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Abstract: Soil salinization will affect 50% of global cropland areas by 2050 and represents a major
threat to agricultural production and food sovereignty. As soil salinity monitoring is costly and time
consuming, many regions of the world undertake very limited soil salinity observation (in space and
time), preventing the accurate assessment of soil salinity hazards. In this context, this study assesses
the relative performance of Sentinel-1 radar and Sentinel-2 optical images, and the combination of
the two, for monitoring changes in soil salinity at high spatial and temporal resolution, which is
essential to evaluate the mitigation measures required for the sustainable adaptation of agriculture
practices. For this purpose, an improved learning database made of 863 soil electrical conductivity
(i.e., soil salinity) observations is considered for the training/validation step of a Random Forest
(RF) model. The RF model is successively trained with (1) only Sentinel-1, (2) only Sentinel-2 and
(3) both Sentinel-1 and -2 features using the Genetic Algorithm (GA) to reduce multi-collinearity in
the independent variables. Using k-fold cross validation (3-fold), overall accuracy (OA) values of 0.83,
0.88 and 0.95 are obtained when considering only Sentinel-2, only Sentinel-1 and both Sentinel-1 and
-2 features as independent variables. Therefore, these results highlight the clear complementarity of
radar (i.e., Sentinel-1) and optical (i.e., Sentinel-2) images to improve soil salinity mapping, with OA
increases of approximately 10% and 7% when compared to Sentinel-2 and Sentinel-1 alone. Finally,
pre-sowing soil salinity maps over a five-year period (2019–2023) are presented to highlight the
benefit of the proposed procedure to support the sustainable management of agricultural lands in the
context of soil salinization on a regional scale.

Keywords: soil salinity; monitoring; machine learning; remote sensing; sentinel-1; sentinel-2

1. Introduction
1.1. Soil Salinity: A Major Threat Requiring Close Monitoring

At present, soil salinization affects 33% and 20% of irrigated and croplands, respec-
tively [1–3]. In the current general context of global change (i.e., increase in temperature
and increase in temperature) an increase in the use of irrigation is necessary to meet crop
growing requirements. However, irrigation without proper leaching and drainage leaves
salt precipitates in the soil, while over-irrigation favors a gradual rise in the groundwater
level, which contribute to soil salt accumulation [4]. In this context, 50% of global cropland
areas will be affected by salinization by 2050 [5]. As soil salinity reduces agriculture pro-
ductivity and quality [6] this projection represents a major socioeconomic threat that can
lead to food insecurity and population outmigration [6,7].
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The first step to mitigating the soil salinization process and its impacts relies on our
ability to monitor soil salinity changes in space and time. However, traditional soil salinity
measurements are based on soil field sampling followed by laboratory analysis, which
is neither practical nor applicable for large-scale multi-temporal monitoring [8,9]. As a
consequence, information on soil salinity is generally only available for specific sites and
dates, preventing the study of the role of agricultural activity and climate variability on
changes in soil salinity.

1.2. Remote Sensing and Machine Learning Opportunities for Monitoring Soil Salinity

Numerous studies have addressed the potential of using satellite images to retrieve
soil salinity estimates at the regional scale [10–13]. Actually, satellite images have gradually
replaced the conventional method for monitoring regional soil salinity [14,15]. Freely
available, with global coverage and a high-frequency revisit time (5–10 days), Sentinel-
2 (S2) optical and/or Sentinel-1 (S1) radar images are generally used for this purpose.
Soil salinity estimates are quantified using the interaction between soil reflectance (i.e.,
Sentinel-2) or polarization (i.e., Sentinel-1) and soil salinity content [16,17].

With the rapid growth of artificial intelligence, this relation is generally established
through machine learning models such as Random Forest (RF), Support Vector Machine
(SVM), Classification and Regression Tree (CART) [18], Artificial Neural Network (ANN),
Decision Tree (DT) [19], Convolutional Neural Network (CNN) [20], Multi Linear Re-
gression (MLR) [21], k-Nearest Neighbor (KNN) [22] or Partial Least Squares Regression
(PLSR) [23]. The differences in the machine learning models’ structures implies different
degrees of reliability in the soil salinity estimates derived from the models. In this context,
numerous studies have assessed the sensitivity of soil salinity estimates to different ma-
chine learning models [18,20]. Generally, RF and SVM models provide the most reliable
soil salinity estimates [18,20,22,24].

