Analysis of Change in Summer Extreme Precipitation in Southwest China and Human Adaptation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Definition of Extreme Precipitation and Regional Extreme Precipitation Events
2.3. Analysis Methods
3. Results
3.1. Extreme Precipitation in SWC in the Past 40 Years
3.2. Anomalous Atmospheric Patterns Associated with the Abrupt Change in Extreme Precipitation Trend
3.3. Evolution of Atmospheric Circulation Patterns Associated with Extreme Precipitation
3.4. SST Anomalies Associated with REPEs
3.5. Local Human Adaption to Climate Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nie, Y.B.; Sun, J.Q. Synoptic-scale circulation precursors of extreme precipitation events over southwest China during the rainy season. J. Geophys. Res. Atmos. 2021, 126, e2021JD035134. [Google Scholar] [CrossRef]
- Zhu, Z.W.; Zhou, Y.Y.; Jiang, W.; Fu, S.S.; Hsu, P.C. Influence of compound zonal displacements of the South Asia high and the western Pacific subtropical high on Meiyu intraseasonal variation. Clim. Dyn. 2023, 61, 3309–3325. [Google Scholar] [CrossRef]
- Liu, B.; Xu, M.; Henderson, M.; Ye, Q. Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res. 2005, 110, D8103. [Google Scholar] [CrossRef]
- Xia, Y.; Guan, Z.Y.; Long, Y. Relationships between convective activity in the Maritime Continent and precipitation anomalies in Southwest China during boreal summer. Clim. Dyn. 2020, 54, 973–986. [Google Scholar] [CrossRef]
- Yuan, J.P.; Zhao, D.; Yang, R.W.; Yang, H.F. Predecessor rain events over China’s low-latitude highlands associated with Bay of Bengal tropical cyclones. Clim. Dyn. 2018, 50, 825–843. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.H.; Wei, L.B.; Liu, L. Effects of South Asia High and Western Pacific Subtropical High on the summer precipitation anomalies over Southwest China. J. Arid Meteorol. 2013, 31, 464–470. (In Chinese) [Google Scholar]
- Dong, D.H.; Tao, W.C.; Lau, L.; Li, Z.Q.; Huang, G.; Wang, P.F. Interdecadal variation of precipitation over the Hengduan Mountains during rainy seasons. J. Clim. 2019, 32, 3743–3760. [Google Scholar] [CrossRef]
- Nie, Y.B.; Sun, J.Q. Evaluation of high-resolution precipitation products over southwest China. J. Hydrometeorol. 2020, 21, 2691–2712. [Google Scholar] [CrossRef]
- Zhou, C.; Li, D. Advances in rainfall-induced landslides mechanism and risk mitigation. Adv. Earth Sci. 2009, 24, 477–487. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.Z.; Zhou, W.; Li, C.Y.; Song, J. Comparison of the annual cycles of moisture supply over southwest and southeast China. J. Clim. 2013, 26, 10139–10158. [Google Scholar] [CrossRef]
- Fan, X.Y.; Tang, J.J.; Tian, S.J.; Jiang, Y.J. Rainfall-induced rapid and long-runout catastrophic landslide on July 23, 2019 in Shuicheng, Guizhou, China. Landslides 2020, 17, 2161–2171. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, J.; Feng, G. Characteristics and differences of summertime moisture transport associated with four rainfall patterns over eastern China monsoon region. Chin. J. Atmos. Sci. 2018, 42, 81–95. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Wang, R.L.; Chen, H.S.; Zhao, Q.F.; Liu, B.S.; Shao, Q.; Cao, L.; Sun, S.L. Deep learning for daily spatiotemporally continuity of satellite surface soil Moisture over eastern China in summer. J. Hydrol. 2023, 619, 129308. [Google Scholar] [CrossRef]
- Wang, L.; Huang, G.; Chen, W.; Zhou, W.; Wang, W.Q. Wet-to-dry shift over southwest China in 1994 tied to the warming of tropical warm pool. Clim. Dyn. 2018, 51, 3111–3123. [Google Scholar] [CrossRef]
- Wei, T.; He, S.P.; Yan, Q.; Dong, W.J.; Wen, X.H. Decadal shift in west China autumn precipitation and its association with sea surface temperature. J. Geophys. Res. Atmos. 2018, 123, 835–847. [Google Scholar] [CrossRef]
- Zhao, H.K.; Wang, C.Z. On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Clim. Dyn. 2019, 52, 275–288. [Google Scholar] [CrossRef]
