Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate
Abstract
:1. Introduction
2. Flooding Events: Causes and Characteristics
2.1. Natural Causes of Flooding
2.2. Anthropogenic Factors Contributing to Flooding
2.3. Frequency and Duration of Flooding
2.4. Climate Change, Extreme Precipitation, and Flooding
3. Effects of Flooding on Soil Properties
3.1. Impact on Soil Physical Properties
3.1.1. Soil Structure and Aggregation
3.1.2. Soil Porosity and Water-Holding Capacity
3.1.3. Soil Texture
3.1.4. Soil Organic Matter Turnover in Flooded Soils
3.2. Impact on Soil Chemical Properties
3.2.1. pH and Soil Acidity/Alkalinity
3.2.2. Nutrient Dynamics: Availability, Losses and Redistribution
3.3. Impact on Soil Biological Properties
3.3.1. Microbial Communities in Flooded Soils
3.3.2. Enzyme Activity in Flooded Soils
4. Plant Responses to Flooding Stress
4.1. Physiological Changes in Flood-Exposed Plants
4.2. Waterlogging Duration and Yeld Loss
4.3. Agricultural-Based Adaptation Strategies to Flooding
4.3.1. Plant-Based Adaptation Strategies
4.3.2. Human-Led Mitigation and Adaptation Strategies
5. Technological Advances in Assessing Flooding
5.1. Remote Sensing and GIS Applications
5.2. Sensor Technologies for Soil Monitoring
5.3. Numerical Modeling for Predicting Flooding and Nutrient Effects
5.4. Flood Susceptibility Assessment
6. Challenges and Gaps in Current Knowledge
6.1. Limitations in Existing Research
6.2. Critical Gaps in Understanding Flooding and Nutrient Impacts
6.3. Methodological Challenges and Areas for Improvement
7. Future Perspectives and Research Directions
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). The Impact of Disasters and Crises on Agriculture and Food Security; FAO: Rome, Italy, 2021; 245p, Available online: https://www.fao.org/resources/digital-reports/disasters-in-agriculture/en/ (accessed on 25 May 2024).
- BC Ministry of Agriculture. Food Security Increases with Improved Fraser Valley Flood Resiliency. 2024. Available online: https://news.gov.bc.ca/releases/2023AF0038-000981#:~:text=The%202021%20flooding%20was%20the,as%20land%2Dbased%20fish%20producers (accessed on 19 March 2024).
- Craig, H.; Paulik, R.; Djanibekov, U.; Walsh, P.; Wild, A.; Popovich, B. Quantifying national-scale changes in agricultural land exposure to fluvial flooding. Sustainability 2021, 13, 12495. [Google Scholar] [CrossRef]
- Combs-Giroir, R.; Gschwend, A.R. Physical and molecular responses to flooding in Brassicaceae. EEB 2024, 219, 105664. [Google Scholar] [CrossRef]
- Bi, W.; Weng, B.; Yan, D.; Wang, M.; Wang, H.; Wang, J.; Yan, H. Effects of drought-flood abrupt alternation on phosphorus in summer maize farmland systems. Geoderma 2020, 363, 114147. [Google Scholar] [CrossRef]
- Gandolfo-Lucia, N. Infrastructures of Vulnerability, or, How the Fraser Valley Flooded Twice. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2022; 190p. [Google Scholar]
- Haraldsen, T.K. Flood damage on agricultural land and methods for restoration of agricultural soils after catastrophic floods in cold areas. In Flood Risk in a Climate Change Context—Exploring Current and Emerging Drivers; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Warner, B.P.; Schattman, R.E.; Hatch, C.E. Farming the Floodplain: Ecological and Agricultural Tradeoffs and Opportunities in River and Stream Governance in New England’s Changing Climate. Case Stud. Environ. 2017, 1, 1–9. [Google Scholar] [CrossRef]
- Chau, V.N.; Holland, J.; Cassells, S.; Tuohy, M. Using GIS to map impacts upon agriculture from extreme floods in Vietnam. Appl. Geogr. 2013, 41, 65–74. [Google Scholar] [CrossRef]
- Kimutai, J.; New, M.; Wolski, P.; Otto, F. Attribution of the human influence on heavy rainfall associated with flooding events during the 2012, 2016, and 2018 March-April-May seasons in Kenya. Weather Clim. Extrem. 2022, 38, 100529. [Google Scholar] [CrossRef]
- Garssen, A.G.; Baattrup-Pedersen, A.; Riis, T.; Raven, B.M.; Hoffman, C.C.; Verhoeven, J.T.A.; Soons, M.B. Effects of increased flooding on riparian vegetation: Field experiments simulating climate change along five European lowland streams. Glob. Chang. Biol. 2017, 23, 3052–3063. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Chen, W.; Roy, J.; Pradhan, B.; Bui, D.T. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. J. Hydrol. 2020, 587, 125007. [Google Scholar] [CrossRef]
- Bharadwaj, B.; Mishegyan, A.; Nagalingam, S.; Guenther, A.; Joshee, N.; Sherman, S.H.; Basu, C. Physiological and genetic responses of lentil (Lens culinaris) under flood stress. Plant Stress 2023, 7, 100130. [Google Scholar] [CrossRef]
- Barneze, A.S.; van Groenigen, J.W.; Philippot, L.; Bru, D.; Abalos, D.; De Deyn, G.B. Plant communities can attenuate flooding induced N2O fluxes by altering nitrogen cycling microbial communities and plant nitrogen uptake. Soil Biol. Biochem. 2023, 185, 109142. [Google Scholar] [CrossRef]
- Cantelon, J.A.; Guimond, J.A.; Robinson, C.E.; Michael, H.A.; Kurylyk, B.L. Vertical Saltwater Intrusion in Coastal Aquifers Driven by Episodic Flooding: A Review. Water Resour. Res. 2022, 58, e2022WR032614. [Google Scholar] [CrossRef]
- Brémond, P.; Grelot, F.; Agenais, A.-L. Review Article: Economic evaluation of flood damage to agriculture—Review and analysis of existing methods. Nat. Hazards Earth Syst. Sci. 2013, 13, 2493–2512. [Google Scholar] [CrossRef]
- World Health Organization. Floods. 2024. Available online: https://www.who.int/health-topics/floods#tab=tab_1 (accessed on 14 February 2024).