1.3. Complementarity of Optical and Radar Images

The variables used as inputs also affect the soil salinity estimate reliability. In this
context, several studies have assessed models’ sensitivity to different sets of variables
derived from S2 optical or S1 radar images for soil salinity mapping. S2 variables, such
as single-band values, salinity and vegetation indices, were used as inputs in machine
learning models to estimate soil salinity in different regions such as China [20], Algeria [17]
and Iran [21]. Despite the reliable soil salinity maps obtained in these studies, the presence
of clouds that prevent S2 soil surface observations for certain regions and/or time periods is
a major constraint, and different approaches are used to tackle this problem [25,26]. As the
radar signal is not affected by cloud cover, the potential of S1 variables such as polarization
and texture indices was assessed for soil salinity mapping in different countries such as
Iran [27], Vietnam [28] and India [29,30]. S1 radar has the advantage of being sensitive
to soil humidity [31–34], which allows us to highlight regions where salt is expected to
accumulate due to water accumulation and evaporation [13]. Finally, as S2 and S1 provide
observations in different spectral ranges, some authors combine both S2 and S1 to take
advantage of both satellite properties [35,36].

1.4. Study Objectives

Whatever the variables used as inputs in the modeling process (S2 and/or S1), similar
degrees of confidence are observed in the derived soil salinity maps. However, comparisons
are biased by (i) the differences in the study site properties (i.e., soil, climate and topography
features), (ii) the machine learning models considered and (iii) the number of samples used
for their training. In this context, a stable machine learning set-up based on the RF model
is applied to assess soil salinity estimate sensitivity to (i) only S1 variables, (ii) only S2
variables and (ii) both S1 and S2 variables to highlight the respective benefits of S1 and S2
as well as their synergistic use for soil salinity mapping. Finally, annual soil salinity maps
corresponding to the pre-sowing period (June to September) are produced for the 2019–2023
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period (5 years) in order to highlight the benefit of applying the proposed method for soil
salinity monitoring in order to guide mitigation actions to tackle the adverse effects of
soil salinization on agricultural productivity. The study site is located in the Bolivian
Altiplano, a remote endoreic region that suffers from the major problem of soil salinization,
threatening the sustainability of agriculture activity [13].

2. Materials
2.1. Study Area

Lake Poopó is located in the central Bolivian Altiplano region at an average elevation
of 3700 m.a.s.l (Figure 1). The climate around Poopó Lake is arid, with the annual potential
evapotranspiration rate and precipitation estimated at 1700 mm [37] and 400 mm [38],
respectively. The only outflow of Lake Poopó is the Lakajawira River at the southern
end of the lake, which rarely flows towards the Coipasa Salar. In the last 50 years, this
river only flowed once in 1986 [39]. Therefore, Lake Poopó is now considered to be
the terminal point of the endorheic TDPS system, with TDPS standing for Lake Titicaca,
Desaguadero River, Lake Poopó and Coipasa Salar (meaning salt pan). The endorheic and
arid context, along with the very flat topography and the proximity of the groundwater
level, favor soil surface salt accumulation. As a result, the Lake Poopó region holds
extremely saline soils [4,13], and the salinization process is expected to worsen over time
due to the ongoing desertification induced by climate change and human activity (mining,
irrigation) [40,41]. Currently, irrigation plays a vital role in maintaining agricultural activity
(Figure 1e). Irrigation contributes (i) to the regional desertification [40,41] and (ii) to soil salt
accumulation through the gradual rise in the groundwater level and the irrigation water
evaporation leaving salt precipitates.
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Figure 1. (a) Study area located in Bolivia, (b) the Titicaca–Desaguadero–Poopó–Salar endorheic
system, (c,d) the location of the 119 soil samples around Lake Poopó, and (e) the irrigation system
location (obtained from [42]). Subplot (c,d) shows the mean Sentinel RGB composition obtained
between 6 and 11 August in 2022.

2.2. Soil Sample Collection and Analysis

Soil samples (n = 119) were collected during two field campaigns carried out in July
and August 2022 (Figure 1c). In July, soil samples were collected on days 17, 18 and 19
(n = 73) whereas in August, soil samples were collected on days 10, 11 and 12 (n = 42).

Each sample was made up from 5 subsamples, each corresponding to a piece of soil
of 20 × 20 cm with a depth of 10 cm, extracted at the corners and the center of a mesh of
10 × 10 m cells to take into account potential soil salinity heterogeneity [24].

Soil electrical conductivity (EC) of the 119 samples was measured in the IIQ-UMSA
laboratory (Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, La
Paz, Bolivia) as a proxy for soil salinity using the standardized method described in [13].
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2.3. Sentinel-2 Images and Pre-Processing

Sentinel-2 images (S2) contain reflectance values in different bands at resolutions of 10,
20 and 60 m in the visible-to-infra-red spectral range. S2 images are available before and
after the application of an atmospheric correction process. As the product level 2A (Bottom
of Atmosphere—BOA) already includes an atmospheric correction process, it was used in
this study. S2 images were obtained from the Copernicus website.

