, X.; Yu, B.; Fan, X.; Yang, Y. Ascertaining the pollution, ecological risk and source of metal(loid)s in the upstream sediment of Danjiang River, China. Ecol. Indic. 2021, 125, 107502. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Spencer, K.; Kloas, W.; Toffolon, M.; Zarfl, C. Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Sci. Total Environ. 2016, 541, 268–281. [Google Scholar] [CrossRef]
- Bi, S.; Yang, Y.; Xu, C.; Zhang, Y.; Zhang, X.; Zhang, X. Distribution of heavy metals and environmental assessment of surface sediment of typical estuaries in eastern China. Mar. Pollut. Bull. 2017, 121, 357–366. [Google Scholar] [CrossRef]
- Zhang, K.; Peng, B.; Yang, X. Contamination and Risk of Heavy Metals in Sediments from Zhuzhou, Xiangtan and Changsha Sections of the Xiangjiang River, Hunan Province of China. Sustainability 2023, 15, 14239. [Google Scholar] [CrossRef]
- Gopal, V.; Nithya, B.; Magesh, N.S.; Jayaprakash, M. Seasonal variations and environmental risk assessment of trace elements in the sediments of Uppanar River estuary, southern India. Mar. Pollut. Bull. 2018, 129, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Frémion, F.; Courtin-Nomade, A.; Bordas, F.; Lenain, J.-F.; Jugé, P.; Kestens, T.; Mourier, B. Impact of sediments resuspension on metal solubilization and water quality during recurrent reservoir sluicing management. Sci. Total Environ. 2016, 562, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Wang, N.; Gaillard, J.-F.; Packman, A.I. Hydrodynamic Forcing Mobilizes Cu in Low-Permeability Estuarine Sediments. Environ. Sci. Technol. 2016, 50, 4615–4623. [Google Scholar] [CrossRef] [PubMed]
- Pourabadehei, M.; Mulligan, C.N. Resuspension of sediment, a new approach for remediation of contaminated sediment. Environ. Pollut. 2016, 213, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.; Böning, P.; Schückel, U.; Stiehl, T.; Schnetger, B.; Rullkötter, J.; Brumsack, H.-J. Consistent assessment of trace metal contamination in surface sediments and suspended particulate matter: A case study from the Jade Bay in NW Germany. Mar. Pollut. Bull. 2013, 70, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Asensio, V.; Vega, F.A.; Singh, B.R.; Covelo, E.F. Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils. Sci. Total Environ. 2013, 443, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Papelis, C.; Roberts, P.V.; Leckie, J.O. Modeling the rate of cadmium and selenite adsorption on micro- and mesoporous transition aluminas. Env. Sci Technol 1995, 29, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Yuan, Z.; Li, D.; Zheng, M.; Nie, X.; Liao, Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review. Environ. Sci. Process. Impacts 2020, 22, 1596–1615. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Hosseinzadeh, M.; Rajabzadeh, M. Competitive heavy metals adsorption on natural bed sediments of Jajrood River, Iran. Environ. Earth Sci. 2011, 62, 519–527. [Google Scholar] [CrossRef]
- Violante, A.; de Cristofaro, A.; Rao, M.A.; Gianfreda, L. Physicochemical properties of protein-smectite and protein-Al(OH)x-smectite complexes. Clay Miner. 1995, 30, 325–336. [Google Scholar] [CrossRef]
- Varadachari, C.; Biswas, N.K.; Ghosh, K. Studies on decomposition of humus in clay-humus complexes. Plant Soil 1984, 78, 295–300. [Google Scholar] [CrossRef]
- Bolt, G.H.; van Olphen, H. The Surface Chemistry of Soils. Clays Clay Miner. 1985, 33, 367. [Google Scholar] [CrossRef]
- Ransom, B.L.; Bennett, R.H.; Baerwald, R.J.; Shea, K. TEM study of in situ organic matter on continental margins: Occurrence and the “monolayer” hypothesis. Mar. Geol. 1997, 138, 1–9. [Google Scholar] [CrossRef]