- Zaremehrjardy, M.; Victor, J.; Park, S.; Smerdon, B.; Alessi, D.S.; Faramarzi, M. Assessment of snowmelt and groundwater-surface water dynamics in mountains, foothills, and plains regions in northern latitudes. J. Hydrol. 2022, 606, 127449. [Google Scholar] [CrossRef]
- Brown, J.M.; Morrissey, K.; Knight, P.; Prime, T.D.; Almeida, L.P.; Masselink, G.; Bird, C.O.; Dodds, D.; Plater, A.J. A coastal vulnerability assessment for planning climate resilient infrastructure. Ocean Coast Manag. 2018, 163, 101–112. [Google Scholar] [CrossRef]
- Post, V.E.A.; Houben, G.J. Density-driven vertical transport of saltwater through the freshwater lens on the island of Baltrum (Germany) following the 1962 storm flood. J. Hydrol. 2017, 551, 689–702. [Google Scholar] [CrossRef]
- Das, A.; Budhathoki, S.; Lindenschmidt, K.-E. Development of an ice-jam flood forecasting modelling framework for freeze-up/winter breakup. Hydrol. Res. 2023, 54, 648. [Google Scholar] [CrossRef]
- Gaál, L.; Szolgay, J.; Kohnová, S.; Parajka, J.; Merz, R.; Viglione, A.; Blöschl, G. Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resour. Res. 2012, 48, W04511. [Google Scholar] [CrossRef]
- Allocca, V.; Napoli, M.D.; Coda, S.; Carotenuto, F.; Calcaterra, D.; Martire, D.D.; De Vita, P. A novel methodology for Groundwater Flooding Susceptibility assessment through Machine Learning techniques in a mixed-land use aquifer. Sci. Total Environ. 2021, 790, 148067. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Alifu, H.; Yamazaki, D.; Imada, Y.; Shiogama, H.; Kimura, Y. Anthropogenic climate change has changed frequency of past flood during 2010–2013. Prog. Earth Planet Sci. 2021, 8, 36. [Google Scholar] [CrossRef]
- Associated Programme on Flood Management (APFM). Final Annual Report 2022–2023; APFM: Singapore, 2023; 28p. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021.
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef]
- Ren, J.; Wanga, W.; Wei, J.; Li, H.; Li, X.; Liu, G.; Chen, Y.; Ye, S. Evolution and prediction of drought-flood abrupt alternation events in Huang-Huai-Hai River Basin, China. Sci. Tot. Environ. 2023, 869, 161707. [Google Scholar] [CrossRef]
- Myhre, G.; Samset, B.H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T.K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 2013, 13, 1853–1877. [Google Scholar] [CrossRef]
- Chen, H.; Liang, Q.; Liang, Z.; Liu, Y.; Xie, S. Remote-sensing disturbance detection index to identify spatio-temporal varying flood impact on crop production. Agric. For. Meteorol. 2019, 269–270, 180–191. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Climate change: Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Do, H.X.; Westra, S.; Leonard, M. A global-scale investigation of trends in annual maximum streamflow. J. Hydrol. 2017, 552, 28–43. [Google Scholar] [CrossRef]
- Sharma, A.; Wasko, C.; Lettenmaier, D.P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 2018, 54, 8545–8551. [Google Scholar] [CrossRef]
- Breinl, K.; Lun, D.; Müller-Thomy, H.; Blöschl, G. Understanding the relationship between rainfall and flood probabilities through combined intensity-duration-frequency analysis. J. Hydrol. 2021, 602, 126759. [Google Scholar] [CrossRef]
- Pilgrim, D.H.; Cordery, I. Rainfall Temporal Patterns for Design Floods. J. Hydraul. 1975, 101, 81–95. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Vogel, R.M.; Limbrunner, J.F. Climate elasticity of streamflow in the United States. Water Resour. Res. 2001, 37, 1771–1781. [Google Scholar] [CrossRef]
- Slater, L.J.; Villarini, G. Recent trends in US flood risk. Geophys. Res. Lett. 2016, 43, 12428–12436. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resour. Res. 2009, 45, W01405. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Wright, D.B.; Yu, G. The Impact of Rainfall Space-Time Structure in Flood Frequency Analysis. Water Resour. Res. 2018, 54, 8983–8998. [Google Scholar] [CrossRef]
- Rogger, M.; Pirkl, H.; Viglione, A.; Komma, J.; Kohl, B.; Kirnbauer, R.; Merz, R.; Blöschl, G. Step changes in the flood frequency curve: Process controls. Water Resour. Res. 2012, 48, W05544. [Google Scholar] [CrossRef]
- Viglione, A.; Blöschl, G. On the role of storm duration in the mapping of rainfall to flood return periods. Hydrol. Earth Syst. Sci. 2009, 13, 205–216. [Google Scholar] [CrossRef]
- He, X.; Sheffield, J. Lagged compound occurrence of droughts and pluvials globally over the past seven decades. Geophys. Res. Lett. 2020, 47, e2020GL087924. [Google Scholar] [CrossRef]