Since soil salinity is not expected to change over short periods of time under stable,
dry weather conditions, the reflectance values from S2 images that cover the study area,
captured on 6 and 11 August, were averaged (i) to minimize potential artifacts in S2 images
and (ii) to ensure temporal matching between field and S2 observations.

Before the averaging process, S2 images were mosaicked and resampled to 20 m using
the nearest neighbor resampling method available in the Sentinel Application Platform
(SNAP) software version 10.0. The choice of 20 m allowed us to minimize resampling
interference on S2 reflectance as there were more bands of interest at 20 m (B5, B6, B7, B8A,
B11, B12) than at 10 m (B2, B3, B4, B8).

It is worth mentioning that the metadata of each of the S2 images used indicate cloud
coverage of less than 5%, with an absence of cloud over the studied area.

2.4. Sentinel-1 SAR Images and Pre-Processing

Sentinel-1 (S1) operate at the C-band with a central frequency of 5.405 GHz and an
incidence angle of 20–45 degrees, acquiring images in dual polarization mode: vertical
(VV) and horizontal (VH). The Ground Range Detected (GRD) product was chosen over
the Single-Look Complex (SLC). While the SLC provides both the phase and amplitude
information of the signal, GRD provides intensity images. These images are easier to
interpret as they directly show surface characteristics. The GRD products were obtained
from the Earth Data website. S1 images were obtained before, during and after field
campaigns 1 and 2, captured on 12 and 24 July, and 5 and 17 August, respectively. S1
images were pre-processed using SNAP software following 5 steps [30,43]:

• Application of the Orbit File to correct the image geometry;
• Application of a radiometric calibration to convert the backscatter intensity into a

normalized radar cross-section;
• Application of the refined Lee filter to reduce the influence of incoherent noise (speckle)

and to preserve the edges, linear features, point targets and texture information on the
SAR imagery [43];

• Application of Range–Doppler correction to correct the inherent geometrical distor-
tions and to geocode the image using a digital elevation model (DEM);

• Application of incidence angle correction for backscattering coefficients [30].

The result was a set of four geo-referenced intensity images converted to Sigma
Nought backscatter coefficients ranging from 0 to 1, where Sigma Nought is a normalized
dimensionless number that compares the observed intensity to that expected from an area
of one square meter. Finally, the four processed image polarizations (VV and VH) were
averaged in order to (i) minimize potential artifacts in S1 images and (ii) ensure temporal
matching between field and S1 observations.

3. Methods
3.1. Elaboration of the Learning Database

Although the pre-processed S1 and S2 images had the same spatial resolution of
20 m, it was necessary to align the geographic grid to ensure the spatial coincidence of
the centroids of the S1 and S2 pixels. This process was carried out using the collocate tool
available in the SNAP software, which resamples the S1 image using the S2 image as a
reference. Then, S1 polarization (VV and VH) and S2 spectral reflectance (B2, B3, B4, B5, B6,
B7, B8, B8a, B11 and B12) were extracted from the pixels where a soil sample was collected.
At this stage, the learning database included 119 EC observations with corresponding S1
polarization and S2 spectral reflectance values.
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The efficiency of machine learning models for soil salinity mapping is sensitive to the
training set size, with larger training sets resulting in better model performance [13,44,45].
In this context, the method presented by Sirpa-Poma [13] was used to increase the learning
database observations and therefore modeling reliability (Figure 2). This method consists
of adding the pixel information (S1 polarization and S2 spectral reflectance) of the eight
neighboring pixels of each of the sampled pixels to the learning database. In this process,
the EC observed at the central pixel is attributed to the eight neighboring pixel, whereas S1
polarization and S2 spectral reflectance are the ones observed at the respective locations
of the eight neighboring pixels [13]. To guarantee consistency in the extrapolation of the
observed EC to neighboring pixels, EC classes have to be considered rather than numeric
values [13]. A total of nine EC classes (0–2; 2–4; 4–6; 6–8; 8–10; 10–12; 12–14; 14–16;
>16 mS/cm) were defined and used as a rearrangement of the Food and Agriculture
Organization (FAO) classification. This method increased the original database size from
119 to 863 observations (Figure 2). According to the described method, there should be
873 (97 × 9) observations in the learning database. Nevertheless, when two samples were
very close to each other, one of them was discarded to avoid sharing neighboring pixels.

Sustainability 2024, 16, x FOR PEER REVIEW 5 of 19 
 

 

averaged in order to (i) minimize potential artifacts in S1 images and (ii) ensure temporal 
matching between field and S1 observations. 