- Jastrow, J.D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 1996, 28, 665–676. [Google Scholar] [CrossRef]
- Nur-A-Tomal, M.S.; Pahlevani, F.; Handoko, W.; Cholake, S.T.; Sahajwalla, V. Effect of cyclic reprocessing on nylon 12 under injection molding: Working toward more efficient recycling of plastic waste. Mater. Today Sustain. 2021, 11–12, 100056. [Google Scholar] [CrossRef]
- da Paz Schiller, A.; Ferronato, M.C.; Schwantes, D.; Gonçalves, A.C., Jr.; Barilli, D.J.; Manfrin, J. Influence of hydrological flows from tropical watersheds on the dynamics of Cu and Zn in sediments. Environ. Monit. Assess. 2019, 191, 86. [Google Scholar] [CrossRef] [PubMed]
- Maillard, F.; Leduc, V.; Bach, C.; Reichard, A.; Fauchery, L.; Saint-André, L.; Zeller, B.; Buée, M. Soil microbial functions are affected by organic matter removal in temperate deciduous forest. Soil Biol. Biochem. 2019, 133, 28–36. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, L.; Xiang, H.; Wang, Y.; Sun, X. Biomass-based carbon microspheres for removing heavy metals from the environment: A review. Mater. Today Sustain. 2022, 18, 100136. [Google Scholar] [CrossRef]
- Pehlivan, E.; Özkan, A.M.; Dinç, S.; Parlayici, Ş. Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J. Hazard. Mater. 2009, 167, 1044–1049. [Google Scholar] [CrossRef]
- Ferreira Fontes, M.P.; de Matos, A.T.; da Costa, L.M.; Lima Neves, J.C. Competitive adsorption of zinc, cadmium, copper, and lead in three highly-weathered Brazilian soils. Commun. Soil Sci. Plant Anal. 2000, 31, 2939–2958. [Google Scholar] [CrossRef]
- Kalinichev, A.G.; Iskrenova-Tchoukova, E.; Ahn, W.-Y.; Clark, M.M.; Kirkpatrick, R.J. Effects of Ca2+ on supramolecular aggregation of natural organic matter in aqueous solutions: A comparison of molecular modeling approaches. Geoderma 2011, 169, 27–32. [Google Scholar] [CrossRef]
- Da’na, E. Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous Mesoporous Mater. 2017, 247, 145–157. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute electronegativity and absolute hardness of Lewis acids and bases. J. Am. Chem. Soc. 1985, 107, 6801–6806. [Google Scholar] [CrossRef]
- Al-Degs, Y.S.; El-Barghouthi, M.I.; Issa, A.A.; Khraisheh, M.A.; Walker, G.M. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies. Water Res. 2006, 40, 2645–2658. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Wang, Y.; Tang, X.; Xu, J.; Liu, X. Contribution of components in natural soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative analysis. J. Hazard. Mater. 2023, 441, 129883. [Google Scholar] [CrossRef]
- Webb, S.M.; Leppard, G.G.; Gaillard, J.-F. Zinc Speciation in a Contaminated Aquatic Environment: Characterization of Environmental Particles by Analytical Electron Microscopy. Environ. Sci. Technol. 2000, 34, 1926–1933. [Google Scholar] [CrossRef]
- Citeau, L.; Lamy, I.; van Oort, F.; Elsass, F. Colloidal facilitated transfer of metals in soils under different land use. Colloids Surf. A Physicochem. Eng. Asp. 2003, 217, 11–19. [Google Scholar] [CrossRef]
- Sipos, P.; Németh, T.; Kis, V.K.; Mohai, I. Association of individual soil mineral constituents and heavy metals as studied by sorption experiments and analytical electron microscopy analyses. J. Hazard. Mater. 2009, 168, 1512–1520. [Google Scholar] [CrossRef]