- Unger, I.M.; Kennedy, A.C.; Muzika, R. Flooding effects on soil microbial communities. Appl. Soil. Ecol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Kilavi, M.; MacLeod, D.; Ambani, M.; Robbins, J.; Dankers, R.; Graham, R.; Helen, T.; Salih, A.A.M.; Todd, M.C. Extreme rainfall and flooding over Central Kenya Including Nairobi City during the long-rains season 2018: Causes, predictability, and potential for early warning and actions. Atmosphere 2018, 9, 472. [Google Scholar] [CrossRef]
- Kenya Government. The 2018 Long Rains Season Assessment Report—Kenya; Kenya Government: Nairobi, Kenya, 2018.
- Messiga, A.J.; Lam, C.; Li, Y.; Kidd, S.; Yu, S.; Bineng, C. Combined Starter Phosphorus and Manure Applications on Silage Corn Yield and Phosphorus Uptake in Southern BC. Front. Earth Sci. 2020, 8, 88. [Google Scholar] [CrossRef]
- Ross, P.S.; Walters, K.E.; Yunker, M.; Lo, B. A Lake Re-Emerges: Analysis of Contaminants in the Semá:th X̱ó:tsa (Sumas Lake) Region Following the BC Floods of 2021; Raincoast Conservation Foundation: Sidney, BC, Canada, 2022; ISBN 978-1-9993892-6-0. [Google Scholar]
- Liu, J.; Baulch, H.M.; Macrae, M.L.; Wilson, H.F.; Elliott, J.A.; Bergström, L.; Glenn, A.J.; Vadas, P.A. Agricultural water quality in cold climates: Processes, drivers, management options, and research needs. J. Environ. Qual. 2019, 48, 792–802. [Google Scholar] [CrossRef]
- Lai, C.; Lui, X.; Su, W.; Zheng, A. Causes and effects of the November 2021 Pacific Northwestern Floods in British Columbia. HSET 2022, 17, 75–85. [Google Scholar] [CrossRef]
- Trenberth, K.E. Atmospheric Moisture Residence Times and Cycling: Implications for Rainfall Rates and Climate Change. Climatic Chang. 1998, 39, 667–694. [Google Scholar] [CrossRef]
- Li, X.; Peachey, B.; Maeda, N. Global Warming and Anthropogenic Emissions of Water Vapor. Langmuir 2024, 40, 7701–7709. [Google Scholar] [CrossRef] [PubMed]
- Weil, N.C.; Brady, R.R.; Weil, R.R. The Nature and Properties of Soils, 15th ed.; Pearson: Columbus, OH, USA, 2016. [Google Scholar]
- Schlüter, S.; Koestel, J. Soil structure. In Encyclopedia of Soils in the Environment, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 5, pp. 1–7. [Google Scholar]
- Unger, P.W.; McCalla, T.M. Conservation Tillage Systems. Adv. Agron. 1980, 33, 1–58. [Google Scholar]
- Herrick, J.E.; Whitford, W.G.; de Soyza, A.G.; Van Zee, J.W.; Havstad, K.M.; Seybold, C.A.; Walton, M. Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena 2001, 44, 27–35. [Google Scholar] [CrossRef]
- Oades, J.M.; Waters, A.G. Aggregate hierarchy in soils. Aust. J. Soil Res. 1991, 29, 815–824. [Google Scholar] [CrossRef]
- Mbagwu, J.S.C.; Bazzoffi, P. Properties of soil aggregates as influenced by tillage practices. Soil Use Manag. 1989, 5, 180–188. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Clover, M.W.; Hoeft, R.G.; Nafziger, E.D.; Warren, J.; Gonzini, L.C.; Greer, K.D. Tile drainage nitrate losses and corn yield response to fall and spring nitrogen management. J. Environ. Qual. 2017, 46, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, J.R. Porosity and Pore Size Distribution. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: London, UK, 2004; Volume 3, pp. 295–303. [Google Scholar]
- Ramesh, T.; Bolan, N.S.; Kirkham, M.B.; Wijesekara, H.; Kanchikerimath, M.; Rao, C.S.; Sandeep, S.; Rinklebe, J.; Ok, Y.S.; Choudhury, B.U.; et al. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Adv. Agron. 2019, 156, 1–107. [Google Scholar]
- Kostopoulou, S.; Kallitsari, C.; Aschonitis, V. Seasonal flooding and rice cultivation effects on the pore size distribution of a SiL soil. Agric. Agric. Sci. Procedia 2015, 4, 195–200. [Google Scholar] [CrossRef]
- Rahman, M.H.; Okubo, A.; Sugiyama, S.; Mayland, H.F. Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil Till. Res. 2008, 101, 10–19. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Kostopoulou, S.K.; Antonopoulos, V.Z. Methodology to assess the effects of rice cultivation under flooded conditions on van Genuchten’s model parameters and pore size distribution. Transp. Porous Media 2012, 91, 861–876. [Google Scholar] [CrossRef]
- Cameira, M.R.; Fernando, R.M.; Pereira, L.S. Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal. Soil Till. Res. 2003, 70, 131–140. [Google Scholar] [CrossRef]
- Hirmas, D.R.; Giménez, D.; Nemes, A.; Kerry, R.; Brunsell, N.A.; Wilson, C.J. Climate-induced changes in continental-scale soil macroporosity may intensify water cycle. Nature 2018, 561, 100. [Google Scholar] [CrossRef]