3. Methods 
3.1. Elaboration of the Learning Database 

Although the pre-processed S1 and S2 images had the same spatial resolution of 20 
m, it was necessary to align the geographic grid to ensure the spatial coincidence of the 
centroids of the S1 and S2 pixels. This process was carried out using the collocate tool 
available in the SNAP software, which resamples the S1 image using the S2 image as a 
reference. Then, S1 polarization (VV and VH) and S2 spectral reflectance (B2, B3, B4, B5, 
B6, B7, B8, B8a, B11 and B12) were extracted from the pixels where a soil sample was col-
lected. At this stage, the learning database included 119 EC observations with correspond-
ing S1 polarization and S2 spectral reflectance values. 

The efficiency of machine learning models for soil salinity mapping is sensitive to the 
training set size, with larger training sets resulting in better model performance [13,44,45]. 
In this context, the method presented by Sirpa-Poma [13] was used to increase the learning 
database observations and therefore modeling reliability (Figure 2). This method consists 
of adding the pixel information (S1 polarization and S2 spectral reflectance) of the eight 
neighboring pixels of each of the sampled pixels to the learning database. In this process, 
the EC observed at the central pixel is attributed to the eight neighboring pixel, whereas 
S1 polarization and S2 spectral reflectance are the ones observed at the respective locations 
of the eight neighboring pixels [13]. To guarantee consistency in the extrapolation of the 
observed EC to neighboring pixels, EC classes have to be considered rather than numeric 
values [13]. A total of nine EC classes (0–2; 2–4; 4–6; 6–8; 8–10; 10–12; 12–14; 14–16; >16 
mS/cm) were defined and used as a rearrangement of the Food and Agriculture Organi-
zation (FAO) classification. This method increased the original database size from 119 to 
863 observations (Figure 2). According to the described method, there should be 873 (97 × 
9) observations in the learning database. Nevertheless, when two samples were very close 
to each other, one of them was discarded to avoid sharing neighboring pixels. 

 

 
Figure 2. Method used to increase the learning database (adapted from [13]). 

Finally, different polarization/textures and spectral indices commonly used for soil 
salinity mapping were derived from S1 and S2 information and added to the learning 
database [35,36,46]. From the S2 reflectance values, 6 vegetation indices and 10 salinity 

Figure 2. Method used to increase the learning database (adapted from [13]).

Finally, different polarization/textures and spectral indices commonly used for soil
salinity mapping were derived from S1 and S2 information and added to the learning
database [35,36,46]. From the S2 reflectance values, 6 vegetation indices and 10 salinity
indices along with the Normalized Difference Snow Index (NDSI) and the Tasseled Cap Wet-
ness (TCW) were considered (Table 1), whereas 8 polarization indices and 20 texture indices
were derived from S1 polarizations (Table 2). Note that S1 texture indices were derived
from the Gray Level Co-occurrence Matrix (GLCM) tool available in SNAP software.

Table 1. S2 features used in the modeling process.

Index/Acronym Definition Reference

Sentinel-2 bands
B2-Blue, B3-Green, B4-Red, B5-Rededge1,

B6-Rededge2, B7-Rededge3, B8-NIR, B8a-Rededge4,
B11-SWIR1, B12-SWIR2

Normalized Difference Snow Index (NDSI) (B4 − B8A)/(B4 + B8A) [8]

Tasseled cap wetness (TCW)

0.1509 × B2 + 0.1973 × B3
+0.3272 × B4
+0.3406 × B8
−0.7112 × B11
−0.4573 × B12

[47]
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Table 1. Cont.

Index/Acronym Definition Reference

Salinity Index 1 (SI)
√

B2 × B4 [48,49]

Salinity Index 2 (SI1)
√

B3 × B4 [48,49]

Salinity Index 3 (SI2)
√

B32 + B42 + B8A2 [48,49]

Salinity Index 4 (SI3)
√

B32 + B42 [48,49]

Salinity Index 5 (S) B4/B8A [50]

Salinity Index (S1) B2/B4 [8]

Salinity Index (S2) (B2 − B4)/(B2 + B4) [8]

Salinity Index (S3) B3 × B4/B2 [8]

Salinity Index (S5) B2 × B4/B3 [8]

Salinity Index (S6) B4 × B8A/B3 [8]

Normalized Difference Vegetation Index (NDVI) (B8A − B4)/(B4 + B8A) [51]

Normalized Difference Vegetation Index red-edge 1 (NDVIre1) (B8A − B5)/(B5 + B8A) [52]

Normalized Difference Vegetation Index red-edge 2 (NDVIre2) (B8A − B6)/(B6 + B8A) [52]

Normalized Difference Vegetation Index red-edge 2 (NDVIre3) (B8A − B7)/(B7 + B8A) [53]

Renormalized Difference Vegetation Index (RDVI) (B8A − B4)/
(√

B8A + B4
)

[54]

Weighted Difference Vegetation Index (WDVI) B8A − 0.5 × B4 [55,56]

Table 2. S1 features used in the modeling process.