- Wu, Z.; Gu, Z.; Wang, X.; Evans, L.; Guo, H. Effects of organic acids on adsorption of lead onto montmorillonite, goethite and humic acid. Environ. Pollut. 2003, 121, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.L.A.; Alleoni, L.R.F.; Camargo, O.A.; Casagrande, J.C. Copper Adsorption in Oxidic Soils after Removal of Organic Matter and Iron Oxides. Commun. Soil Sci. Plant Anal. 2002, 33, 3581–3592. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, S.; Liu, F.; Liang, Y.; Shi, Z. Effects of humic acid and fulvic acid on the sequestration of copper and carbon during the iron oxide transformation. Chem. Eng. J. 2020, 383, 123194. [Google Scholar] [CrossRef]
- Manoharan, V.; Ravindran, A.; Anjali, C.H. Mechanistic Insights into Interaction of Humic Acid with Silver Nanoparticles. Cell Biochem. Biophys. 2014, 68, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Wang, B.; Tang, B.; Luan, L.; Xu, W.; Zhang, B.; Niu, Y. Adsorption of aqueous Cu(II) and Ag(I) by silica anchored Schiff base decorated polyamidoamine dendrimers: Behavior and mechanism. Chin. Chem. Lett. 2022, 33, 2721–2725. [Google Scholar] [CrossRef]
- Huang, C.-H.; Shen, S.-Y.; Dong, C.-D.; Kumar, M.; Chang, J.-H. Removal Mechanism and Effective Current of Electrocoagulation for Treating Wastewater Containing Ni(II), Cu(II), and Cr(VI). Water 2020, 12, 2614. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Yin, H.; Jin, S.; Liu, F.; Chen, H. Mechanism study of humic acid functional groups for Cr(VI) retention: Two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis. Environ. Pollut. 2017, 225, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Nakayasu, K.; Fukushima, M.; Sasaki, K.; Tanaka, S.; Nakamura, H. Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors. Environ. Toxicol. Chem. 1999, 18, 1085–1090. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, H.; Wang, H.; Xu, L.; Samuel, B.; Liu, F.; Chen, H. Reduction mechanism of hexavalent chromium by functional groups of undissolved humic acid and humin fractions of typical black soil from Northeast China. Environ. Sci. Pollut. Res. 2018, 25, 16913–16921. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Yu, G.-R. Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere 2002, 49, 619–628. [Google Scholar] [CrossRef]
- Nachtegaal, M.; Sparks, D.L. Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface. J. Colloid Interface Sci. 2004, 276, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Hochella, M.F.; Moore, J.N.; Putnis, C.V.; Putnis, A.; Kasama, T.; Eberl, D.D. Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability. Geochim. Cosmochim. Acta 2005, 69, 1651–1663. [Google Scholar] [CrossRef]
- Sasaki, S. Hydrogen peroxide treatment on typical Hokkaido soils. Soil Sci. Plant Nutr. 1961, 6, 106–113. [Google Scholar] [CrossRef]
- Mikutta, R.; Kleber, M.; Kaiser, K.; Jahn, R. Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci. Soc. Am. J. 2005, 69, 120–135. [Google Scholar] [CrossRef]
- Zimmermann, I.; Horn, R. Impact of sample pretreatment on the results of texture analysis in different soils. Geoderma 2020, 371, 114379. [Google Scholar] [CrossRef]
- Goldberg, S. Interaction of aluminum and iron oxides and clay minerals and their effect on soil physical properties: A review. Commun. Soil Sci. Plant Anal. 1989, 20, 1181–1207. [Google Scholar] [CrossRef]
Sampling Points | CEC (cmol/kg) | SOM (mg/g) | Free Iron Oxide (mg/g) | Free Aluminium Oxide (mg/g) | pH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | |
CH | 31.27 | 1.09 | 9.73 | 34.39 | 32.57 | 44.69 | 35.51 | 62.13 | 7.83 | 6.06 | 11.72 | 1.22 | 8.49 | 8.18 | 9.15 |
DDH | 32.25 | 0.80 | 9.63 | 46.58 | 20.72 | 35.89 | 26.55 | 41.60 | 3.37 | 4.92 | 4.27 | 0.81 | 7.97 | 7.25 | 9.5 |
GSG | 45.36 | 1.48 | 14.45 | 49.11 | 33.66 | 44.54 | 30.73 | 45.71 | 4.50 | 4.68 | 3.42 | 0.91 | 8.25 | 8.14 | 8.81 |
GPG | 56.87 | 2.15 | 26.01 | 48.81 | 31.08 | 66.98 | 35.23 | 52.60 | 5.85 | 5.33 | 4.94 | 1.18 | 8.02 | 8.06 | 8.69 |
LYH | 52.33 | 1.80 | 20.92 | 46.65 | 21.44 | 46.90 | 49.59 | 76.04 | 5.79 | 5.85 | 8.16 | 0.81 | 8.02 | 7.95 | 9.18 |
LBH | 20.77 | 0.811 | 6.90 | 37.47 | 22.66 | 29.24 | 28.27 | 37.03 | 3.52 | 4.78 | 5.89 | 0.84 | 7.91 | 7.39 | 8.51 |
XH | 18.71 | 0.44 | 2.42 | 31.96 | 21.52 | 19.50 | 8.98 | 26.52 | 1.10 | 1.07 | 4.71 | 0.30 | 8.35 | 8.39 | 9.46 |
YNH | 57.92 | 2.08 | 19.15 | 24.83 | 18.38 | 24.50 | 85.05 | 131.02 | 17.30 | 9.59 | 15.06 | 2.11 | 8.06 | 7.51 | 9.18 |
Sampling Points | Parameters of the Freundlich Isothermal Model | Parameters of the Langmuir Isothermal Model | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KF | 1/n | R2 | Qmax | KL | R2 | RL | |||||||||||||||
A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | |
CH | 6.75 | 2.12 | 2.65 | 0.63 | 0.85 | 0.75 | 0.9993 | 0.9899 | 0.9971 | 27.38 | 120.2 | 32.67 | 0.334 | 0.014 | 0.080 | 0.9994 | 0.9884 | 0.9988 | 0.020 | 0.323 | 0.077 |
DDH | 0.69 | 0.38 | 0.66 | 0.52 | 0.71 | 0.52 | 0.9997 | 0.9998 | 0.9998 | 14.16 | 18.38 | 9.09 | 0.012 | 0.011 | 0.031 | 0.9994 | 0.9998 | 0.9999 | 0.357 | 0.377 | 0.177 |
GSG | 0.92 | 0.76 | 0.80 | 0.76 | 0.59 | 0.40 | 0.9977 | 0.9999 | 0.9999 | 51.82 | 15.05 | 4.63 | 0.010 | 0.021 | 0.117 | 0.9963 | 0.9996 | 0.9998 | 0.4 | 0.241 | 0.054 |
GPG | 1.03 | 0.17 | 0.44 | 0.67 | 0.86 | 0.73 | 0.9978 | 0.9998 | 0.9994 | 22.14 | 69.05 | 35.18 | 0.029 | 0.001 | 0.006 | 0.9981 | 0.9998 | 0.9991 | 0.187 | 0.870 | 0.526 |
LYH | 2.08 | 1.02 | 1.08 | 0.18 | 0.54 | 0.46 | 0.9999 | 0.9988 | 0.9998 | 4.51 | 14.04 | 8.85 | 0.370 | 0.033 | 0.066 | 0.9999 | 0.9989 | 0.9997 | 0.018 | 0.168 | 0.092 |
LBH | 0.69 | 0.36 | 0.51 | 0.40 | 0.63 | 0.66 | 1.0000 | 1.0000 | 0.9999 | 5.35 | 12.14 | 17.60 | 0.041 | 0.011 | 0.013 | 0.9998 | 0.9999 | 0.9998 | 0.140 | 0.377 | 0.339 |
XH | 0.26 | 0.62 | 0.43 | 0.81 | 0.45 | 0.59 | 0.9999 | 0.9996 | 0.9998 | 28.49 | 6.30 | 9.92 | 0.005 | 0.032 | 0.018 | 0.9999 | 0.9996 | 0.9999 | 0.571 | 0.172 | 0.270 |
YNH | 1.34 | 0.50 | 0.48 | 0.30 | 0.67 | 0.71 | 0.9986 | 0.9998 | 0.9080 | 5.36 | 22.74 | 14.01 | 0.092 | 0.009 | 0.021 | 0.9123 | 0.9995 | 0.9995 | 0.067 | 0.426 | 0.241 |
Wavelength | F | P (0.05) | Significance |
---|---|---|---|
920 cm−1 | 0.064 | 0.938 | insignificant |
1436 cm−1 | 4.841 | 0.019 | significant |
3446 cm−1 | 3.819 | 0.038 | significant |
3622 cm−1 | 1.0160 | 0.379 | insignificant |
3697 cm−1 | 3.191 | 0.062 | insignificant |
Sampling Points | Organic Matter Active Component (mg/g) | Organoplasmic Active Fraction/Free Iron Oxide |
---|---|---|
CH | 15.77 | 0.4442 |
DDH | 33.36 | 1.2563 |
GSG | 26.48 | 0.8617 |
GPG | 27.99 | 0.7946 |
LYH | 32.67 | 0.6588 |
LBH | 20.17 | 0.7135 |
XH | 24.67 | 2.7476 |
YNH | 12.90 | 0.1517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, H.-Q.; Du, Y.-Y.; Fang, Y.-C.; Xiang, H.; Qu, J.-Z.; Sun, X.-L. Understanding Zinc Transport in Estuarine Environments: Insights from Sediment Composition. Sustainability 2024, 16, 6113. https://doi.org/10.3390/su16146113
Xiong H-Q, Du Y-Y, Fang Y-C, Xiang H, Qu J-Z, Sun X-L. Understanding Zinc Transport in Estuarine Environments: Insights from Sediment Composition. Sustainability. 2024; 16(14):6113. https://doi.org/10.3390/su16146113
Chicago/Turabian StyleXiong, Hao-Qin, Yan-Yun Du, Yi-Chuan Fang, Hong Xiang, Jia-Zhuo Qu, and Xiao-Long Sun. 2024. "Understanding Zinc Transport in Estuarine Environments: Insights from Sediment Composition" Sustainability 16, no. 14: 6113. https://doi.org/10.3390/su16146113