- Huan, Y.; Li, Y.Q. The synergy between the East Asian summer monsoon and the South Asian summer monsoon and its relations with anomalous rainfall in southern China. Plateau Meteorol. 2018, 37, 1563–1577. (In Chinese) [Google Scholar]
- Yi, S.J.; Zheng, F.; Xiao, T. Comparative analysis of environmental fields of two typical rainstorm cases in southwest China. Clim. Environ. Res. 2019, 24, 73–115. (In Chinese) [Google Scholar] [CrossRef]
- Dong, X.; Zhou, Y.; Chen, H.S.; Zhou, B.T.; Sun, S.L. Lag impacts of the anomalous July soil moisture over Southern China on the August rainfall over the Huang–Huai River Basin. Clim. Dyn. 2022, 58, 1737–1754. [Google Scholar] [CrossRef]
- Huang, Y.J.; Cui, X.P. Moisture sources of torrential rainfall events in the Sichuan basin of China during summers of 2009–13. J. Hydrometeorol. 2015, 16, 1906–1917. [Google Scholar] [CrossRef]
- Ma, Z.G.; Shao, L.J. Relationship between dry/wet variation and the Pacific Decade Oscillation (PDO) in northern China during the last 100 years. Chin. J. Atmos. Sci. 2006, 30, 464–474. (In Chinese) [Google Scholar] [CrossRef]
- Huangfu, J.L.; Tang, Y.L.; Wang, L.; Chen, W.; Huang, R.H.; Ma, T.J. Joint influence of the quasi-biennial oscillation and Indian Ocean basin mode on tropical cyclone occurrence frequency over the western North Pacific. Clim. Dyn. 2022, 59, 3439–3449. [Google Scholar] [CrossRef]
- Duan, A.; Wu, G. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: Connection with climate warming. J. Clim. 2009, 22, 5691. [Google Scholar] [CrossRef]
- Jiang, D.B.; Tian, Z.P. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin. Sci. Bull. 2013, 58, 1427–1435. [Google Scholar] [CrossRef]
- Ha, Y.; Zhong, Z.; Chen, H.; Hu, Y. Out-of-phase Decadal Changes in Boreal Summer Rainfall between Yellow-Huaihe River Valley and Southern China Around 2002/2003. Clim. Dyn. 2016, 47, 137–158. [Google Scholar] [CrossRef]
- Cao, F.Q.; Gao, T.; Dan, L.; Ma, Z.G.; Chen, X.L.; Zou, L.W.; Zhang, L.X. Synoptic-scale atmospheric circulation anomalies associated with summertime daily precipitation extremes in the middle-lower reaches of the Yangtze River Basin. Clim. Dyn. 2019, 53, 3109–3129. [Google Scholar] [CrossRef]
- Cheng, Q.P.; Gao, L.; Zuo, X.A.; Zhong, F.L. Statistical analyses of spatial and temporal variabilities in total, daytime, and nighttime precipitation indices and of extreme dry/wet association with large-scale circulations of southwest China, 1961–2016. Atmos. Res. 2019, 219, 166–182. [Google Scholar] [CrossRef]
- Fu, S.M.; Mai, Z.; Sun, J.H.; Li, W.L.; Ding, Y.; Wang, Y.Q. Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation. J. Atmos. Sci. 2019, 76, 3803–3830. [Google Scholar] [CrossRef]
- Zang, Z.; Luo, J.; Ha, Y. Interdecadal Increase in Summertime Extreme Precipitation over East China in the Late 1990’s. Front. Earth Sci. 2022, 10, 969853. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Kim, B.-J.; Nam, J.-C. Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Clim. 2015, 28, 2623–2634. [Google Scholar]
- Yuan, C.; Yang, M. Interannual variations in summer precipitation in southwest China: Anomalies in moisture transport and the role of the tropical Atlantic. J. Clim. 2020, 33, 5993–6007. [Google Scholar] [CrossRef]
- Xu, H.W.; Chen, H.P.; Wang, H.J. Interannual variation in summer extreme precipitation over Southwestern China and the possible associated mechanisms. Int. J. Climatol. 2021, 41, 3425–3438. [Google Scholar] [CrossRef]
- Zhu, Z.; Feng, Y.; Jiang, W.; Lu, R.; Yang, Y. The compound impacts of sea surface temperature modes in the Indian and North Atlantic oceans on the extreme precipitation days in the Yangtze River Basin. Clim. Dyn. 2023, 61, 3327–3341. [Google Scholar] [CrossRef]
- Li, G.; Chen, J.; Wang, X.; Luo, X.; Yang, D.; Zhou, W.; Tan, Y.; Yan, H. Remote impact of North Atlantic sea surface temperature on rainfall in southwestern China during boreal spring. Clim. Dyn. 2018, 50, 541–553. [Google Scholar] [CrossRef]
- Ha, Y.; Zhong, Z.; Hu, Y.; Zhu, Y.; Zang, Z.; Zhang, Y.; Yao, Y.; Sun, Y. Differences between Decadal Decreases of Boreal Summer Rainfall in Southeastern and Southwestern China in the Early 2000s. Clim. Dyn. 2019, 52, 3533–3552. [Google Scholar] [CrossRef]
- Nie, Y.B.; Sun, J.Q. Causes of Interannual Variability of Summer Precipitation Intraseasonal Oscillation Intensity over Southwest China. J. Clim. 2022, 35, 3705–3723. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P.M.; Liao, Z.; Li, L. Persistent precipitation extremes in the Yangtze River Valley prolonged by opportune configuration among atmospheric teleconnections. Q. J. R. Meteorol. Soc. 2019, 145, 2603–2626. [Google Scholar] [CrossRef]
- Zuo, J.; Li, W.; Sun, C.; Xu, L.; Ren, H.-L. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci. 2013, 30, 1173–1186. [Google Scholar] [CrossRef]
- Zhao, H.K.; Lu, Y.; Jiang, X.N.; Klotzbach, P.J.; Wu, L.G.; Cao, J. A Statistical Intraseasonal Prediction Model of Extended Boreal Summer Western North Pacific Tropical Cyclone Genesis. J. Clim. 2022, 35, 2459–2478. [Google Scholar] [CrossRef]
- Huangfu, J.L.; Tang, Y.L.; He, Z.Q.; Huang, G.; Chen, W.; Huang, R.H. Influence of Synoptic-Scale Waves on the Interdecadal Change in Tropical Cyclone Activity Over the Western North Pacific in the Early 2010s. Geophys. Res. Lett. 2023, 50, e2022GL102095. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Folland, C.K.; Parker, D.E. Correction of instrumental biases in historical sea surface temperature data. Q. J. R. Meteorol. Soc. 1995, 121, 319–367. [Google Scholar] [CrossRef]
- Zong, H.; Bueh, C.; Ji, L. Wintertime extreme precipitation event over southern China and its typical circulation features. Chin. Sci. Bull. 2014, 59, 1036–1044. [Google Scholar] [CrossRef]
- Bohlinger, P.; Sorteberg, A.; Sodemann, H. Synoptic conditions and moisture sources actuating extreme precipitation in Nepal. J. Geophys. Res. Atmos. 2017, 122, 12653–12671. [Google Scholar] [CrossRef]
- Nan, Y.T.; Sun, J.Q.; Zhang, M.Q. Strengthened influence of the East Asian trough on spring extreme precipitation variability over eastern Southwest China after the late 1980s. Atmos. Ocean. Sci. Lett. 2022, 15, 10–15. [Google Scholar] [CrossRef]
- Xiong, Y.T.; Ren, X.J. Contribution of atmospheric rivers to precipitation and precipitation extremes in East Asia: Diagnosis with moisture flux convergence. J. Meteorol. Res. 2021, 35, 831–843. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, L.; Zhou, T.; Liu, J. Contributions of local and remote atmospheric moisture fluxes to East China precipitation estimated from CRA-40 reanalysis. J. Meteor. Res. 2021, 35, 32–45. [Google Scholar] [CrossRef]
- Zhang, H.X.; Li, W.P.; Li, W.J. Influence of late springtime surface sensible heat flux anomalies over the Tibetan and Iranian plateaus on the location of the South Asian High in early summer. Adv. Atmos. Sci. 2019, 36, 93–103. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Chen, L.; Li, D.L. Relationship between summer extreme precipitation anomaly in Central Asia and surface sensible heat variation on the Central-Eastern Tibetan Plateau. Clim. Dyn. 2022, 59, 685–700. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H.J.; Li, H.X.; Zhou, B.T.; Duan, M.K.; Li, H. A Long-Lasting Precipitation Deficit in South China During Autumn-Winter 2020/2021: Combined Effect of ENSO and Arctic Sea Ice. J. Geophys. Res. Atmos. 2022, 127, e2021JD035584. [Google Scholar] [CrossRef]
- Zhang, R.N.; Sun, C.H.; Zhang, R.H.; Jia, L.W.; Li, W.J. The impact of Arctic sea ice on the inter-annual variations of summer Ural blocking. Int. J. Climatol. 2018, 38, 4632–4650. [Google Scholar] [CrossRef]
- Lu, R.; Zhu, Z.W.; Li, T.; Zhang, H.Y. Interannual and interdecadal variabilities of spring rainfall over Northeast China and their associated sea surface temperature anomaly forcings. J. Clim. 2020, 33, 1423–1435. [Google Scholar] [CrossRef]
- Mahmood, R.; Pielke, R.A.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.; Beltrán-Przekurat, A.; et al. Land Cover Changes and Their Biogeophysical Effects on Climate: Land cover changes and their biogeophysical effects on climate. Int. J. Clim. 2014, 34, 929–953. [Google Scholar] [CrossRef]
- Pielke, R.A.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land Use/Land Cover Changes and Climate: Modeling Analysis and Observational Evidence. WIREs Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local Cooling and Warming Effects of Forests Based on Satellite Observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef]
- Chen, L.; Dirmeyer, P.A. The Relative Importance among Anthropogenic Forcings of Land Use/Land Cover Change in Affecting Temperature Extremes. Clim. Dyn. 2019, 52, 2269–2285. [Google Scholar] [CrossRef]
- Hong, T.; Wu, J.J.; Kang, X.B.; Yuan, M.; Duan, L. Impacts of Different Land Use Scenarios on Future Global and Regional Climate Extremes. Atmosphere 2022, 13, 995. [Google Scholar] [CrossRef]
- Golroudbary, V.R.; Zeng, Y.J.; Mannaerts, C.M.; Su, Z.B. Detecting the effect of urban land use on extreme precipitation in the Netherlands. Weather Clim. Extrem. 2017, 17, 36–46. [Google Scholar] [CrossRef]
- Yang, R.; Liang, W.; Qin, P.; Anikejiang, B.; Ma, J.; Baratjan, S. Research on Cognition and Adaptation to Climate Risks among Inland Northwest Chinese Residents. Sustainability 2024, 16, 5775. [Google Scholar] [CrossRef]
- Allarané, N.; Atchadé, A.J.; N’Dilbé, T.-R.; Azagoun, V.V.A.; Hetcheli, F. Integrating Climate Change Adaptation Strategies into Urban Policies for Sustainable City Resilience: Barriers and Solutions in the Central African City of N’Djaména. Sustainability 2024, 16, 5309. [Google Scholar] [CrossRef]
- Ciampittiello, M.; Marchetto, A.; Boggero, A. Water Resources Management under Climate Change: A Review. Sustainability 2024, 16, 3590. [Google Scholar] [CrossRef]
- Andrade, C.; de Souza, I.; da Silva, L. The Future Sustainability of the São Francisco River Basin in Brazil: A Case Study. Sustainability 2024, 16, 5521. [Google Scholar] [CrossRef]
Index Name | Precipitation | Intensity | Frequency | |
---|---|---|---|---|
SAH | Intensity index | 0.722 ** | 0.526 ** | 0.729 ** |
Area index | 0.660 ** | 0.530 ** | 0.665 ** | |
Eastern extension index | 0.596 ** | 0.581 ** | 0.611 ** | |
WPSH | Intensity index | 0.652 ** | 0.501 ** | 0.649 ** |
Area index | 0.504 ** | 0.371 * | 0.488 ** | |
Western extension index | −0.620 ** | −0.585 ** | −0.584 ** | |
Ridge index | 0.599 ** | 0.568 ** | 0.512 ** |
Index Name | TP | Western TP | Central TP | Eastern TP | |
SAH | Intensity index | 0.640 ** | 0.560 ** | 0.694 ** | 0.496 ** |
Area index | 0.585 ** | 0.523 ** | 0.636 ** | 0.446 ** | |
Eastern extension index | 0.486 ** | 0.479 ** | 0.534 ** | 0.343 * | |
WPSH | Intensity index | 0.621 ** | 0.490 ** | 0.659 ** | 0.523 ** |
Area index | 0.453 ** | 0.378 * | 0.507 ** | 0.351 * | |
Western extension index | −0.374 * | −0.442 ** | −0.407 * | −0.227 * |
Period | Year | Date |
---|---|---|
Sub-P1 | 1992 | 20 June, 15 July |
1993 | 11 June, 24 June, 21 July, 23 August | |
1994 | 7 June, 26 July | |
1995 | 8 June, 1 July | |
1996 | 20 June, 31 July | |
Sub-P2 | 2017 | 4 June, 15 June, 24 June, 3 July, 6 July, 8 July, 7 August, 25 August, 29 August |
2018 | 5 June, 12 June, 26 June, 4 July, 8 July, 11 July, 4 August, 31 August | |
2019 | 12 June, 5 July, 9 July, 13 July, 24 July, 3 August, 5 August, 23 August | |
2020 | 3 June, 16 June, 18 June, 27 June, 2 July, 12 July, 21 July, 27 July, 12 August, 19 August, 25 August, 27 August, 31 August | |
2021 | 9 June, 29 June, 12 August, 22 August, 25 August |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Yang, A. Analysis of Change in Summer Extreme Precipitation in Southwest China and Human Adaptation. Sustainability 2024, 16, 7329. https://doi.org/10.3390/su16177329
Luo J, Yang A. Analysis of Change in Summer Extreme Precipitation in Southwest China and Human Adaptation. Sustainability. 2024; 16(17):7329. https://doi.org/10.3390/su16177329
Chicago/Turabian StyleLuo, Junyao, and Aihua Yang. 2024. "Analysis of Change in Summer Extreme Precipitation in Southwest China and Human Adaptation" Sustainability 16, no. 17: 7329. https://doi.org/10.3390/su16177329