- Zhu, K.; Ma, M.; Ran, Y.; Liu, Z.; Wu, S.; Huang, P. In mitigating CO2 emission in the reservoir riparian: The influences of land use and the dam-triggered flooding on soil respiration. Soil Till. Res. 2020, 197, 104522. [Google Scholar] [CrossRef]
- Furtak, K.; Wolińska, A. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture—A review. Catena 2023, 231, 107378. [Google Scholar] [CrossRef]
- Banach, A.M.; Banach, K.; Peters, R.; Jansen, R.H.M.; Visser, E.J.W.; Stepniewska, Z.; Roelofs, J.G.M.; Lamers, L.P.M. Effects of long-term flooding on biogeochemistry and vegetation development in floodplains; a mesocosm experiment to study interacting effects of land use and water quality. Biogeosciences 2009, 6, 1325–1339. [Google Scholar] [CrossRef]
- Khan, I.; Fahad, S.; Wu, L.; Zhou, W.; Xu, P.; Sun, Z.; Salam, A.; Imran, M.; Jiang, M.; Kuzyakov, Y.; et al. Labile organic matter intensifies phosphorous mobilization in paddy soils by microbial iron(III) reduction. Geoderma 2019, 352, 185–196. [Google Scholar] [CrossRef]
- Sarkar, B.; Singh, M.; Mandal, S.; Churchman, G.J.; Bolan, N.S. Clay minerals-Organic matter interactions in relation to carbon stabilization in soils. In The Future of Soil Carbon: It Conservation and Formation; Academic Press: Cambridge, MA, USA, 2018; pp. 71–86. [Google Scholar]
- Chenu, C.; Rumpel, C.; Védère, C.; Barré, P. Methods for studying soil organic matter: Nature, dynamics, spatial accessibility, and interactions with minerals. In Soil Microbiology, Ecology and Biochemistry, 15th ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 369–406. [Google Scholar]
- Cotrufo, M.F.; Lavallée, J.M. Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Adv. Agron. 2022, 172, 1–66. [Google Scholar]
- Lavallée, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef]
- Oeurng, C.; Sauvage, S.; Sánchez-Pérez, J.M. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J. Hydrol. 2011, 401, 145–153. [Google Scholar] [CrossRef]
- Lau, M.P.; del Giorgio, P. Reactivity, fate and functional roles of dissolved organic matter in anoxic inland waters. Biol. Lett. 2020, 16, 20190694. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Bravo, A.G.; Skyllberg, U.; Björn, E.; Wang, D.; Yan, H.; Green, N.W. Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China. Water Res. 2017, 146, e158. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, A.J.; Rosi, E.J.; Bechtold, H.A.; Doody, T.R.; Kaushal, S.S.; Groffman, P.M. Recovery and resilience of urban stream metabolism following Superstorm Sandy and other floods. Ecosphere 2017, 8, e01776. [Google Scholar] [CrossRef]
- Clark, J.M.; Lane, S.N.; Chapman, P.J.; Adamson, J.K. Link between DOC in near surface peat and stream water in an upland catchment. Sci. Total Environ. 2008, 404, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.G.M.; Stubbins, A.; Hernes, P.J.; Baker, A.; Mopper, K.; Aufdenkampe, A.K.; Dyda, R.Y.; Mwamba, V.L.; Mangangu, A.M.; Wabakanghanzi, J.N.; et al. Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J. Geophys. Res. Biogeosci. 2009, 114, G03010. [Google Scholar] [CrossRef]
- Shang, P.; Lu, Y.; Du, Y.; Jaffé, R.; Findlay, R.H.; Wynn, A. Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use. Sci. Total Environ. 2018, 612, 1442–1453. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Wang, K.; Sun, Y.; Zhou, Y.; Yang, S.; Li, Y.; He, C.; Shi, Q.; He, D. Linking the unique molecular complexity of dissolved organic matter to flood period in the Yangtze River mainstream. Sci. Tot. Environ. 2021, 764, 142803. [Google Scholar] [CrossRef] [PubMed]
- Sao, S.; Praise, S.; Watanabe, T. Effect of flood duration on water extractable dissolved organic matter in flood plain soils: A laboratory investigation. Geoderma 2023, 432, 116392. [Google Scholar] [CrossRef]
- Ding, B.; Zhang, H.; Luo, W.; Sun, S.; Cheng, F.; Li, Z. Nitrogen loss through denitrification, anammox and Feammox in a paddy soil. Sci. Total Environ. 2021, 773, 145601. [Google Scholar] [CrossRef]
- Nunes, M.R.; Denardin, J.E.; Vaz, C.M.P.; Karlen, D.L.; Cambardella, C.A. Lime movement through highly weathered soil profiles. Environ. Res. Commun. 2019, 1, 115002. [Google Scholar] [CrossRef]
- Li, H.; McCoy, C.W.; Syvertsen, J.P. Controlling factors of environmental flooding, soil pH and Diaprepes abbreviatus (L.) root weevil feeding in citrus: Larval survival and larval growth. Appl. Soil Ecol. 2007, 35, 553–565. [Google Scholar] [CrossRef]
- Kaur, G.; Zurweller, B.A.; Nelson, K.A.; Motavalli, P.P.; Duden-hoeffer, C.J. Soil waterlogging and nitrogen fertilizer management effects on corn and soybean yields. Agron. J. 2017, 109, 97–106. [Google Scholar] [CrossRef]
- Ding, C.; Du, S.; Ma, Y.; Li, X.; Zhang, T.; Wang, X. Changes in the pH of paddy soils after flooding and drainage: Modeling and Validation. Geoderma 2019, 337, 511–513. [Google Scholar] [CrossRef]
- Tackley, H.A.; Kurylyk, B.L.; Lake, C.B.; Lapen, D.R.; van Proosdij, D. Impacts of repeated coastal flooding on soil and groundwater following managed dike realignment. Sci. Tot. Environ. 2023, 893, 164957. [Google Scholar] [CrossRef]
- Balakhnina, T.; Bennicelli, R.; Stepniewska, Z.; Stepniewski, W.; Borkowska, A.; Fomina, I. Stress responses of spring rape plants to soil flooding. Int. Agrophysics 2012, 26, 347–353. [Google Scholar] [CrossRef]
- Grinham, A.; Costantini, T.; Deering, N.; Jackson, C.; Klein, C.; Lovelock, C.; Pandolfi, J.; Eyal, G.; Linde, M.; Dunbabin, M.; et al. Nitrogen loading resulting from major floods and sediment resuspension to a large coastal embayment. Sci. Tot. Environ. 2024, 918, 170646. [Google Scholar] [CrossRef]
- Salazar, O.; Vargas, J.; Nájera, F.; Seguel, O.; Casanova, M. Monitoring of nitrate leaching during flush flooding events in a coarse-textured floodplain soil. Agric. Water Manag. 2014, 146, 218–227. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Perera, E.D.P.; Kudo, S.; Miyamoto, M.; Yamazaki, Y.; Kuribayashi, D.; Sawano, H.; Sayama, T.; Magome, J.; Hasegawa, A. Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia. Nat. Hazards 2019, 97, 157–192. [Google Scholar] [CrossRef]
- Wang, L.; Cui, S.; Li, Y.; Huang, H.; Manandhar, B.; Nitivattananon, V.; Fang, X.; Huang, W. A review of the flood management: From flood control to flood resilience. Heliyon 2022, 8, e11763. [Google Scholar] [CrossRef]
- Maranguit, D.; Guillaume, T.; Kuzyakov, Y. Effects of flooding on phosphorus and iron mobilization in higly weathered soils under different land-use types: Short-term effects and mechanisms. Catena 2017, 158, 161–170. [Google Scholar] [CrossRef]
- Jiang, X.; Livi, K.J.T.; Arenberg, M.R.; Chen, A.; Chen, K.-Y.; Gentry, L.; Li, Z.; Xu, S.; Arai, Y. High flow event induced the subsurface transport of particulate phosphorus and its speciation in agricultural tile drainage system. Chemosphere 2021, 263, 128147. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Bella, R.W.; Wong, M.T.F. Dissolved reactive phosphorus played a limited role in phosphorus transport via runoff, throughflow and leaching on contrasting cropping soils from southwest Australia. Sci. Total Environ. 2017, 577, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Zhang, S.; Wang, Y.; Chen, S.; Chen, Q. Restricted colloidal-bound phosphorus release controlled by alternating flooding and drying cycles in an alkaline calcareous soil. Environ. Pollut. 2024, 343, 123204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, S.; Jin, J.; Wu, G.; Bolan, N.S.; White, J.R.; Shaheen, S.M.; Jörg, R.; Chen, Q. Incorporation of calcium cyanamide and straw reduces phosphorus leaching in a flooded agricultural soil. Geoderma 2022, 428, 116150. [Google Scholar] [CrossRef]
- Rupngam, T.; Messiga, A.J.; Karam, A. Solubility of soil phosphorus in extended waterlogged conditions: An incubation study. Heliyon 2023, 9, e13502. [Google Scholar] [CrossRef] [PubMed]
- Scalenghe, R.; Edwards, A.C.; Barberis, E.; Ajmone-Marsan, F. Are agricultural soils under a continental temperate climate susceptible to episodic reducing conditions and increased leaching of phosphorus? J. Environ. Manag. 2012, 97, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, V.; Amarakoon, I.; Kumaragamage, D.; Casson, N.J.; Indraratne, S.; Goltz, D.; Gao, X. Comparison of manure application methods on nutrient and metal loss to snowmelt. Geoderma Reg. 2024, 37, e00799. [Google Scholar] [CrossRef]
- González, O.M.; Steinauer, K.; Jousset, A.; Eisenhauer, N.; Scheu, S. Flood induced changes in soil microbial functions as modified by plant diversity. PLoS ONE 2016, 11, e0166349. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, J.; Guo, Z.; Ma, J.; Xu, H.; Jia, Z. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J. 2015, 9, 1062–1075. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, J.; Yang, F.; Chen, Q.; Feng, J.; Li, Q.; Zhang, Q.; Wang, W.; Cheng, X. Linkages between soil organic carbon fractions and carbon-hydrolyzing enzyme activities across riparian zones in the Three Gorges of China. Sci. Rep. 2020, 10, 8433. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.Z.; Pan, J.Y.; Yang, Y.J.; Cao, Z.Y.; Xu, P.; Chen, M.X.; Guan, M.Y. Water management affects arsenic uptake and translocation by regulating arsenic bioavailability, transporter expression and thiol metabolism in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2020, 206, 111208. [Google Scholar] [CrossRef]
- Kunito, T.; Saeki, K.; Goto, S.; Hayashi, H.; Oyaizu, H.; Matsumoto, S. Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils. Bioresour. Technol. 2001, 79, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Rupngam, T.; Messiga, A.J.; Karam, A. Soil enzyme activities in heavily manured and waterlogged soil cultivated with ryegrass (Lolium multiflorum). Can. J. Soil Sci. 2024, 104, 146–155. [Google Scholar] [CrossRef]
- Brockett, B.F.T.; Prescott, C.E.; Grayston, S.J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 2012, 44, 9–20. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Lin, H.; Wen, X.; Liu, J.; Yuan, Z.; Fu, C.; Zheng, B.; Gong, L.; Zhan, H.; et al. Flooding dominates soil microbial carbon and phosphorus limitations in Poyang Lake wetland, China. Catena 2023, 232, 107468. [Google Scholar] [CrossRef]
- Pedersen, O.; Colmer, T.D.; Sand-Jensen, K. Underwater photosynthesis of submerged plants—recent advances and methods. Front. Plant Sci. 2013, 4, 140. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kumari, S.; Zhang, L.; Zheng, Y.; Ware, D. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS ONE 2012, 7, e39786. [Google Scholar] [CrossRef] [PubMed]
- Voesenek, L.A.C.J.; Bailey-Serres, J. Flood adaptive traits and processes: An overview. N. Phytol. 2015, 206, 57–73. [Google Scholar] [CrossRef]
- Fukao, T.; Xu, K.; Ronald, P.C.; Baileyserres, J.A. Variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 2006, 18, 2021–2034. [Google Scholar] [CrossRef]
- Perata, P.; Pozueta-Romero, J.; Akazawa, T.; Yamaguchi, J. Effect of anoxia on starch breakdown in rice and wheat seeds. Planta 1992, 188, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, F.; Meng, Y.; Chandrasekaran, U.; Luo, X.; Yang, W.; Shu, K. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiol. Biochem. 2020, 148, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Pezeshki, S.R. Wetland plant responses to soil flooding. EEB 2001, 46, 299–331. [Google Scholar] [CrossRef]
- Issarakraisila, M.; Ma, Q.; Turner, D.W. Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Sci. Hortic. 2007, 111, 107–113. [Google Scholar] [CrossRef]
- Ploschuk, R.A.; Miralles, D.J.; Colmer, T.D.; Ploschuk, E.L.; Striker, G.G. Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Front. Plant Sci. 2018, 9, 1863. [Google Scholar] [CrossRef] [PubMed]
- Mühlenbock, P.; Plaszczyca, M.; Plaszczyca, M.; Mellerowicz, E.; Karpinski, S. Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell 2007, 19, 3819–3830. [Google Scholar] [CrossRef] [PubMed]
- Else, M.A.; Janowiak, F.; Atkinson, C.J.; Jackson, M.B. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann. Bot. 2009, 103, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.B. Ethylene-promoted elongation: An adaptation to submerge stress. Ann. Bot. 2008, 101, 229–248. [Google Scholar] [CrossRef]
- Banga, M.; Slaa, E.J.; Blom, C.; Voesenek, L. Ethylene biosynthesis and accumulation under drained and submerged conditions (a comparative study of two rumex species). Plant Physiol. 1996, 112, 229–237. [Google Scholar] [CrossRef]
- Leeggangers, H.A.C.F.; Rodriguez-Granados, N.Y.; Macias-Honti, M.G.; Sasidharan, R. A helping hand when drowning: The versatile role of ethylene in root flooding resilience. EEB 2023, 213, 105422. [Google Scholar] [CrossRef]
- Pattyn, J.; Vaughan-Hirsch, J.; Van de Poel, B. The regulation of ethylene biosynthesis: A complex multilevel control circuitry. New Phytol. 2021, 229, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.-P.; Lin, T.-Y.; Wang, N.-N.; Shih, M.-C. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol. Biol. 2005, 58, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Loreti, E.; van Veen, H.; Perata, P. Plant responses to flooding stress. Curr. Opin. Plant Biol. 2016, 33, 64–71. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Z.; Zhang, W.; Meng, Z.; Chang, X.; Lv, M. Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton. PLoS ONE 2017, 12, e0169029. [Google Scholar] [CrossRef] [PubMed]
- Marti, J.; Savin, R.; Slafer, G.A. Wheat yield as affected by length of exposure to waterlogging during stem elongation. J. Agron. Crop Sci. 2015, 201, 473–486. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Shabala, S.; Meinke, H.; Ahmed, I.; Zhang, Y.; Tian, X.; Zhou, M. The state of the art in modeling waterlogging impacts on plants: What do we know and what do we need to know. Earth’s Future 2020, 8, e2020EF001801. [Google Scholar] [CrossRef]
- Collaku, A.; Harrison, S.A. Losses in wheat due to waterlogging. Crop Sci. 2002, 42, 444–450. [Google Scholar] [CrossRef]
- De San Celedonio, R.P.; Abeledo, L.G.; Miralles, D.J. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil 2014, 378, 265–277. [Google Scholar] [CrossRef]
- Huang, C.; Gao, Y.; Qin, A.; Liu, Z.; Zhao, B.; Ning, D.; Ma, S.; Duan, A.; Liu, Z. Effects of waterlogging at different stages and durations on maize growth and grain yields. Agric. Water Manag. 2022, 261, 107334. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Effects of duration of waterlogging at different growth stages on grain growth of summer maize (Zea mays L.) under field conditions. J. Agron. Crop Sci. 2016, 202, 564–575. [Google Scholar] [CrossRef]
- Sarkar, P.K.; Khatun, A.; Singha, A. Effect of duration of water-logging on crop stand and yield of sesame. IJIAS 2016, 14, 1–6. [Google Scholar]
- Colmer, T.D.; Winkel, A.; Pedersen, O. A perspective on underwater photosynthesis in submerged terrestrial wetland plants. AoB Plants 2011, plr030. [Google Scholar] [CrossRef] [PubMed]
- Rupngam, T.; Messiga, A.J.; Karam, A. Phosphorus Mobility in Heavily Manured and Waterlogged Soil Cultivated with Ryegrass (Lolium multiflorum). Agronomy 2023, 13, 2168. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, G.; Motavalli, P.P.; Nelson, K.A.; Orlowski, J.M.; Golden, B.R. Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agron. J. 2020, 112, 1475–1501. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Voesenek, L. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 2008, 59, 313–339. [Google Scholar] [CrossRef] [PubMed]
- Polacik, K.A.; Maricle, B.R. Effects of flooding on photosynthesis and root respiration in saltcedar (Tamarix ramosissima), an invasive riparian shrub. EEB 2013, 89, 19–27. [Google Scholar] [CrossRef]
- Ali, S.; Liu, K.; Ahmed, W.; Jing, H.; Qaswar, M.; Anthonio, C.K.; Maitlo, A.A.; Lu, Z.; Liu, L.; Zhang, H. Nitrogen mineralization, soil microbial biomass and extracellular enzyme activities regulated by long-term N fertilizer inputs: A comparison study from upland and paddy soils in a red soil region of China. Agronomy 2021, 11, 2057. [Google Scholar] [CrossRef]
- Antolini, F.; Tate, E.; Dalzell, B.; Young, N.; Johnson, K.; Hawthorne, P.L. Flood risk reduction from agricultural best management practices. JAWRA 2020, 56, 161–179. [Google Scholar] [CrossRef]
- Merriman, K.; Daggupati, P.; Srinivasan, R.; Toussant, C.; Russell, A.; Hayhurst, B. Assessing the Impact of Site-Specific BMPs Using a Spatially Explicit, Field-Scale SWAT Model with Edge-of-Field and Tile Hydrology and Water-Quality Data in the Eagle Creek Watershed, Ohio. Water 2018, 10, 1299. [Google Scholar] [CrossRef]
- Dalzell, B.J.; Mulla, D.J. Perennial Vegetation Impacts on Stream Discharge and Channel Sources of Sediment in the Minnesota River Basin. JSWC 2018, 73, 120–132. [Google Scholar] [CrossRef]
- Schilling, K.E.; Gassman, P.W.; Kling, C.L.; Campbell, T.; Jha, M.K.; Wolter, C.F.; Arnold, J.G. The Potential for Agricultural Land Use Change to Reduce Flood Risk in a Large Watershed. Hydrol. Process. 2014, 28, 14–25. [Google Scholar] [CrossRef]
- Dakhlalla, A.O.; Parajuli, P.B. Evaluation of the Best Management Practices at the Watershed Scale to Attenuate Peak Streamflow under Climate Change Scenarios. Water Resour. Manag. 2016, 30, 963–982. [Google Scholar] [CrossRef]
- Shastry, A.; Carter, E.; Coltin, B.; Sleeter, R.; McMichael, S.; Eggleston, J. Mapping floods from remote sensing data and quantifying the effects of surface obstruction by clouds and vegetation. Remote Sens. Environ. 2023, 291, 113556. [Google Scholar] [CrossRef]
- Olson, D.; Anderson, J. Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agron. J. 2021, 113, 971–992. [Google Scholar] [CrossRef]
- Mateo-Garcia, G.; Veitch-Michaelis, J.; Smith, L.; Oprea, S.V.; Schumann, G.; Gal, Y.; Baydin, A.G.; Backes, D. Towards global flood mapping onboard low cost satellites with machine learning. Sci. Rep. 2021, 11, 7249. [Google Scholar] [CrossRef]
- Yan, G.; Bore, T.; Li, Z.; Schlaeger, S.; Scheuermann, A.; Li, L. Application of Spatial Time Domain Reflectometry for Investigating Moisture Content Dynamics in Unsaturated Loamy Sand for Gravitational Drainage. Appl. Sci. 2021, 11, 2994. [Google Scholar] [CrossRef]
- Kim, H.-J.; Hummel, J.W.; Sudduth, K.A.; Motavalli, P.P. Simultaneous Analysis of Soil Macronutrients Using Ion-Selective Electrodes. Soil Sci. Soc. Am. J. 2007, 71, 1867–1877. [Google Scholar] [CrossRef]
- Zhang, B.; Meng, L. Energy Efficiency Analysis of Wireless Sensor Networks in Precision Agriculture Economy. Sci. Program. 2021, 2021, e8346708. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Huang, C., Jr. Improving daily streamflow simulations for data-scarce watersheds using the coupled SWAT-LSTM approach. J. Hydrol. 2023, 622, 129734. [Google Scholar] [CrossRef]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin Vacca, A. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Bussi, G.; Hughes, J.M.R.; Castro-Castellon, A.T.; Norling, M.D.; Jeffers, E.S.; Rampley, C.P.N.; Read, D.S.; Horton, A.A. Modelling microplastics in the River Thames: Sources, sinks and policy implications. Water 2021, 13, 861. [Google Scholar] [CrossRef]
- Mensah, J.K.; Ofosu, E.A.; Yidana, S.M.; Akpoti, K.; Kabo-bah, A.T. Integrated modeling of hydrological processes and groundwater recharge based on land use land cover, and climate changes: A systematic review. Environ Adv. 2022, 8, 100224. [Google Scholar] [CrossRef]
- Zhu, K.; Lai, C.; Wang, Z.; Zeng, Z.; Mao, Z.; Chen, X. A novel framework for feature simplification and selection in flood susceptibility assessment based on machine learning. J. Hydrol. Reg. Stud. 2024, 52, 101739. [Google Scholar] [CrossRef]
- Zeng, Z.; Lai, C.; Wang, Z.; Chen, Y.; Chen, X. Future sea level rise exacerbates compound floods induced by rainstorm and storm tide during super typhoon events: A case study from Zhuhai, China. Sci. Total Environ. 2024, 911, 168799. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.-M.; Zhou, W.-H.; Shen, S.-L.; Zhou, A.-N. Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustain. Cities Soc. 2020, 56, 102103. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Tang, X.; Hong, H.; Shu, Y.; Tang, H.; Li, J.; Liu, W. Urban waterlogging susceptibility assessment based on a PSO-SVM method using a novel repeatedly random sampling idea to select negative samples. J. Hydrol. 2019, 576, 583–595. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Karatzas, G.P. A national scale flood hazard mapping methodology: The case of Greece–Protection and adaptation policy approaches. Sci. Total Environ. 2017, 601, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Janizadeh, S.; Vafakhah, M.; Kapelan, Z.; Mobarghaee Dinan, N. Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling. Geocarto Int. 2021, 37, 8273–8292. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H.; Costache, R.; Tang, X. Flood susceptibility mapping by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree. J. Environ. Manag. 2021, 289, 112449. [Google Scholar] [CrossRef]
- Chen, S.S.; Tsang, D.C.W.; He, M.; Sun, Y.; Lau, L.S.Y.; Leung, R.W.M.; Lau, E.S.C.; Hou, D.; Liu, A.; Mohanty, S. Designing sustainable drainage systems in subtropical cities: Challenges and opportunities. J. Clean. Prod. 2021, 280, 124418. [Google Scholar] [CrossRef]
- Li, Y.; Jia, C.; Ma, S.; Hu, Z.; Sun, J. Refined spatiotemporal analysis of drought characteristics under different characteristic variable matchings: A case study of the middle reaches of the Yellow River basin, China. Environ. Sci. Pollut. Res. 2022, 29, 60440–60458. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, S.; Lin, R. The role of light in regulating seed dormancy and germination. J. Integr. Plant Biol. 2020, 62, 1310–1326. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, W.; Guan, K.; Peng, B.; Xu, S.; Tang, J.; Zhu, Q.; Till, J.; Jia, X.; Jiang, C.; et al. Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems. Nat. Comm. 2024, 1, 357. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupngam, T.; Messiga, A.J. Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate. Sustainability 2024, 16, 6141. https://doi.org/10.3390/su16146141
Rupngam T, Messiga AJ. Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate. Sustainability. 2024; 16(14):6141. https://doi.org/10.3390/su16146141
Chicago/Turabian StyleRupngam, Thidarat, and Aimé J. Messiga. 2024. "Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate" Sustainability 16, no. 14: 6141. https://doi.org/10.3390/su16146141