Index/Acronym Definition Reference

Sentinel-1 Polarization VV and VH [57]

VVaddVH VV + VH [57]

VV2addVH VV2 + VH [57]

VH2diffVV VH2 − VV [57]

VV2addVH2 VV2 + VH2 [57]

VV2addVH2divVH
(

VV2 + VH2
)

/VH [16]

10logVV 10logVV [16]

10logVH 10logVH [16]

10logVVaddVH 10(logVV + logVH) [16]

VV_GLCM

VV_Contrast, VV_Dissimilarity, VV_Homogeneit,
VV_AngularSecondMoment, VV_Energy, VV_Entropy,

VV_MaximumProbability, VV_Correlation, VV_Mean and
VV_StandardDeviation, VV_Variance

VH_GLCM

VH_Contrast, VH_Dissimilarity, VH_Homogeneity,
VH_AngularSecondMoment, VH_Energy, VH_Entropy,

VH_MaximumProbability, VH_Correlation, VH_Mean and
VH_StandardDeviation, VH_Variance

3.2. Machine Learning Modeling Set-Up

In order to highlight S1 and S2 ability for soil salinity mapping, S1 and S2 features were
used separately as independent variables in the RF model. Note that the RF model was
selected for the present study as it provides more reliable soil salinity estimates than other
machine learning models [13,18,20,22,24]. Then, the S1 and S2 variables were used together
as independent variables in order to assess their complementarity for soil salinity mapping.

Multi-collinearity in the independent variables drives machine learning models to be
unstable due to the redundancy of the input variables [22,24]. Among feature selection
tools, the Genetic Algorithm (GA) and/or VIF are generally used for the removal of
irrelevant and redundant features, in order to improve the performance of machine learning
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models [24,58]. A recent study showed that the use of GA led to more reliable soil salinity
estimates than VIF [13], and therefore, GA is used in this study.

Additionally, the consideration of an unbalanced learning dataset (i.e., different num-
bers of observations for the considered classes) may lead to unstable model prediction.
Actually, the models’ efficiency may increase (decrease) for classes with more (less) ob-
servations [59,60]. As observed in Figure 2, the learning database is unbalanced. Indeed,
classes [0–2] and [>16] have the highest numbers of observations (n = 191 and n = 278,
respectively), whereas classes [12–14] and [14–16] have the lowest numbers of observations
(n = 28 and n = 27, respectively). In this context, whereas observations for one class may be
much less frequent than for the others, non-equal weights for classes are especially useful in
classifiers when addressing class imbalance by assigning different weights to each class [60].
This means that classes that are less represented in the dataset will receive a higher weight,
allowing the model to pay more attention to these minority classes. When the class-weight
parameter in RF is set to ‘balanced’, the weights are adjusted inversely proportionally to
the frequency of each class, and the dataset is now considered to be balanced.

In the above-described context, six scenarios are considered (Figure 3):

• Scenario-1: applying GA to S2 variables with unbalanced dataset;
• Scenario-2: applying GA to S2 variables with balanced dataset;
• Scenario-3: applying GA to S1 variables with unbalanced dataset;
• Scenario-4: applying GA to S1 variables with balanced dataset;
• Scenario-5: applying GA to S1 and S2 variables with unbalanced dataset;
• Scenario-6: applying GA to S1 and S2 variables with balanced dataset.
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For each scenario, the learning database was randomly split into a training set (70%)
and a validation set (30%). It is noteworthy that the k-fold cross-validation method (3-fold)
was used during the training step along with the GA.

The relevance of the features selected by the GA was assessed through the feature and
permutation importance scores. The feature importance (FI) indicates the relative contribu-
tion of each feature for the model training (ranging from 0 to 1), whereas the permutation
importance (PI) indicates the trained model’s sensitivity to each feature (ranging from 0 to
1). The PI was obtained through a two-step process. First, the trained model was run with
the validation dataset to determine the model’s overall accuracy, (OA) and secondly, the
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values of each variable were successively randomly shuffled before running the model with
the modified validation dataset. The OAs obtained before and after the random shuffling
were compared (subtraction) to obtain the PI. Therefore, the PI shows the drop in model
accuracy in the case of inaccurate values for each one of the variables independently.

Finally, the model accuracy was assessed considering the confusion matrix and associ-
ated recall, precision, F1 score, and overall accuracy statistical indicators (Equations (1)–(4)).
All statistical indicators are in the range 0 to 1, where 1 is the best value for a classifier.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F1score =
2 × Recall × Precision

Recall + Precision
(3)

OA =
TP + TN

TN + TP + FN + FP
(4)

where TP, FP, FN and TN are true positive, false positive, false negative, and true negative
respectively.

