Assessment of Teleconnections of Extreme Precipitation with Large-Scale Climate Indices: A Case Study of the Zishui River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Research Methods
2.3.1. Time-Lag Correlation Analysis of Extreme Precipitation with LCIs
2.3.2. Copula Function
3. Results
3.1. Study Area Time-Lag Correlation Analysis of EPIs
3.2. Extreme Precipitation Index-LCIs Copula Joint Distribution
3.3. Extreme Precipitation Simulation
4. Discussion
4.1. Comparative Study of Regional Precipitation Extremes
4.2. Relationship Between EPIs and LCIs
4.3. Research Shortcomings and Prospects
5. Conclusions
- (1)
- Precipitation during the flood season in the ZRB demonstrates significant instability and extreme fluctuations. Most EPIs exhibit pronounced year-to-year variation and show a “decline-rise-decline” trend over extended timescales. From 1979 to 2018, the duration of single precipitation events in the ZRB significantly decreased, while both total precipitation and extreme precipitation levels remained relatively unchanged, indicating a trend toward more extreme precipitation patterns. Among all indicator combinations, RX1day with PDO and PNO, as well as CWD with AMO and PDO, showed significant correlations, with absolute correlation values exceeding 0.3 and lag periods of 1–4 months.
- (2)
- A three-dimensional Copula model was developed to fit the joint distribution relationship between the EPIs and LCIs, allowing for assessment of the EPI’s probability distribution under different LCI scenarios. The results indicate that AMO has a stronger effect on CWD than PDO, with CWD decreasing significantly when AMO > 0 and CWD values being slightly lower under PDO < 0 compared to PDO > 0. The response of RX1day to PNO and PDO is notably weaker than that of CWD to AMO and PDO, and distributions are more consistent across PNO and PDO ranges, with better fit observed during positive PDO phases. This model provides a quantitative method for identifying LCI effects on extreme precipitation in the study area, offering new insights into the influence of LCIs on extreme precipitation in inland monsoon climate zones.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.H.; Chen, Y.N.; Li, W.H.; Liu, Z.H.; Tang, J.; Wei, C.M. Understanding temporal and spatial complexity of precipitation distribution in Xinjiang, China. Theor. Appl. Climatol. 2016, 123, 321–333. [Google Scholar] [CrossRef]
- Wu, S.J.; Dong, Z.C.; Cai, C.K.; Zhu, S.N.; Shao, Y.Q.; Meng, J.Y.; Amponsah, G.E. Identification of Extreme Droughts Based on a Coupled Hydrometeorology Index from GRACE-Derived TWSA and Precipitation in the Yellow River and Yangtze River Basins. Water 2023, 15, 1990. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H.; Demirel, M.C. A comparative assessment of projected meteorological and hydrological droughts: Elucidating the role of temperature. J. Hydrol. 2017, 553, 785–797. [Google Scholar] [CrossRef]
- Won, J.; Choi, J.; Lee, O.; Kim, S. Copula-based Joint Drought Index using SPI and EDDI and its application to climate change. Sci. Total Environ. 2020, 744, 140701. [Google Scholar] [CrossRef]
- Seo, J.; Won, J.; Lee, H.; Kim, S. Probabilistic monitoring of meteorological drought impacts on water quality of major rivers in South Korea using copula models. Water Res. 2024, 251, 121175. [Google Scholar] [CrossRef]
- Mantua, N.; Tohver, I.; Hamlet, A. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Clim. Change 2010, 102, 187–223. [Google Scholar] [CrossRef]
- Cheng, Q.; Gao, L.; Zuo, X.; Zhong, F. Statistical analyses of spatial and temporal variabilities in total, daytime, and nighttime precipitation indices and of extreme dry/wet association with large-scale circulations of Southwest China, 1961–2016. Atmos. Res. 2019, 219, 166–182. [Google Scholar] [CrossRef]
- Jiang, T.; Su, B.; Huang, J.; Zhai, J.; Xia, J.; Tao, H.; Wang, Y.; Sun, H.; Luo, Y.; Zhang, L.; et al. Each 0.5°C of Warming Increases Annual Flood Losses in China by More than US$60 Billion. Bull. Am. Meteorol. Soc. 2020, 101, E1464–E1474. [Google Scholar] [CrossRef]
- Dommo, A.; Aloysius, N.; Lupo, A.; Hunt, S. Spatial and temporal analysis and trends of extreme precipitation over the Mississippi River Basin, USA during 1988–2017. J. Hydrol. Reg. Stud. 2024, 56, 101954. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.-F.; Wu, D.-Y.; Wang, X. The historical to future linkage of Arctic amplification on extreme precipitation over the Northern Hemisphere using CMIP5 and CMIP6 models. Adv. Clim. Change Res. 2024, 15, 573–583. [Google Scholar] [CrossRef]
- He, B.S.; Huang, X.L.; Ma, M.H.; Chang, Q.R.; Tu, Y.; Li, Q.; Zhang, K.; Hong, Y. Analysis of flash flood disaster characteristics in China from 2011 to 2015. Nat. Hazards 2018, 90, 407–420. [Google Scholar] [CrossRef]
- Li, M.; Luo, D.; Yao, Y.; Zhong, L. Large-scale atmospheric circulation control of summer extreme hot events over China. Int. J. Climatol. 2020, 40, 1456–1476. [Google Scholar] [CrossRef]
- Guo, Y.H.; Yan, X.D.; Song, S.F. Spatiotemporal variability of extreme precipitation in east of northwest China and associated large-scale circulation factors. Environ. Sci. Pollut. Res. 2024, 31, 11749–11765. [Google Scholar] [CrossRef] [PubMed]
- Ropelewski, C.F.; Halpert, M.S. Global and Regional Scale Precipitation Patterns Associated with the El Nio/Southern Oscillation. Mon. Weather Rev. 1987, 115, 16061626. [Google Scholar] [CrossRef]
- Sun, X.; Renard, B.; Thyer, M.; Westra, S.; Lang, M. A global analysis of the asymmetric effect of ENSO on extreme precipitation. J. Hydrol. 2015, 530, 51–65. [Google Scholar] [CrossRef]
- Ballesteros-Cánovas, J.A.; Kariya, Y.; Imaizumi, F.; Manchado, A.M.T.; Nishii, R.; Matsuoka, N.; Stoffel, M. Debris-flow activity in the Japanese Alps is controlled by extreme precipitation and ENSO—Evidence from multi-centennial tree-ring records. Glob. Planet. Change 2023, 231, 104296. [Google Scholar] [CrossRef]
- Hong Lee, J.; Julien, P.Y.; Lee, S. Teleconnection of ENSO extreme events and precipitation variability over the United States. J. Hydrol. 2023, 619, 129206. [Google Scholar] [CrossRef]
- Beyene, T.K.; Jain, M.K.; Yadav, B.K.; Agarwal, A. Multiscale investigation of precipitation extremes over Ethiopia and teleconnections to large-scale climate anomalies. Stoch. Environ. Res. Risk Assess. 2022, 36, 1503–1519. [Google Scholar] [CrossRef]
- Ning, L.; Bradley, R.S. Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability. J. Clim. 2015, 28, 2475–2493. [Google Scholar] [CrossRef]
- Rathinasamy, M.; Agarwal, A.; Sivakumar, B.; Marwan, N.; Kurths, J. Wavelet analysis of precipitation extremes over India and teleconnections to climate indices. Stoch. Environ. Res. Risk Assess. 2019, 33, 2053–2069. [Google Scholar] [CrossRef]
- Wei, W.; Zou, S.; Duan, W.; Chen, Y.; Li, S.; Zhou, Y. Spatiotemporal variability in extreme precipitation and associated large-scale climate mechanisms in Central Asia from 1950 to 2019. J. Hydrol. 2023, 620, 129417. [Google Scholar] [CrossRef]
- Gao, T.; Wang, H.J.; Zhou, T. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China. Atmos. Res. 2017, 197, 379–389. [Google Scholar] [CrossRef]
- Su, Z.; Hao, Z.; Yuan, F.; Chen, X.; Cao, Q. Spatiotemporal variability of extreme summer precipitation over the Yangtze River Basin and the associations with climate patterns. Water 2017, 9, 873. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Gu, P.; Feng, H.; Yin, Y.; Chen, W.; Cheng, B. Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Sci. Total Environ. 2021, 760, 144244. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Yang, Q.; Ma, Z.; Li, C. Trends and Possible Causes of Different Levels of Precipitation Variations in China during 1961-2020. Chin. J. Atmos. Sci. 2024, 48, 619–644. [Google Scholar]
- Liu, Y.; Su, Y.; Bao, J.; Luo, Z. Study on the Joint Probability and Return Period of Extreme Precipitation in Baoji Area Based on Copula Function. In Proceedings of the 2023 International Conference on Industrial IoT, