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Abstract: Based on outdoor air pollution and meteorological daily time series observational and
in-situ monitoring data, this study investigated the impacts of environmental factors under different
urban climates on COVID-19 transmission in four hotspot European metropolises (Berlin, London,
Madrid, and Paris) from March 2020 to March 2022. Through applied statistical methods and
cross-correlation tests involving multiple datasets pertaining to the main air pollutants (inhalable
particulate matter PM2.5 and PM10, nitrogen dioxide (NO2), and ozone (O3)) and climate parameters
(air temperature at 2 m height, relative humidity, wind speed intensity and direction, planetary
boundary layer height, and surface solar irradiance), a direct positive impact of aerosol loading
(PM2.5, PM10, and aerosol optical depth (AOD)) on COVID-19 spreading and severity was revealed.
Despite some urban differences existing between the selected cities, particularly for the spring–
summer periods, we have observed negative correlations between daily new COVID-19 cases and
deaths and daily average ground-level ozone concentration, air temperature at 2 m height, planetary
boundary layer height, and surface solar irradiance. Air relative humidity and urban population
density have a direct impact on COVID-19 diffusion in large metropolitan areas, and the findings
of this study highlight the crucial role of air pollution, in synergy with climate variability, in viral
pathogens dispersion in COVID-19 transmission in large urban areas. This information can be
used by decision-makers to develop targeted interventions during epidemic periods to reduce the
potential risks associated with air pollution exposure and to promote the sustainable development of
urban economies.

Keywords: air pollution; urban climate; AOD (aerosol optical depth); population density; European
metropolises (Berlin, London, Madrid, and Paris); COVID-19

1. Introduction

Since late December 2019, when coronavirus disease COVID-19 was recorded for the
first time in Wuhan, China, the pandemic outbreak has rapidly extended globally, reaching
almost every country, with a higher intensity in metropolitan areas. It emerged as a public
health crisis, testing the resilience of health systems, and it was established that the severity
of the cases, as well as their lethality, was linked to the patient’s environmental and under-
lying health conditions. In large cities, the global severity of COVID-19 infectious disease,
attributed to SARS-CoV-2 pathogens, has been associated with various urban characteris-
tics (size, form, landscape, density of population, mobility, micro and macroclimate, and
socioeconomic and environmental pollution), including exposure to ambient air pollutants.
Air pollution containing inhalable particulate matter (PM) and gaseous pollutants is a major
global health issue and a significant risk factor for cardiorespiratory illnesses. High-quality,
science-based air pollution–climate interaction information regarding infectious disease
spread and survival in large metropolitan areas is crucial for urban decision-makers and
residents in preparing for future epidemics and adapting to climate change. The most re-
cent global crisis generated by the COVID-19 pandemic, an airborne pathogen responsible
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for upper-respiratory infection, amplified sustainability issues through its challenge to
healthcare systems and the economy worldwide [1,2]. From a sustainability perspective,
due to its borderless nature, the COVID-19 pandemic, which spanned more than two years,
was considered a meaningful crisis driver that affected different nations’ economies and
social metropolises in different ways. However, in the face of accelerating urbanization,
during viral pandemic periods, the issue of complex air pollution in European metropolitan
cities was amplified, posing a serious threat to the environment, with a high risk to public
health and the ecosystem [3,4]. However, short- or long-term exposure to the airborne
particulate matter (PM) of biogenic or chemical compounds, with different size fractions
(1 nm to 100 µm), considered potential carriers of SARS-CoV-2 pathogens responsible for
the COVID-19 disease, is recognized as the fourth leading risk factor for disease and death
related to the activation of inflammatory lung cells [5,6].

Several studies suggested that air pollutants could induce cell entry of SARS-CoV-2
pathogens and modulate the cellular response to the virus. Among the PM, due to its
physicochemical characteristics, PM2.5 exposure is the most hazardous, with this air
pollutant being one of the main drivers of the cardiorespiratory and systemic effects
inducing lung oxidative stress and inflammation [7,8].

Like other airway diseases, including rhinitis, asthma, seasonal influenza (commonly
known as the “flu”), organic dust toxic syndrome, and severe acute respiratory syndrome,
coronavirus disease is related to outdoor and indoor bioaerosol exposure in highly ag-
glomerated urban areas [9–12]. During the recent deadly pandemic outbreak of COVID-19,
monitoring for airborne viral pathogens in cities with advanced bioaerosol technologies de-
tected the presence of SARS-CoV-2 in indoor and outdoor air samples [13–15]. Knowledge
of the main sources and transport pathways of viral bioaerosols is essential to understand-
ing the role played by several pathogens in the lower atmosphere and controlling the
transmission of the epidemic diseases associated with them [16,17]. At high levels and with
acute or chronic inhalation exposure in the outdoor atmosphere to the most hazardous
air pollutants (particulate matter in different size fractions: PM2.5 and PM1)—and, at
the ground level, gaseous pollutants (ozone (O3), nitrogen dioxide (NO2), sulfur dioxide
(SO2), carbon monoxide (CO), and benzene (C6H6))—this may cause various disorders
of the human cardiorespiratory system and a decrease in the immune system, facilitating
SARS-CoV-2’s viral entry [18]. Experimental and epidemiological studies demonstrated
that among particulate matter, the fine particulate matter (PM2.5) is the most detrimental
of the air pollutants, capable of penetrating human lungs and the cardiorespiratory system
and leading to potentially lethal pulmonary and cardiovascular diseases [19].

The connection between air pollution, meteorological factors that affect the thermo-
dynamic processes of the near-surface atmosphere, and SARS-CoV-2 pathogens is likely
multifactorial, including impacts on virus stability and viability, host susceptibility, and
human behavior [20]. The urban/periurban air pollution shows clear local and regional
characteristics, being affected by the unique topography and the microclimate of the re-
gion [21]. Alongside local and regional air pollution sources, climate factors such as
seasonality and the increased frequency of extreme climate events impact air quality and
are of widespread public concern [22]. Aerosol optical depth (AOD) is sensitive to multiple
air pollutants in the lower atmospheric system, including sulfur, black carbon, and organic
components, being a marker of total columnar aerosol loading. This study used AOD
spatiotemporal variability, the most relevant parameter for aerosol forcing assessment in
the atmosphere with a high impact on urban air quality and atmospheric process dynamics.

Also, climate factors such as air temperature at 2 m height, air pressure, air relative
humidity, surface solar irradiance, wind speed intensity and direction, and planetary
boundary layer height and their cumulative effects at urban and regional scales may have
great significant impacts in terms of the persistence of viral infections in aerosols and viral
infections transmission [23–25].

In particular, the daily planetary boundary layer height (PBL) characteristics are
closely related to the dispersion and transport of solid and gaseous pollutants affecting air



Sustainability 2024, 16, 6119 3 of 19

quality atmospheric process dynamics and the spatiotemporal distribution of air pollutant
concentrations [26].

Starting from the pioneering climate research of the last century, Richter C.M., in
1911 [27], found correlations between climate conditions (solar activity, atmospheric pres-
sure, and air quality) and the prevalence of viral respiratory infections (pneumonia, in-
fluenza, enteroviruses) which caused seasonal epidemics and pandemics, with their trans-
mission influenced by climate conditions in large cities in the United States of America
(Chicago and San Francisco). Some previous studies have explored the connections be-
tween the seasonality of meteorological conditions associated with extreme climate events
and the seasonal large-scale outbreaks of different viral infections such as SARS (severe
acute respiratory syndrome) in 2002–2003, influenza H1N1 in 2009, MERS (Middle East
respiratory syndrome) in 2012–2015, and new waves of SARS-CoV-2 (COVID-19) in 2019,
with severe impacts on excess human lethality and morbidity and significant economic
disruption. The existing scientific literature provides information on seasonal variability
in the bacterial and fungal diversity of the near-surface atmosphere, which can target the
human immune system through the damage of innate immune recognition receptors that
respond to unique pathogen-associated molecular patterns [28–33]. Recent advances in
the toxicological study of the mechanisms associated with airway diseases attributed to
air pollutants have considered the epigenetic alteration of genes by combustion-related
pollutants and how polymorphisms in the genes involved in antioxidant pathways and
airway inflammation can modify responses to air pollution exposures [34–39].

Also, solar radiation, through its ultraviolet electromagnetic band regions UVB
(280–315 nm) and UVA (315–400 nm), is the primary virucidal agent in the environ-
ment [40–43]. It is well recognized as an important variable that may affect the transmission
and outcomes of COVID-19 through the reduction of SARS-CoV-2 pathogen diffusion and
virus inactivation during specific periods of exposure [44,45]. Through vitamin D synthesis
in the human body, solar radiation plays an essential role in increasing the innate and
adaptative immune systems’ defense, thus reducing the risk, severity, and mortality of
respiratory viral tract diseases like COVID-19 and influenza [46–49].

Due to ongoing urban growth, with different air quality levels, as well as climate
and socioeconomic conditions, metropolitan agglomerated areas worldwide are often
under increased pressure from epidemic viral diseases [50]. It is well known that urban
green areas in public spaces are critical during epidemic events due to their air-pollutants-
removal capacity, regulating surface temperature and lowering the urban heat island effect,
contributing to the city’s environmental health [51]. This paper aims to provide scientific
evidence on the influence of climate variability and ground surface air pollution on the fast
diffusion of COVID-19 in four European selected metropolises (Berlin, London, Madrid,
and Paris) between March 2020 and March 2022. Considering the importance of different
lockdown restrictions and exploring the effects of exposure to particulate matter (PM)
on the risk of severe COVID-19, this study conducts a time series comparative analysis
of the differences in daily urban COVID-19 incidence and mortality, the daily average
concentrations of air pollutants at ground level, and climate variables.

2. Material and Method
2.1. Study Test Metropolitan Areas

Since anthropogenic emissions and meteorological background differ in different
metropolitan regions in Europe, four representative metropolitan areas with specific climate
and urban morphology/geometry features have been selected in this study (Figure 1):

• Berlin (52◦31′ N 13◦20′ E), the German capital located in northeastern Germany, with
a surface of 1368 km2, has a predominantly flat topography, with a mean elevation of
35 m above sea level, and a temperate climate with precipitation in all seasons [52];

• London (51.33◦ N, 0.42◦ W), the largest European city and the second-largest economic
center globally, with a surface of 1738 km2 and dense road traffic, placed in the
southeastern part of England, mostly consisting of low-land terrain with a mean
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elevation of 42 m, has a temperate, oceanic climate with cool winters, warm summers,
and precipitation fairly evenly distributed all year round [53];

• Madrid (40.42◦ N, 3.70◦ W), the largest metropolitan area in Spain, and the third
largest city in the European Union, with a surface of 1365 km2, has a Mediterranean
climate with continental influences, characterized by hot summers and cool winters.
The urban area is settled on an uneven plain, approximately 700 m high, with the
lowest altitudes of the basin located in the southeast, away from the mountains [54].

• Paris (48◦51′24′′ N 2◦21′3′′ E), the capital of France, located in a relatively flat area with
a mean elevation of 62 m, has a surface of 2844 km2 and a typical Western European
climate, affected by its proximity to the Atlantic Ocean, being mild and moderately wet [55]
with cool winters with frequent rain and overcast skies and mild-to-warm summers.
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Figure 1. Study test European metropolitan areas (Berlin, London, Madrid, and Paris).

The populations of these metropolitan test areas are quite different: Berlin has
5.35 million inhabitants; London, 14.4 inhabitants; Madrid, 6.98 inhabitants; and Paris,
more than 12.92 million in the adjoining urban agglomeration. According to the Urban
PM2.5 Atlas, most European cities are characterized by poor air quality, with higher
levels of air pollutant concentrations sometimes above the standards set by WHO and
EU guidelines [56]. These cities fall into the category of “Greater Cities”, which refers
to urban settings that, in addition to the core city, include a larger commuting zone,
which can be defined as the surrounding travel-to-work areas where at least 15% of
the employed population work. The COVID-19 pandemic was declared by the World
Health Organization (WHO) on 11 March 2020 due to widespread global coronavirus
infection, and it resulted in lockdowns associated with total quarantine under different
phases in different European countries, including the metropolitan areas selected in
this study (Berlin: 13 March 2020; London: 19 March 2020; Madrid: 16 March 2020; and
Paris: 17 March 2020).

2.2. Datasets

To analyze the linkage between COVID-19 viral infection incidence and mortality with
climate and air pollutants seasonality in the selected metropolitan regions, this study used
the available observational data and reanalysis information from various sources. This
research used the COVID-19 time window period from March 2020 to March 2022. Time
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series datasets for urban air pollutants and meteorological parameters were provided by
city monitoring networks and different satellite platforms. All COVID-19 incidence and
lethality data, namely, daily new cases (DNC) and daily new deaths (DND) were delivered
by COVID-19 information webpages [57,58].

The daily and monthly derived total aerosol optical depth data at 550 nm data (MODIS
Terra, AOD) products were provided by NASA (National Aeronautics and Space Adminis-
tration) through their Giovanni (Geospatial Interactive Online Visualization and Analysis
Infrastructure) portal [59]. This study used the daily average time series meteorological
data (air temperature (T) at 2 m height; air relative humidity (RH); air pressure (p); wind
speed intensity and direction (w); planetary boundary layer height (PBL); geopotential
height) for the study period and selected metropolitan areas delivered via MERRA-2, Ver-
sion 2 (Modern-Era Retrospective Analysis for Research and Applications) [60] and C3S
(Copernicus Climate Change Service) [61]. The daily average time series at ground level
for PM2.5, PM10, O3, and NO2 concentrations have been provided by local networks or
AQICN (World Air Quality Index) [62].

2.3. Methods

This study comparatively analyzed urban air pollution together with the impacts
of climate variability on coronavirus disease (COVID-19) incidence and lethality in the
selected European cities. As a measure of the aerosol column concentration over a large
urban area, this study used total AOD (aerosol optical depth) at 550 nm, a fundamental
variable by which to investigate aerosol loading in the atmosphere. The temporal patterns
of the monthly AOD in the period before the outbreak of the epidemic and during the
control of COVID-19 have been analyzed. To investigate the mutual influence between the
number of COVID-19 daily new cases (DNC) and daily cases of new deaths (DND) and the
climate variables, we must understand that the phenomena involved are strongly nonlinear.
To ascertain the relative impacts of the daily time series of air pollutant concentrations and
climate parameters (considered as independent variables) on daily COVID-19 incidence and
mortality data (considered as dependent variables), this study used descriptive statistical
analysis, rank-correlation non-parametric test coefficients, Spearman rank correlation,
and linear regression analysis considering the regression analysis of non-linearly related
data [63]. Spearman’s rank correlation coefficient was considered as a non-parametric
statistical indicator and a measure of the dependence between the rankings of two variables.
Spearman’s r quantifies how well the relationship between two variables can be represented
by a monotonic function without any linearity assumption. In other words, Spearman’s
correlation quantifies the monotonic relationships whether they are linear or not. The
normality of the daily time series datasets was determined by applying the Kolmogorov–
Smirnov tests of normality. As daily new COVID-19 cases (DNC) and daily new COVID-19
deaths (DND) have a non-normal distribution, Spearman’s rank correlation was selected to
identify the linear correlation between the main variables: (1) airborne inhalable PM2.5,
PM10, and pollutant gases O3 and NO2 and their concentrations (total aerosol optical
depth at 550 nm); (2) meteorological variables; and (3) the rates of COVID-19 incidence
and mortality. ORIGIN 10.0 software version 2021 for Microsoft Windows was used for
data processing.

3. Results and Discussion
3.1. Air Pollutants and Climate Variability Impacts on COVID-19 Disease in the Metropolitan Areas

To develop targeted interventions related to pandemic viral infection transmission
and controls on urban aerosol (particulate matter in different size fractions) pollutant
gases and bioaerosol loading (fungi, bacteria, and viruses), it is necessary to implement
big data analysis to identify trend patterns in atmospheric processes under the impact of
climate and synoptic meteorology across different urban regions. The identification of the
environmental, socioeconomic, and sociodemographic factors that influence urban aerosols
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and bioaerosols composition can help policymakers to better understand the potential risks
associated with exposure to high levels of air pollution.

The local, regional, and global fast transmission of the SARS-CoV-2 virus since 2019
in metropolitan areas, which is mainly spread by aerosol and droplet dispersion, resulted
in a reduction in traffic and industrial activity, with significant impacts on urban air
quality. In strong accordance with other several studies, this research explored the complex
relationships between air pollution and climate variability in selected metropolises during
several seasons and COVID-19 pandemic waves using daily in situ time series, geospatial,
and reanalysis data.

As can be seen in Table 1, the greatest COVID-19 incidence (DNC) and mortality
cases have been registered in the London metropolis, with the highest population density
(8285.39 inhabitants/km2), followed by the Madrid metropolis, with a population density
(5113.55 inhabitants/km2), and the Paris metropolitan area, with a population density
(4542.90 inhabitants/km2). The lowest values of COVID-19 incidence (DNC) and mortality
cases have been recorded in the Berlin metropolis, which has also the lowest population
density (3910.82 inhabitants/km2). In conclusion, population density has a direct impact
on COVID-19 transmission in urban agglomerated areas.

Table 1. Summary of population density, total COVID-19 incidence (DNC), and total COVID-19
deaths (DND) for metropolitan areas between March 2020 and March 2022.

Metropolis Berlin Paris Madrid London

Population size (million inhabitants) 5.35 12.92 6.98 14.4
Population density (inhabitants/km2) 3910.82 4542.90 5113.55 8285.39
Total COVID-19 cases (DNC) during
March 2020–March 2022 905,272 1,155,528 2,246,443 3,278,230

Total COVID-19 deaths (DND) during
March 2020–March 2022 4381 25,312 30,284 30,321

The trend analysis found a high linear correlation (R2 = 0.9591) between total COVID-19
incidence and mortality cases and population density, being an effective factor for viral
epidemic disease spreading. Like other previous studies, our findings suggest that agglom-
erated urban areas will be a key factor influencing the future spillover outcome of viral
infection events [64,65].

Also, the results of this study highlight the importance of improving urban policies re-
lated to air pollution exposure during epidemic events and implementing urgent measures
for inhabitants’ protection from harmful environmental stressors [66–71].

Figures 2–5 present the temporal patterns of the daily COVID-19 incidence DNC
cases and DND deaths, associated with the daily average, at ground level, of the main air
pollutants (PM2.5, PM10, and O3) concentrations recorded in the investigated metropolises
during the selected period. Because the severity and composition of urban air pollution
is a strongly variable function of the geographical location, meteorological conditions,
population density, and human activities in each area, the impact of air pollutants on viral
pandemic diseases is quite different in the investigated metropolitan areas, being recognized
as a leading risk factor for cardiorespiratory illnesses. Temporal patterns in Figures 2–5 of
the main air pollutants concentrations (PM2.5, PM10, O3, NO2) show significant seasonal
variability and variability due to natural and anthropogenic emissions, as well as being
attributed to the long-range transport of pollutants (mainly for test case of Madrid due
to Saharan dust intrusions). Like all air pollutants, PM2.5 and PM10 showed a seasonal
pattern, with the highest measured concentrations in the heating season in late autumn,
winter, and early spring showing that domestic heating is another major source of air
pollution in all of the selected cities.
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average of the main air pollutants concentrations at ground level in the Berlin metropolis.

In all studied metropolitan areas, the ground ozone concentration levels were inversely
correlated with particulate matter and nitrogen dioxide concentrations. Surface ozone levels
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were found to be higher from spring to summer–late autumn, due to the availability of solar
radiation and clear sky conditions, and comparatively lower during the late autumn and
winter months. A fall in surface ozone concentration levels was observed from November
to February due to low temperatures and short solar hours. While comparing major air
quality parameters with COVID-19-related incidence and deaths, we found a good inverse
relationship between surface ozone and COVID-19 mortality in all the analyzed cities.
These findings can be explained by the results in Table 2, which presents the mean of the
daily average air pollutant concentrations and the mean daily AOD levels for the selected
metropolitan areas between March 2020 and March 2022.

Table 2. Mean of the daily average air pollutants concentrations and mean daily AOD levels for the
selected metropolitan areas between March 2020 and March 2022.

Mean Daily Average Variable London Paris Madrid Berlin

PM2.5 (µg/m3)
(Particulate matter 2.5 µm)

(18.55 ± 9.61)
In the range

(2–68)

(24.80 ± 11.61)
In the range

(4–75)

(14.55 ± 9.61)
In the range

(2–68)

(24.80 ± 11.61)
In the range

(4–75)

PM10 (Particulate matter 10 µm)
(µg/m3)

(45.02 ± 20.44)
In the range

(11–154)

(50.37 ± 21.19)
In the range

(9–145)

(45.01 ± 20.45)
In the range

(11–154)

(50.37 ± 21.19)
In the range

(9–145)

O3 (Ozone) (µg/m3)
(22.34 ± 11.06)

In the range
(1–73)

(26.01 ± 11.6)
In the range

(1–71)

(22.35 ± 11.06)
In the range

(0–73)

(26.0 ± 11.05)
In the range

(0–71)

NO2 (Nitrogen dioxide) (µg/m3)
(16.60 ± 8.78)
In the range

(0–52)

(19.88 ± 11.34)
In the range

(2–70)

(16.60 ± 8.78)
In the range

(1–52)

(19.88 ± 11.35)
In the range

(2–70)

AOD
(0.247 ± 0.161)

In the range
(0.096–0.664)

(0.213 ± 0.145)
In the range
(0.090–0.699)

(0.124 ± 0.102)
In the range
(0.038–0.547)

(0.184 ± 0.089)
In the range
(0.054–0.44)

However, emergency legislation and restrictive measures adopted during lockdown
periods to control and prevent an increase in viral infections due to the COVID-19 pandemic
have produced an improvement in the air quality of the investigated urban regions [72].
Due to the adopted traffic restrictions and industrial production during the COVID-19
lockdown, several studies dealing with the changes in urban air quality worldwide revealed
a considerable reduction in atmospheric pollutants concentration levels compared to the
pre-lockdown period. For example, the decreasing levels of particulate matter PM10 were
17% in Europe, 5% in North America, and 42% in South Asia, while PM2.5 showed similar
tendencies, with a 20% decrease in Europe [73–75].

As Table 3 shows, for the entire analyzed period, we have recorded low positive
correlations between PM2.5 and PM10 concentrations and DNC and DND cases, mostly
for London and Paris. The negative correlations between the daily average ground level
O3 concentrations and COVID-19 incidence and lethality were found in all investigated
cities, with higher significances for Berlin and Paris.

Although the initial conditions of human exposure could differ from one metropolitan
area to another, the daily air pollutant concentrations of PM2.5, PM10, and NO2 correlations
were positive with respect to daily COVID-19 incidence and mortality, being similar for
the cities considered here. As the measured size of the SARS-CoV-2 pathogens is about
60–140 nm, with an average of 0.1 µm, the virions can be attached to air particulate matter
PM in different size fractions (PM0.1 µm, PM1 µm, PM2.5 µm, and PM10 µm), which
become their carriers (droplets or particles) [76,77]. Our findings support the association of
COVID-19 viral infection with high concentrations of PM2.5 and PM10 in urban densely
populated areas.
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Table 3. Spearman rank correlation coefficients between daily COVID-19 incidence DNC (cases) and
DND (deaths) and daily average air pollutants concentrations and climate variables for the selected
metropolitan areas between March 2020 and March 2022.

Daily Average Variable
Berlin London Madrid Paris

DNC DND DNC DND DNC DND DNC DND

PM2.5 (µg/m3)
(Particulate matter 2.5 µm)

0.20 * 0.19 * 0.22 * 0.21 * 0.18 * 0.16 * 0.22 * 0.27 *

PM10 (Particulate matter 10 µm)
(µg/m3) 0.27 * 0.26 * 0.11 ** 0.03 ** 0.14 * 0.19 * 0.12 ** 0.14 *

O3 (Ozone) (µg/m3) −0.57 * −0.44 * −0.33 * −0.41 * −0.27 * −0.49 * −0.51 * −0.31 *

NO2 (Nitrogen dioxide) (µg/m3) 0.47 * 0.40 * 0.12 * 0.06 ** 0.29 * 0.19 * 0.05 ** 0.10 **

T (air Temperature at 2 m height)
(◦C) −0.60 * −0.67 * −0.48 * −0.58 * −0.25 * −0.61 * −0.51 * −0.63 *

RH (Relative Humidity) (%) 0.47 * 0.35 * 0.55 * 0.32 * 0.28 * 0.69 * 0.41 * 0.35 *

w (wind intensity) (m/s) −0.06 ** −0.08 ** 0.18 * −0.20 * 0.14 * −0.19 * 0.04 ** −0.04 **

SI (surface solar irradiance)
(W/m2) −0.73 * −0.57 * −0.73 * −0.48 * −0.36 * −0.30 * −0.66 * −0.58 *

PBL (Planetary Boundary Layer
height) (m) −0.59 * −0.45 * −0.46 * −0.28 * −0.26 * −0.52 * −0.44 * −0.42 *

Note: p value: * p ≤ 0.05-significant values; ** p ≥ 0.05-nonsignificant values.

The results of this study demonstrate that there was no significant improvement
in air quality during the lockdown in all the investigated European metropolises; on
average, pollutant emission reductions were estimated to be about 7% for PM2.5 for Madrid,
11% for London, and 12% for Paris. Despite the lower contributions from traffic, PM2.5
concentrations were reduced less than expected, probably due to increased contributions
from domestic and agricultural biomass burning or climate conditions favoring high
secondary aerosol formation yields.

More greatly decreased levels of particulate matter PM10 concentrations beyond
lockdown were recorded in Madrid, which can be explained by reduced emissions from
road dust, vehicle wear, and construction/demolition. Lower reductions of PM10 have
been registered for London −1%, for Paris −5%, and for Berlin −9%. Like other studies, this
research found that the COVID-19 lockdown period in the selected European metropolitan
areas led to a significant increase in daily average ground-level O3 concentrations in
comparison with the average values for the period 2015–2019 by factors varying from 2.05
in Madrid, 1.73 in Paris, 1.47 in London, and 1.37 in Berlin, while average daily ground-level
NO2 concentrations exhibited decreased levels of 54% in Madrid, 26% in London, 22% in
Paris, and 21% in Berlin.

As Table 3 presents, this study found significant inverse correlations between air
meteorological parameters, namely, air temperature at 2 m height T, surface solar irradiance
SI, and planetary boundary layer PBL heights, and COVID-19 incidence and lethality,
as well as a clear positive correlation with air relative humidity. Planetary boundary
layer height is one of the major parameters influencing surface air quality, bioaerosol
concentration near the ground, and people’s health. The results confirm the significant role
of the climate conditions at both local and regional scales related to the different aerosol
properties in continental and coastal urbanized areas that might influence the atmospheric
transport of the SARS-Cov-2 virus. Some studies used meteorological parameters like as air
temperature, absolute air humidity, and wind speed to predict COVID-19 epidemic trends
in different cities worldwide [78].

Like similar reported findings, our results sustain the hypothesis that during sum-
mer periods, European temperate countries experienced lower COVID-19 infectivity and
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lethality rates [79–82]. Also, during COVID-19 waves, this study revealed the occurrence of
strong atmospheric anticyclonic blocking patterns over south and central Europe, including
the Madrid, Paris, London, and Berlin metropolises. In the case of the first COVID-19 wave,
Figure 6 shows that the geopotential at 500 mb anomaly occurrence favored the accumula-
tion of virus-laden aerosols near the ground and COVID-19 disease transmission, and this
explains the associated existing correlations between urban air pollution episodes and the
intensity of each wave’s COVID-19 incidence and mortality in Paris, Madrid, London, and
Berlin [83–88].
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Surface solar irradiance (SI) is also a significant climate factor, which has a high impact
on viral disease transmission due to its virucidal capacity in the environment and its
capacity to increases human body immunity through vitamin D synthesis.

In this study, the mean values of the daily average SI registered in the selected metropolitan
areas during March 2020 and March 2022 were highest in Madrid (234.12 ± 90.18 W/m2) in
the range of (97.02–380.59 W/m2), followed by Paris (195.35 ± 102.72 W/m2) in the range of
(53.04–363.62 W/m2), London (185.21 ± 106.14 W/m2) in the range of (41.01–360.90 W/m2),
and Berlin (180.62 ± 105.85 W/m2) in the range of (38.71–358.46 W/m2).

The lowest values of SI recorded for London are very well reflected by the highest
rates of COVID-19 incidence and mortality. The results of this study contribute to our
understanding of the crucial role of the air pollutant dispersion mechanism over the
investigated metropolitan areas during epidemic viral infections.

3.2. Evolution of Total Aerosol Optical Depth at 550 nm

Aerosol optical depth (AOD), derived from satellite data, was introduced in conjunc-
tion with other variables like as the main air pollutants concentrations and meteorological
parameters. Over the investigated metropolises analyzed during the COVID-19 pre- and
pandemic periods, this study found that AOD levels present a clear annual course, with
maxima in spring and summer (sometimes associated with the transboundary Saharan
intrusions), and minima in autumn and winter. Despite of COVID-19 outbreak in spring
2020, and the subsequent restrictions on mobility and physical contacts—which were also
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associated with the extreme collapse of international tourism—compared to the same time
window (March–May) for the pre-pandemic (2015–2019) period, during the lockdown
period (March 2020–May 2020), different AOD level variations were recorded, as can be
seen in Figure 7 [89].
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Figure 7. Aerosol optical depth temporal distribution between 1 January 2019 and 1 November 2021
over selected metropolitan areas (Berlin, London, Madrid, and Paris).

A comparison of the AOD levels in the selected metropolitan areas shows that Madrid
recorded a high increase of 97.5%, Berlin and Paris also registered increases of 15.91% and
6.67%, respectively, while London registered a decrease of 3.5%. Springer Saharan dust
intrusion in Spain, associated with long-period anticyclonic conditions and high values of
AOD levels in Madrid, may explain the high rate of mortality (11,134 deaths) during the
first COVID-19 wave [90,91]. However, there was a certain degree of variation of total AOD
at 550 nm; a marker of air pollution was observed for the lockdown period in comparison
with the pre-lockdown period, its spatiotemporal patterns having a high impact on viral
disease transmission and lethality in densely populated areas. The geographic location of
the analyzed metropolises introduces complexity in the spatial and temporal distribution
of aerosol properties. AOD is also associated with local and regional climatology.

As can be seen in Table 2, during the investigated COVID-19 period from March 2020
to March 2022, the London metropolis recorded the greatest AOD value (0.247 ± 0.161),
followed by Paris (0.213 ± 0.145), Berlin (0.184 ± 0.089), and Madrid (0.124 ± 0.102). This
can explain the highest rates of COVID-19 mortality and incidence, presented, respectively,
in Figures 8 and 9.

Although the implementation of COVID-19 lockdown restrictions was not the same
in each metropolis of the study areas, and the traffic and industrial structure of different
the metropolitan areas varied considerably, during the spring period in 2020, massive
COVID-19 were recorded deaths, especially in Madrid, Paris, and London. Alongside
air pollutants’ contribution and the impacts of synoptic meteorological conditions, few
adopted restrictions and health system crises also contributed to the reported increased
fatalities reported in the scientific literature. The findings of this study align with previous
studies that have identified a significant interaction between urban pollution, climate, and
COVID-19 incidence and lethality [92–94].
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As can be seen in Figure 9, the temporal patterns of the daily new COVID-19 cases
(DNC) show a clear increase in viral disease incidence at the end of 2021, mostly in



Sustainability 2024, 16, 6119 14 of 19

London, Madrid, and Paris, associated with low mobility restrictions and an increase in
air pollution concentrations, as well as with the more-contagious SARS-CoV-2 variant
(BA1/BA2) Omicron.

Despite the increased AOD levels in Berlin compared to Madrid and London, the
recorded DNC and DND cases were lower in Berlin during the investigated pandemic
period. This could be attributed to more severely imposed restrictions, social distancing’s
role in varying COVID-19 exposure, and higher immunization coverage.

However, the results presented in this study highlight the significant role of urban
aerosol loading and pollutant gases in synergy with climate variability in COVID-19
pandemic evolution in large metropolitan areas [95,96]. Outdoor-specific climate conditions
(such as air temperature, relative humidity, wind speed intensity and direction, and surface
solar irradiance) can be top predictors of airborne coronavirus diffusion.

In a European policy context, sustainable urban development needs to be focused on
new urban policies, which must consider the European Green Deal. Also, according to the
EU policy set agendas and initiatives, urban planners must urgently implement proper
strategies for addressing the need for advancement in urban sustainability, air quality, and
climate improvement for promoting people’s well-being [97,98]. According to Goal 3 of the
United Nations (UN) Sustainable Development Goals (SDG), there is an urgent need for
each country to ensure the good health and well-being of their population [99] and to limit
environmental pollution [100,101] to advance sustainability in the post-pandemic era.

4. Strengths and Limitations

Overall, our study provides comprehensive information on the spatiotemporal vari-
ability of air pollution and the meteorological factors related to the epidemiological patterns
of COVID-19 incidence and severity during the three-year epidemic period in the large
European metropolitan areas of Berlin, Paris, Madrid, and London. One important finding
emphasizes the significance of local and regional climate on viral infection spreading, espe-
cially under anomalous stagnant atmospheric circulation associated with a high increase
in aerosols and airborne microbe concentrations near the ground, as observed over the
investigated European cities during the first COVID-19 wave. Other strengths of this study
include its almost three-year monitoring period based on in situ and satellite time series
data of air pollutants and climate factors related to COVID-19 viral disease transmission.
As a limitation, this study did not consider the spatiotemporal human mobility distribu-
tion in the studied metropolitan areas. Alongside air pollution and climate influencing
factors and their relative risks, which vary across time and space, we must remember that
sociodemographic factors exert a strong influence over environmental features. Factors like
vaccination rate, demographic characteristics regarding age, sex, and comorbidities, and
the quality and interventions of the various health services have not been considered.

5. Conclusions

Using multi-source data, this study focused on selected European metropolises, con-
sidering the regional characteristics of city areas. It is therefore scientific in its spatial scope,
and it supports the conclusion that exposure to high levels of air pollutants and bioaerosols
under the pressure of climate and anthropogenic changes has a strong impact on COVID-19
pandemic trends. Also, this study considered a long period of time and conducted a
sufficient comparative analysis of air pollution loading as expressed by the total aerosol
optical depth at 550 nm over the investigated metropolitan areas before, during, and after
the COVID-19 outbreak.

In addition, we considered the basic in situ and geospatial data for various meteorologi-
cal factors, such as air temperature, air relative humidity, wind speed intensity, air pressure,
surface solar irradiance, planetary boundary layer height, and geopotential anomalies
maps. Furthermore, this study highlights the factors that potentially affect viral infection
spreading, such as air pollution levels, including seasonality and metropolitan atmospheric
conditions, as well as population density. Our findings suggest that the increased mitiga-
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tion of air pollution in large agglomerated cities is an imperious need, especially during
pandemic viral events and long periods of stagnant atmospheric circulation conditions.

Although the outdoor pollution levels in our study metropolises were below European
and WHO recommendation thresholds, the impacts on COVID-19 transmission were
observed with respect to exposure at lower aerosol concentrations. Under the current
climate change scenario, where extreme climate events are increasing in duration and
frequency, the overlap of epidemic events with air pollution episodes in the outdoor
environment is of crucial significance. Further research is needed to explore the underlying
mechanisms and possible influential factors of these effects.

This study can help health and urban decision makers, who rely on evidence-based
air pollution–climate information tailored to their needs in adequately adapting to and
preparing for future epidemic and climate change events. However, combating pandemics
by maintaining sufficient distance and driving (utilizing electric cars), cycling, and walking
within blue and green cities could decrease population risks and limit human losses. Further
research is urgently needed to explore the underlying mechanisms and potential influential
factors of air pollution and climate effects with respect to the spread of viral pathogens
during epidemic events.
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