3.3. Soil Salinity Spatio-Temporal Monitoring Using Remote Sensing Data: A Relevant Tool for the
Sustainable Adaptation of Agriculture?

As soil salinity is a well know factor affecting agriculture yields [5], this section
proposes elaborating soil salinity maps for the 2019–2023 pre-sowing period (one for each
year) using the most efficient machine learning set-up previously highlighted (i.e., scenario-
6). The maps are elaborated with S2 and S1 composite images. Composite images consist
of the average observation made by all available images during a specific period. This
approach aims to ensure that all pixels include at least one observation. However, the
spectral response of a specific pixel is variable over time (i.e., clouds, vegetation growing,
soil humidity variability due to climate and/or irrigation, land use, land cover modification
due to harvest and plowing, etc.). Therefore, spatial inconsistency in the composite image
can be present as the available spectral information dates may be different according to the
considered pixel. To minimize such inconsistency, S1 and S2 composite images were derived
from images registered between June and September. This period corresponds to the pre-
sowing and dry seasons with (i) stable climate conditions (i.e., almost no precipitation)
and (ii) no agriculture practices (i.e., sowing, plowing, harvesting, irrigation). It is worth
mentioning that the pixels identified as cloud covered by the QA_PIXEL band do not
take into account in the averaging process. In this condition, stable S1 and S2 signals are
expected across the considered region and period.

For the final mapping, pixels identified as covered by water by the Automated Water
Extraction Index (AWEI) were flagged to compare the exact same area for all the years
under consideration. Indeed, for years with a very small extent of Lake Poopó, extreme
saline conditions were detected at the lake shore pixels, whereas for years with a large Lake
Poopó extent, these pixels were “inundated” and no salt concentration could be retrieved.
By masking water-covered pixels, the overestimation of soil salinity condition was avoided
for years with a small lake area when compared to years with a large lake extent.

4. Results
4.1. Feature Selection

Figure 4 shows the 10 most contributing features for the training and validation steps,
as expressed by the FI and PI, respectively.
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Five out of eight variables from scenario-2 (B02, B11, B12, TCW, S1) are in the top
10 most contributing variables of scenario-1 for the training step (i.e., feature importance).
Additionally, scenarios-1 and -2 (i.e., applying the GA to S2 variables with the balanced
and unbalanced datasets, respectively) show the highest sensitivity to B11 in the validation
step, with PI values of 0.13 and 0.23, respectively. Therefore, when considering only S2
variables, balanced and unbalanced datasets are sensitive to similar variables.

Scenarios-3 and -4 (i.e., applying GA to S1 variables with the balanced and unbalanced
datasets, respectively) share 60% of variables contributing the most to the training step
(VH_Mean, VV2addVH, VH_Variance, VH_dissimilarity, VV_Mean, VH_Correlation).
Additionally, in the validation step, scenario-3 (scenario-4) is more (highly) sensitive to
VH_Mean, with PI values of 0.11 and 0.07 for scenarios-3 and -4, respectively. As for
scenarios-1 and -2, the balanced and unbalanced datasets are sensitive to similar variables.

Scenarios-5 and -6 (i.e., applying GA to both S1 and S2 variables with the balanced
and unbalanced datasets, respectively) only share 20% of their top 10 most contributing
variables for the model training (B11, TCW). However, for both scenarios, the FI of all
variables is very low (<0.05), suggesting low sensitivity to individual variables. The same
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occurs for the validation step with very low PI values (<0.05) for all the variables. Therefore,
when considering both S1 and S2 variables, the reliability of the considered scenarios
(balanced and unbalanced) is more sensitive to variable complementarity (than individual
variables), indicating a complementarity of optical (S2) and radar (S1) properties for soil
salinity estimates. This behavior is observable in Figure 4g,h, with 56% and 44% (59%
and 41%) of the variables selected by the GA derived from S1 and S2, respectively, for
scenario-5 (scenario-6).

4.2. Benefits of the Combination of Sentinel-1 and Sentinel-2

Figure 5 shows the results obtained in the validation step for the different scenarios.
For both the unbalanced and balanced datasets, the use of S1 and S2 variables together
as predictive features led to the most reliable soil salinity estimates. For example, when
considering a balanced dataset, the four statistical indices yield higher values for scenario-6
(i.e., S1 + S2) than for scenarios-2 (S2) and -4 (S1). The OA of 0.95 obtained in scenario-6
corresponds to increases of 8% and 14.5% when compared to the OAs reached by scenarios-
4 (0.88) and -2 (0.83). This observation is consistent with a study carried out in China that
reached more accurate soil salinity estimates by combining S2 and S1 features as predictive
variables than by considering only S2 features [36].
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Interestingly, the soil salinity estimates derived from S1 features only are systematically
more reliable than the estimates obtained from S2 features alone. Actually, when consid-
ering an unbalanced dataset (balanced dataset), scenario-3 (scenario-4) reaches higher
OA, F1-score, precision and recall values than scenario-1 (scenario-2). Therefore, even for
regions or periods not affected by frequent cloud cover preventing the use of S2 images,
soil salinity estimates are better retrieved from S1 images.

Finally, the use of balanced and unbalanced datasets led to an overall similar level of
accuracy for the soil salinity estimates regardless of the considered scenarios (Figure 5).

Figure 6 shows the confusion matrix obtained for scenarios-5 and -6 (using both S1
and S2) to provide more insight in the most efficient scenarios. The results from both
scenarios are very similar for all classes, except for classes (6–8) and (8–10), which show the
highest discrepancies (Figure 5). Scenario-6 presents higher OA for the (6–8) class, whereas
scenario-5 does for the (8–10) class. Actually, scenario-5 tends to underestimate the EC
values for the (6–8) class, whereas scenario-6 does for the (8–10) class (Figure 6).
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4.3. Sensitivity of Soil Salinity Maps to Unbalanced and Balanced Datasets

Figure 7 shows the soil salinity maps obtained with the most efficient scenarios
(scenarios-5 and -6) along with the values derived from the field sample. A previous filter
based on AWEI was used to mask pixels concerned with water bodies, with −0.1 as the
threshold [40]. Overall, the field observations match the soil salinity maps derived from
both scenarios.
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class. (f,g) Salinity map obtained with scenarios-5 and -6 using the FAO EC classes, with (h) the
corresponding superficial extent of each class.
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The soil salinity maps derived from scenarios-5 and -6 show a similar spatial pattern
(Figure 7). Lake Poopó shores (east, west and north) are the regions with the highest soil
salinity because of the lake shrinkage/evaporation occurring during the dry season (April
to September) that concentrates salt at the top soil layer. A similar process occurs along
the Desaguadero River’s west branch (northwest of Lake Poopó) and for the river’s east
branch connecting Lake Uru-Uru to Lake Poopó (northeast of Lake Poopó). As the eastern
part of the study area is steep and mountainous, favoring water runoff instead of water
storage, it shows the lowest soil salinity values. This sub-region is also colder, and thus,
potential evapotranspiration is lower, which, in turn, reduces soil humidity losses and
salt concentration.

Despite similar soil salinity distribution patterns, the soil salinity estimates from
scenario-6 are slightly higher than the estimates derived from scenario-5 (Figure 7d). In-
deed, except for the [0–2] EC class, larger areas are observed for all classes of scenario-6
(Figure 7d–h). This difference is more noticeable for the low salinity classes of [2–4], [4–6]
and [6–8], where area increases of 68%, 37% and 50% are observed for scenario-6 with
respect to scenario-5. In the unbalanced dataset, classes [0–2] and [>16] have the highest
number of observations (n = 182 and 278, respectively) (Figure 1e). Even if class [>16] has
more observations (n = 278) than class [0–2] (n = 182), class [>16] covers a much wider soil
salinity range (from 16.25 to 48.7 mS.cm−1) than class [0–2]. Therefore, with a smaller range
of soil salinity, class [0–2] should be considered the class with the most observations. In this
sense, a bias towards low salinity estimates (i.e., [0–2] class) is expected from scenario-5.
On the other hand, scenario-6, which is trained with a balanced dataset, is not expected to
provide soil salinity estimates biased towards any soil salinity concentration class. This
difference between scenarios-5 and -6 could explain why scenario-5 underestimates soil
salinity when compared to scenario-6.

4.4. Spatio-Temporal Monitoring of Regional Soil Salinity: An Opportunity for Decision Making
in Sustainable Agriculture?

Figure 8 shows soil salinity maps obtained for the pre-sowing period between 2019
and 2023 (5 years) using scenario-6. Considerable space and time variation occurs in the
regional distribution of soil salinity. For example, on the north-west shore of Lake Poopó,
much more pixels with a strongly saline condition (i.e., EC > 8 mS/cm, unsuitable for
agriculture activity) are found in 2020, 2022 and 2023 than for the 2019 and 2021 years.
Similarly, in the northern Lake Poopó region, much more pixels with a non-saline condition
(i.e., EC < 2 mS/cm, favorable for optimum crop development) are found in 2019, 2022 and
2023 than for the 2020 and 2021 years.

In this context, soil salinity maps obtained just before the sowing period could allow
us to select lands with minimum salinity concern in order to optimize (minimize) crop
yield (losses). In regions such as the Altiplano, this would represent a considerable step
towards sustainable development, as agriculture represents a major economic activity.
Based on freely available information, this tool provides an efficient alternative to the
traditional monitoring system, which is generally out of reach for many remote regions,
especially in an unfavorable socio-economic context. Finally, these maps could be overlaid
with additional information, such as crop rotation, irrigation practices and climate data, to
support the sustainable management of agricultural land and to minimize the potential
effects of soil salinity hazards.
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5. Discussion

This study focuses on the sensitivity of soil salinity to S2 and S1 in order to evaluate the
possibility of regional monitoring based on satellite images. However, additional features
controlling soil salinity variations in space and time could have been considered to improve
the model outputs.

For example, soil salinity is expected to follow the drainage pattern, as regions where
water accumulates are more prone to the concentration of soluble salts at the soil surface
due to the water evaporation process [61–65]. In this context, some studies have reported
on the benefits of including topography features (i.e., elevation, slope and aspect) derived
from freely available digital elevation models as independent variables to improve soil
salinity modeling [66,67].

Similarly, soil humidity is another useful parameter to highlight regions where water
(and therefore salt) accumulates. In this context, the inclusion of soil moisture informa-
tion could help to improve soil salinity estimates and spatial distribution determination.
Numerous studies have reported on the possibility of retrieving soil humidity estimates
from S1 information [31–34]. In this context, soil humidity sensitivity to S1 features can
explain the higher performance of scenarios based on S1 features (scenarios-3 and -4)
compared to the scenarios based on S2 features (scenarios-1 and -2). Interestingly, the
highest performance observed for scenarios-5 and -6 (S1 + S2) can be explained by the
inclusion of additional S2 indices related to soil humidity. Indeed, a recent study used S2
soil salinity indices asindependent variables to retrieve soil humidity [68]. In this context,
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soil humidity’s sensitivity to S2 soil salinity indices improve the soil salinity estimates
of scenarios-5 and -6. Finally, both scenarios ranked the TCW indice as the third most
contributing variable (Figure 3). This index is also highly related to soil humidity and
therefore to soil salinity. As a general conclusion, the combination of S1 and S2 features
enhances the model’s ability to identify regions likely to accumulate greater quantities of
water and therefore salt, which improves the predictions of the models. Furthermore, the
consideration of additional topography features (i.e., elevation, slope and aspect) should
improve the models’ predictions even more.

It is worth mentioning here that S2 and S1 are not only sensitive to soil salinity.
Numerous studies have already shown the possibility of retrieving other soil parameters
from S1 and S2, such as organic matter [69–72], nitrogen [73–76] and texture [77,78]. In
this respect, a model trained across a specific region (i.e., Altiplano) may not be efficient
across another region. Indeed, each region would need to assess specific soil parameters
(i.e., organic matter, nitrogen and texture). Although the proposed model is trained and
adapted to a specific study site (i.e., Altiplano), the method developed in this study can be
applied to other regions of the world through a calibration stage specific to the studied site.

6. Conclusions

This study assesses the potential of Sentinel-2 and -1 (S2 and S1) alone and the potential
of their combined use for soil salinity mapping. The method used is based on a machine
learning set-up considering both unbalanced and balanced training datasets to assess
soil salinity sensitivity to the training set characteristics. The main results regarding the
proposed procedure can be summarized as follows:

• Higher overall accuracy (OA) is obtained from the combination of S2 and S1 (0.95)
than from S1 (0.88) and S2 (0.83) alone, which confirms the complementarity of optical
and radar information for soil salinity mapping.

• The use of S1 features alone as regressors leads to more accurate soil salinity estimates
than the use of S2 features alone. For regions and/or periods with consistent cloud
covers preventing soil surface observations, reliable soil salinity estimates can be
obtained with S1 images alone.

• The model trained with an unbalanced dataset tends to provide soil salinity esti-
mates biased towards the EC class with the (relative) highest number of observations
(i.e., [0–2] class). Therefore, balanced datasets should be considered rather than unbal-
anced datasets to obtain consistent soil salinity estimates.

The proposed and validated procedure can be used in the following ways to gen-
erate annual soil salinity maps to highlight its potential for supporting decisions on
sustainable agriculture:

• In an operative way to provide farmers with pre-sowing soil salinity maps to help
with sustainable land selection (land with a low salinity concentration) to improve
crop yields.

• In a retrospective way to understand soil salinization dynamics and its links with
climate and/or agriculture practices (i.e., irrigation, crop rotation, etc.).
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