Grid-Coupled Geothermal and Decentralised Heat Supply Systems in a Holistic Open-Source Simulation Model for 5GDHC Networks
Abstract
:1. Introduction
1.1. 5GDHC Network Systematisation
1.2. Current Scope of Modelling and Simulating 5GDHC Networks
1.3. Paper Aims
2. Materials and Methods
2.1. Basic Modelling Structures and Libraries
2.2. Sub-Models for Heat and Energy Sources
2.2.1. Horizontal Ground Heat Collector (GHC)
Discretisation and Computational Domain
Heat Transport in the Soil Regime
- The dry bulk density of the soil, (as described for various soil types in [22]).
- The gravimetric composition of the mineral soil matrix with the fractions of sand, silt, and clay (, , and , respectively), which are provided by [26] or by the widely used USDA soil taxonomy triangle.
- The volumetric water content at saturation, , and the residual (minimal) volumetric water content, (provided for twelve reference soil types in [27]).
- The empirical van Genuchten parameters , , and (provided in [27]).
- Optionally, the volumetric content of organic material, .
Heat Transport into the Collector Pipe
Heat Transfer at the Ground Surface
2.2.2. Hybrid Photovoltaic–Thermal (PVT) Collectors
Description of Thermal Behaviour
- : Incident angle of direct irradiation on module surface.
- : Conversion factor for direct irradiation at .
- : Incident angle modifier (IAM) for direct irradiation.
- : IAM for diffuse irradiation.
- : Conversion factor for hemispherical irradiation at
- : Black body sky temperature; assumption .
- : Ambient air temperature.
- : Hemispherical emissivity of PV glass cover.
- a: Absorption coefficient of PV glass cover.
- : Boltzmann constant .
- : Wind-dependence coefficient of the collector. (design parameter)
- : Average module temperature (temperature of the capacitance representing the collector module).
- : Wind velocity.
- : Loss coefficients of thermal collector model according to ISO 9806:2017 [41] (design parameter).
- : Overall specific heat capacity of the collector module (design parameter).
Description of Electrical Behaviour
2.2.3. Solar Thermal (ST) Collectors
Description of Thermal Behaviour
2.3. Sub-Models for the Distribution Network
Dynamic Thermo-Hydraulic Model of Distribution Pipes
2.4. Sub-Models for Prosumers
2.4.1. Heating and Cooling Demands
2.4.2. Decentralised Substation Models
3. Results
3.1. Model Description, Demand and Supply Structure
Specifics of Case Study 1
- The GHC area is varied between 5500 m2 and 1000 m2. The minimum temperature in the warm network line at the connection points to the prosumers is logged as an indicator for shortfalls below common limits of heat pump source-side temperature values of °C.
- All decentralised, roof-mounted systems in the prosumer models are turned off. This isolates the effect of the free cooling operation on the performance of the decentralised heat pumps. For this case, the supermarket is also detached from the network and only the residential buildings remain connected.
- The input for soil moisture is varied between a reference condition and a dry condition.
- Weather data are varied between a reference dataset and an alternative dataset with a particularly cold winter period, both provided by DWD [39]. This is used in order to assess the influence of temporarily rough climatic conditions on the performance of the GHC.
Specifics of Case Study 2
- The GHC area is fixed at 3000 m2.
- All prosumer models, including the supermarket, as well as roof-mounted PVT and ST systems Table 1 are in service. Free cooling operation is activated in every residential building.
- The input for soil moisture remains at the reference condition provided in Figure 8.
- Weather data from the reference TRY dataset are used as boundary conditions.
3.2. Results from Case Study 1
3.2.1. Variation in GHC Area at Different Environmental Boundary Conditions
3.3. Results from Case Study 2
3.3.1. Simulation Performance
3.3.2. Network Temperatures and Thermal Network Gains
3.3.3. Energy Balances and System Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbols | Description | Unit |
A | Area | |
c | Specific heat capacity | |
C | Heat capacity | |
Volumetric specific heat capacity | ||
d | Diameter | |
e | Incident radiation | |
F | Auxiliary factor | 1 |
h | Latent heat of fusion of water | |
H | Depth | |
j | Consecutive control variable | 1 |
k | Heat transfer coefficient | |
l | Length | |
m | Van Genuchten parameter | 1 |
n | Van Genuchten parameter | 1 |
N | Transfer units (heat exchanger) | 1 |
p | Pressure | |
P | (electrical/thermal) Power | |
Heat flux | ||
Q | Thermal energy | |
Heat flow | ||
r | Radius | |
R | Thermal resistance | |
Reynolds number | 1 | |
s | Distance, extension | |
T | Temperature | |
v | Velocity | |
V | Volume | |
W | Electrical energy | |
Volumetric flow | ||
x | Coordinate direction (horizontal) | |
y | Coordinate direction (plane depth) | |
Y | Volumetric proportion | 1 |
z | Coordinate direction (depth) | |
Van Genuchten parameter | ||
Inclination angle to horizontal plane | ° | |
Emissivity | 1 | |
Efficiency | 1 | |
Thermal conductivity | ||
Kinematic viscosity | ||
Azimuth angle (starting clockwise at south) | ° | |
Incident angle | ° | |
Heat exchanger characteristic | 1 | |
Density | ||
Boltzmann constant | ||
Time | ||
Volumetric water content | ||
Pressure loss coefficient | 1 | |
Subscripts | ||
a | Design parameter | |
Ambient | ||
Annual | ||
Aperture | ||
b | Design parameter | |
Referring to soil cell | ||
Clay | ||
Cooling | ||
Convective | ||
d | Dry | |
Day | ||
Demand | ||
Diffuse | ||
Direct | ||
Effective | ||
Electric | ||
Equivalent | ||
Referring to exports over system boundary | ||
f | Frozen | |
Free cooling | ||
Referring to fluid | ||
g | Ground, soil | |
Ground surface | ||
h | Hourly | |
Heating | ||
Hemispheric | ||
Horizontal | ||
Heat pump | ||
i | Inner | |
I | Ice, frozen water | |
Referring to imports over system boundary | ||
Inclined | ||
Infrared | ||
Referring to irradiation | ||
Latent heat | ||
Limiting | ||
Loss | ||
Long-wave | ||
Maximum | ||
Minimum | ||
Module | ||
Organic matter | ||
Outer | ||
Parallel | ||
Referring to pipe | ||
Precipitation | ||
Residual | ||
Reference | ||
Reflected | ||
Room heating | ||
Sand | ||
Saturation | ||
Serial | ||
Silt | ||
Referring to sink side of heat pump | ||
Referring to source (primary) side of heat pump | ||
Short-wave | ||
Referring to system-wide examination | ||
T | Temperature | |
Terrestrial | ||
Thermal | ||
Total | ||
u | Unfrozen | |
Van Genuchten | ||
Volumetric | ||
w | Water | |
Referring to wall, boundary | ||
Wind | ||
Abbreviations | ||
5GDHC | 5th-generation district heating and cooling | |
AWHP | Air-to-water heat pump | |
COP | Coefficient of performance | |
DHW | Domestic hot water | |
efc | Effective field capacity | |
EMS | Energy management system | |
FC | Free cooling | |
GHC | (horizontal) Ground heat collector | |
HP | Heat pump | |
IAM | Incident angle modifier | |
MFH | Multi-family house | |
PE | Polyethylene | |
PV | Photovoltaic | |
PVT | Photovoltaic thermal | |
SCOP | Seasonal coefficient of performance | |
SFH | Single-family house | |
ST | Solar thermal | |
TRY | Test reference year |
Appendix A. Design Parameters for the Case Studies
Pipe | Material and Dimensions | Trail Length (m) | Thermal Conductivity Pipe Material () | Installation Depth (m) | Thermal Conductivity Soil () | Spec. Heat Capacity Soil () | Density Soil () |
---|---|---|---|---|---|---|---|
Pipe001 | PE DA225 | 75 | 0.4 | 1.5 | 1.8 | 1140 | 2100 |
Pipe002 | PE DA200 | 100 | 0.4 | 1.5 | 1.8 | 1140 | 2100 |
Pipe003 | PE DA200 | 100 | 0.4 | 1.5 | 1.8 | 1140 | 2100 |
Pipe004 | PE DA200 | 75 | 0.4 | 1.5 | 1.8 | 1140 | 2100 |
Pipe005 | PE DA200 | 250 | 0.4 | 1.5 | 1.8 | 1140 | 2100 |
Pipe006 | PE DA200 | 150 | 0.4 | 1.5 | 1.8 | 1140 | 2100 |
Pipe007 | PE DA200 | 150 | 0.4 | 1.5 | 1.8 | 1140 | 2100 |
Pipe008 | PE DA110 | 60 | 0.4 | 1.5 | 1.8 | 1140 | 2100 |
Design Parameter | |||||
---|---|---|---|---|---|
Projected Collector Area (m2) | Installation Depth (m) | Total Length of Collector Pipes (m) | Total Length of Distribution Pipes (m) | No. of Parallel Collector Pipes | No. of Parallel Pipes per m2 |
1000 | 1.5 | 2030 | 500 | 30 | 2.53 |
3000 | 1.5 | 6230 | 1500 | 89 | 2.58 |
5500 | 1.5 | 11,410 | 2750 | 163 | 2.57 |
Material Properties and Constant Parameters | |||||
Parameter | Unit | Value | |||
Material and dimensions of collector pipes | - | PE-Xa DA25 | |||
Material and dimensions of distribution pipes | - | PE-Xa DA63 | |||
Thermal conductivity pipe material | 0.4 | ||||
Max. depth of GHC computational domain | 25 | ||||
Min. cell size in GHC model | 0.019635 | ||||
Max. cell size in GHC model | 1 | ||||
Constant temperature at max. depth | °C | 10 | |||
Absorption coefficient for long-wave irradiation at ground surface, | 1 | 0.75 | |||
Emission coefficient for long-wave irradiation from ground surface, | 1 | 0.98 | |||
Shielding factor for direct irradiance | 1 | 1 | |||
Working medium denomination | - | Monoethylene-Glycol-Blend 20% [73] | |||
Working medium th. conductivity, | 0.523 | ||||
Working medium spec. heat capacity, c | 3910 | ||||
Working medium kinematic viscosity, | |||||
Latent heat of fusion of water, | 333.5 | ||||
Boltzmann constant, |
Design Parameter | |||
---|---|---|---|
Parameter | Unit | ST Collectors | PVT Collectors |
Aperture area per module, | 2.33 | 2.18 | |
Efficiency factor, | 1 | 0.813 | 0.468 |
Heat loss coefficient, | 3.849 | 22.99 | |
Temperature-dependent heat loss coefficient, | 0.045 | 0 | |
Wind-dependent heat loss coefficient, | 0 | 7.57 | |
Specific heat capacity, | 4700 | 26050 | |
Hemispheric emissivity of glass cover, | 1 | 0 | 0.84 |
Absorption coefficient of glass cover, a | 1 | 0 | 0.91 |
Wind-dependent thermal collector efficiency, | 0 | 0.144 | |
El. efficiency at reference temperature ( K), | 1 | - | 0.203 |
Irradiation-dependent el. loss coefficient, | 1 | - | −0.00007 |
Irradiation-dependent el. loss coefficient, | 1 | - | −0.03588 |
Irradiation-dependent el. loss coefficient, | 1 | - | −1.387 |
Temperature-dependent el. loss coefficient, | 1 | - | 0.004 |
1 | 0.5 at 1 at | 0.5 at 1 at | |
1 | 0.953 | 0.953 | |
Material Properties and Constants | |||
Working medium denomination | - | 1,2 Propylene-Glycol-Blend 25% [74] | Monoethylene-Glycol-Blend 40% [73] |
Working medium density, | 1019 | 1064 | |
Working medium specific heat capacity, c | 3960 | 3530 | |
Working medium thermal conductivity, | 0.472 | 0.422 | |
Working medium kinematic viscosity, |
References
- Umweltbundesamt (UBA). Energieverbrauch für Fossile und Erneuerbare Wärme. Available online: https://www.umweltbundesamt.de/daten/energie/energieverbrauch-fuer-fossile-erneuerbare-waerme (accessed on 7 August 2024).
- Bundesverband Wärmepumpe, e.V. Absatzzahlen für Heizungswärmepumpen in Deutschland 2017–2023. Available online: https://www.waermepumpe.de/presse/zahlen-daten/ (accessed on 7 August 2024).
- Buffa, S.; Cozzini, M.; D’Antoni, M.; Baratieri, M.; Fedrizzi, R. 5th generation district heating and cooling systems: A review of existing cases in Europe. Renew. Sustain. Energy Rev. 2019, 104, 504–522. [Google Scholar] [CrossRef]
- Sulzer, M.; Hangartner, D. Kalte Fernwärme (Anergienetze) Grundlagen-/Thesenpapier; Technical Report; Hochschule Luzern: Horw, Switzerland, 2014. [Google Scholar]
- Pellegrini, M.; Bianchini, A. The Innovative Concept of Cold District HeatingNetworks: A Literature Review. Energies 2018, 11, 236. [Google Scholar] [CrossRef]
- Lund, H.; Werner, S. 4th Generation District Heating (4GDH) Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Werner, S. International review of district heating and cooling. Energy 2017, 137, 617–631. [Google Scholar] [CrossRef]
- Wirtz, M.; Schreiber, T.; Müller, D. Survey of 53 Fifth-Generation District Heating and Cooling (5GDHC) Networks in Germany. Energy Technol. 2022, 10, 2200749. [Google Scholar] [CrossRef]
- Zeh, R.; Ohlsen, B.; Philipp, D.; Bertermann, D.; Kotz, T.; Jocić, N.; Stockinger, V. Large-Scale Geothermal Collector Systems for 5th GenerationDistrict Heating and Cooling Networks. Sustainability 2021, 13, 6035. [Google Scholar] [CrossRef]
- Ohlsen, B.; Horzella, J.; Bock, T.; Lucki, P.; Bertemann, D.; Wagner, J.; Grunewald, J.; Petzold, H.; Müller, D.; Schreiber, T.; et al. Abschlussbericht ErdEis II: Erdeisspeicher und oberflächennaheste Geothermie; Resreport; Energie PLUS Concept GmbH: Nürnberg, Germany, 2023. [Google Scholar] [CrossRef]
- Heissler, K.M. 5th Generation District Heating Networks: Potentials for Reducing CO2-Emissions and Increasing the Share of Renewable Energies in Residential Districts. Technische Universitat Munchen: Munchen, Germany, 2021. [Google Scholar] [CrossRef]
- Klein, S.A. TRNSYS 18: A Transient System Simulation Program. 2017. Available online: http://sel.me.wisc.edu/trnsys (accessed on 7 August 2024).
- Dassault Systems. Dymola—Multi-Engineering Modeling and Simulation Based on Modelica and FMI. Available online: https://www.3ds.com/products/catia/dymola (accessed on 30 January 2024).
- Abugabbara, M.; Javed, S.; Johansson, D. A simulation model for the design and analysis of district systems with simultaneous heating and cooling demands. Energy 2022, 261, 125245. [Google Scholar] [CrossRef]
- Modelica Association. Modelica Language. 2020. Available online: https://modelica.org/ (accessed on 30 August 2024).
- Bilardo, M.; Sandrone, F.; Zanzottera, G.; Fabrizio, E. Modelling a fifth-generation bidirectional low temperature district heating and cooling (5GDHC) network for nearly Zero Energy District (nZED). Energy Rep. 2021, 7, 8390–8405. [Google Scholar] [CrossRef]
- Blacha, T.; Mans, M.; Remmen, P.; Müller, D. Dynamic Simulation Of Bidirectional Low-Temperature Networks—A Case Study To Facilitate The Integration Of Renewable Energies. In Proceedings of the Building Simulation Conference Proceedings, IBPSA, Rome, Italy, 2–4 September 2019. [Google Scholar] [CrossRef]
- Abugabbara, M.; Javed, S.; Bagge, H.; Johansson, D. Bibliographic analysis of the recent advancements in modeling and co-simulating the fifth-generation district heating and cooling systems. Energy Build. 2020, 224, 110260. [Google Scholar] [CrossRef]
- Qiu, K.; Yang, J.; Gao, Z.; Xu, F. A review of Modelica language in building and energy: Development, applications, and future prospect. Energy Build. 2024, 308, 113998. [Google Scholar] [CrossRef]
- Wetter, M.; van Treeck, C. IEA EBC Annex 60: New Generation Computing Tools for Building and Community Energy Systems. 2017. Available online: https://www.iea-annex60.org/pubs.html (accessed on 28 September 2024).
- Modelica Association. Modelica Standard Library Modelica.Thermal.FluidHeatFlow. 2020. Available online: https://build.openmodelica.org/Documentation/Modelica.Thermal.FluidHeatFlow.html (accessed on 30 August 2024).
- Ramming, K. Bewertung und Optimierung oberflächennaher Erdwärmekollektoren für verschiedene Lastfälle. Ph.D. Thesis, Technical University Dresden, Dresden, Germany, 2007. [Google Scholar]
- Hirsch, H.; Hüsing, F.; Rockendorf, G. Modellierung Oberflächennaher Erdwärmeübertrager für Systemsimulationen in TRNSYS; BauSIM: Dresden, Germany, 2016. [Google Scholar]
- Glück, B. Simulationsmodell “Erdwärmekollektor” zur wäRmetechnischen Beurteilung von Wärmequellen, Wärmesenken und Wärme-/Kältespeichern; Technical Report; Rudolf Otto Meyer-Umwelt-Stiftung: Hamburg, Germany, 2009. [Google Scholar]
- Baehr, H.D.; Stephan, K. Wärme- und Stoffübertragung, 10th ed.; Springer: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- Eckelmann, W.; Sponagel, H.; Grottenthaler, W. Bodenkundliche Kartieranleitung. 5. Verbesserte und Erweiterte Auflage; Schweizerbart Science Publishers: Stuttgart, Germany, 2005. [Google Scholar]
- Carsel, R.F.; Parrish, R.S. Developing Joint Probability Distributions of Soil Water Retention Characteristics. Water Resour. Res. 1988, 24, 755–769. [Google Scholar] [CrossRef]
- Kellner, C. Frosthebungsverhalten von Böden infolge tief liegender Vereisungskörper. Ph.D. Thesis, Technische Universität München, München, Germany, 2007. [Google Scholar]
- Coté, J.; Konrad, J.M. Thermal conductivity of base-course materials. Can. Geotech. J. 2005, 42, 61–78. [Google Scholar] [CrossRef]
- De Vries, D.A. Thermal properties of soil. In Physics of Plant Environment, 1st ed.; North Holland Publisher Co.: Amsterdam, The Netherlands, 1963; pp. 210–235. [Google Scholar]
- Muerth, M.J. A Soil Temperature and Energy Balance Model for Integrated Assessment of Global Change Impacts at the Regional Scale. Ph.D. Thesis, Ludwig-Maximilian-Universität München, München, Germany, 2008. [Google Scholar] [CrossRef]
- Yan, H.; He, H.; Dyck, M.; Jin, H.; Li, M.; Si, B.; Lv, J. A generalized model for estimating effective soil thermal conductivity based on the Kasubuchi algorithm. Geoderma 2019, 353, 227–242. [Google Scholar] [CrossRef]
- Mottaghy, D.; Ziegler, M.; Rath, V.; Baier, C. Numerische Simulation des Gefrierprozesses bei der Baugrundvereisung im durchströmten Untergrund. Bauingenieur 2008, 83, 49–60. [Google Scholar]
- Wen, H.; Bi, J.; Guo, D. Evaluation of the calculated unfrozen water contents determined by different measured subzero temperature ranges. Cold Reg. Sci. Technol. 2020, 170, 102927. [Google Scholar] [CrossRef]
- Bi, J.; Wang, G.; Wu, Z.; Wen, H.; Zhang, Y.; Lin, G.; Sun, T. Investigation on unfrozen water content models of freezing soils. Front. Earth Sci. 2023, 10, 1039330. [Google Scholar] [CrossRef]
- Hansson, K.; Simunek, J.; Mizoguchi, M.; Lundin, L.C.; van Genuchten, M.T. Water Flow and Heat Transport in Frozen Soil: Numerical Solutionand Freeze–Thaw Applications. Vadose Zone J. 2004, 3, 693–704. [Google Scholar]
- Windisch, H. Thermodynamik—Ein Lehrbuch für Ingenieure; De Gruyter Oldenbourg: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Holy, F.; Textor, M.; Lechner, S. Novel Approach to the Dynamic Modelling of Countercurrent Heat Exchangers: A Cell-Based Model to Consider Thermal Capacities, Axial Heat Conduction and Heat Losses. SSRN 2022. pre-print. [Google Scholar] [CrossRef]
- Deutscher Wetterdienst (DWD). Handbuch: Ortsgenaue Testreferenzjahre von Deutschland für Mittlere, Extreme und Zukünftige Witterungsverhältnisse. Available online: https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/try-handbuch.pdf;jsessionid=32F96E889EBF9043C884BC440CF32493.live21301?__blob=publicationFile&v=1 (accessed on 18 August 2023).
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- EN ISO 9806:2017; Solarenergie–Thermische Sonnenkollektoren–Prüfverfahren. Deutsches Institut für Normung (DIN): Berlin, Germany, 2017.
- Broetje, S.; Kirchner, M.; Schabbach, T.; Giovannetti, F. Performance Assessment of a Photovoltaic-Thermal Roof with Modular Heat Exchanger. In Proceedings of the EuroSun 2018, Rapperswil, Switzerland, 10–13 September 2018; pp. 1–12. [Google Scholar] [CrossRef]
- Jonas, D.; Lämmle, M.; Theis, D.; Schneider, S.; Frey, G. Performance modeling of PVT collectors: Implementation, validation and parameter identification approach using TRNSYS. Sol. Energy 2019, 193, 51–64. [Google Scholar] [CrossRef]
- Formhals, J. Object-Oriented Modelling of Solar District Heating Grids with Underground Thermal Energy Storage. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2022. [Google Scholar] [CrossRef]
- Quaschning, V. Regenerative Energiesysteme: Technologie–Berechnung–Simulation, 9th ed.; Carl Hanser Verlag: Munich, Germany, 2015. [Google Scholar]
- Verein deutscher Ingenieure. VDI-Wärmeatlas, 11th ed.; VDI-Buch; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Eberhard, R.; Hüning, R. Handbuch der Gasversorgungstechnik, 2nd ed.; Oldenbourg Wissenschaftsverlag: Munich, Germany, 1990. [Google Scholar]
- Cerbe, G. Grundlagen der Gastechnik: Gasbeschaffung–Gasverteilung–Gasverwendung, 7th ed.; Hanser Verlag: München, Germany; Wien, Germany, 2008. [Google Scholar]
- Swamee, P.K.; Jain, A.K. Explicit Equations For Pipe-Flow Problems. J. Hydraul. Div. 1976, 102, 657–664. [Google Scholar] [CrossRef]
- Franz, G.; Grigull, U. Wärmeverluste von beheizten Rohrletiungen im Erdboden. Wärme Stoffübertragung 1969, 2, 109–117. [Google Scholar] [CrossRef]
- Bundesverband der Energie- und Wasserwirtschaft (BDEW) e.V. Verband kommunaler Unternehmen (VKU) e.V. In Leitfaden Abwicklung von Standardlastprofilen Gas; Technical Report; Bundesverband der Energie- und Wasserwirtschaft (BDEW) e.V.: Berlin, Germany, 2022. [Google Scholar]
- DIN EN 12831-3:2017; Energetische Bewertung von Gebäuden–Verfahren zur Berechnung der Norm-Heizlast–Teil 3: Trinkwassererwärmungsanlagen, Heizlast und Bedarfsbestimmung. Deutsches Institut für Normung (DIN): Berlin, Germany, 2017.
- Hausl, S.P. Auswirkungen des Klimawandels auf Regionale Energiesysteme—Modellierung und Optimierung Regionaler Energiesysteme Unter Berücksichtigung Klimatischer und räUmlicher Aspekte. Ph.D. Thesis, Technische Universität München, München, Germany, 2018. [Google Scholar]
- Isaac, M.; van Vuuren, D.P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2008, 37, 507–521. [Google Scholar] [CrossRef]
- Baehr, H.D.; Kabelac, S. Thermodynamik—Grundlagen und Technische Anwendungen, 16th ed.; Springer: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- EnergieSchweiz. Dimensionierung von Sonnenkollektoranlagen; Technical Report; Bundesamt für Energie BFE: Bern, Switzerland, 2001; Available online: https://pubdb.bfe.admin.ch/de/publication/download/211 (accessed on 12 November 2024).
- Rodríguez-Hidalgo, M.; Rodríguez-Aumente, P.; Lecuona, A.; Legrand, M.; Ventas, R. Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank. Appl. Energy 2012, 97, 897–906. [Google Scholar] [CrossRef]
- Glembin, J.; Haselhorst, T.; Steinweg, J.; Föste, S.; Rockendorf, G. Direct integration of solar heat into the space heating circuit. Sol. Energy 2016, 131, 1–20. [Google Scholar] [CrossRef]
- Deutscher Wetterdienst (DWD). Zeitlicher Verlauf der Bodenfeuchte. Available online: https://www.dwd.de/DE/leistungen/bofeu_zeitreihen/bofeuzeitreihen.html?nn=732680 (accessed on 1 August 2024).
- Hüsing, F.; Mercker, O.; Hirsch, H.; Kuntz, D.; Walker-Hertkorn, S.; Sabel, M. Research Report for Project “Terra-Solar-Quelle”: Erdwärmekollektoren und Sonnenkollektoren als Optimierte Bivalente Quelle für Hocheffiziente Wärmepumpensysteme; Technical Report; ISFH: Offenburg, Germany, 2018; Available online: https://www.tib.eu/de/suchen?tx_tibsearch_search[action]=download&tx_tibsearch_search[controller]=Download&tx_tibsearch_search[docid]=TIBKAT:1047633868&cHash=f839958f8fb9066b16a5cbe46aca9645#download-mark (accessed on 28 November 2024).
- Verein Deutscher Ingenieure (VDI). VDI 4640: Thermal Use of the Underground—Ground Source Heat Pump Systems; Technical Report; Verein Deutscher Ingenieure (VDI): Düsseldorf, Germany, 2019. [Google Scholar]
- Benli, H. Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating. Energy Convers. Manag. 2011, 52, 581–589. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C.; Moschos, K.; Antonopoulos, K.A. Energetic and financial evaluation of solar assisted heat pump space heating systems. Energy Convers. Manag. 2016, 120, 306–319. [Google Scholar] [CrossRef]
- Brennenstuhl, M.; Zeh, R.; Otto, R.; Stockinger, V.; Pietruschka, D. Report on a Plus-Energy District with Low-Temperature DHC Network, Novel Agrothermal Heat Source, and Applied Demand Response. Appl. Sci. 2019, 9, 5059. [Google Scholar] [CrossRef]
- Gross, M. Kalte Nahwärmenetze zur klimafreundlichen Wärmeversorgung: Ökologie und Wirtschaftlichkeit in Bestands- und Neubauquartieren. Ph.D. Thesis, Ruhr-Universität Bochum, Bochum, Germany, 2022. [Google Scholar]
- Nussbaumer, T.; Thalmann, S.; Jenni, A.; Ködel, J. Planungshandbuch Fernwärme; DH: Bern, Switzerland, 2017. [Google Scholar]
- Salata, F.; Falasca, S.; Ciancio, V.; Curci, G.; de Wilde, P. Climate-change related evolution of future building cooling energy demand in a Mediterranean Country. Energy Build. 2023, 290, 113112. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Barbosa, P.; Dosio, A.; McCormick, N.; Bigano, A.; Füssel, H. Changes of heating and cooling degree-days in Europe from 1981 to 2100. Int. J. Climatol. 2017, 38, e191–e208. [Google Scholar] [CrossRef]
- Metz, J. Entwicklung und experimentelle Analyse eines Mehrquellen-Wärmepumpensystems mit Erdreich und Außenluft. Ph.D. Thesis, Fraunhofer-Institut für solare Energiesysteme ISE, Freiburg im Breisgau, Germany, 2023. [Google Scholar] [CrossRef]
- Perez-Mora, N.; Bava, F.; Andersen, M.; Bales, C.; Lennermo, G.; Nielsen, C.; Furbo, S.; Martinez-Moll, V. Solar district heating and cooling: A review. Int. J. Energy Res. 2017, 42, 1419–1441. [Google Scholar] [CrossRef]
- Fuchs, M. Digitaler Zwilling für Wärme- und Kältenetze. Planung, Umsetzung und Monitoring im Reallabor TransUrban. NRW, 2022. Presentation Within the Online Workshop “Digitalisierte Planung—Komplexität Beherrschbar Machen”, 29 June 2022. Available online: https://smartquart.energy/wp-content/uploads/2022/09/Dokumentation_Themenworkshop_Digitalisierte_Planung.pdf (accessed on 23 April 2024).
- Energieeffizienzverband für Wärme, Kälte und KWK e.V. (AGFW). Hauptbericht 2022; Technical Report; Energieeffizienzverband für Wärme, Kälte und KWK e.V. (AGFW): Frankfurt am Main, Germany, 2022. [Google Scholar]
- Glysofor. Data Sheet Monoethylene-Glycol-Blend, Data at 10C, 1bar. Available online: https://www.glysofor.de/wp-content/uploads/pdf/Glysofor-N-Spezifikation-D.pdf (accessed on 12 November 2024).
- Glysofor. Data Sheet 1,2 Propylene-Glycol 25:75, Data at 20C, 1bar. Available online: https://www.glysofor.de/wp-content/uploads/Glysofor-Solar-Spezifikation-D.pdf (accessed on 12 November 2024).
Prosumer | Aggregated Buildings | Room Heating (rh) Demand (MWh) | DHW Demand (MWh) | Cooling Demand (MWh) | Set Temperatures (DHW, rh) | Total Storage Volume (DHW, rh) | Roof-Mounted Systems () |
---|---|---|---|---|---|---|---|
MFH_001 | 3 | 70.20 | 21.94 | 7.02 | 58 °C, 28 °C to 40°C |
m3, m3 | m2 ST modules (a) ( 45 °, 15 °) |
MFH_002 | 4 | 93.60 | 29.25 | 9.36 | 58 °C, 28 °C to 40 °C |
m3, m3 | m2 ST modules (a) ( 45 °, 15 °) |
SFH_001 | 10 | 63.00 | 21.00 | 8.40 | 48 °C, 26 °C to 35 °C |
m3, - | m2 PVT modules (a) ( 30 °, 10 °) |
SFH_002 | 12 | 84.00 | 25.20 | 10.08 | 48 °C, 26 °C to 35 °C |
m3, - | m2 PVT modules (a) ( 30 °, 10 °) |
Supermarket_001 | 1 | - | - | 25.00 | - | - | - |
Component | Heating Demand, (MWh) | Th. Yield ST System (MWh) | Th. Yield PVT System (MWh) | El. Import (MWh) | El. Export (MWh) | El. Coverage (%) | Reference AWHP | ||
---|---|---|---|---|---|---|---|---|---|
MFH_001 | 92.14 | 41.34 | - | 22.43 | 0 | 0 | 4.02 | 4.22 | 4.01 |
MFH_002 | 122.85 | 51.79 | - | 29.84 | 0 | 0 | 4.03 | 4.19 | 4.01 |
SFH_001 | 84.00 | - | 22.33 | 16.64 | 12.01 | 17.4 | 4.87 | 5.23 | 4.75 |
SFH_002 | 109.20 | - | 28.34 | 20.41 | 14.03 | 18.3 | 4.96 | 5.53 | 4.89 |
Supermarket_001 | - | - | - | 0.03 | 0 | 0 | - | - | - |
District | 408.10 | 93.13 | 50.67 | 86.29 | 22.98 | 3.4 | 4.43 | 5.98 | 4.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Völzel, C.; Lechner, S. Grid-Coupled Geothermal and Decentralised Heat Supply Systems in a Holistic Open-Source Simulation Model for 5GDHC Networks. Sustainability 2024, 16, 10503. https://doi.org/10.3390/su162310503
Völzel C, Lechner S. Grid-Coupled Geothermal and Decentralised Heat Supply Systems in a Holistic Open-Source Simulation Model for 5GDHC Networks. Sustainability. 2024; 16(23):10503. https://doi.org/10.3390/su162310503
Chicago/Turabian StyleVölzel, Constantin, and Stefan Lechner. 2024. "Grid-Coupled Geothermal and Decentralised Heat Supply Systems in a Holistic Open-Source Simulation Model for 5GDHC Networks" Sustainability 16, no. 23: 10503. https://doi.org/10.3390/su162310503
APA StyleVölzel, C., & Lechner, S. (2024). Grid-Coupled Geothermal and Decentralised Heat Supply Systems in a Holistic Open-Source Simulation Model for 5GDHC Networks. Sustainability, 16(23), 10503. https://doi.org/10.3390/su162310503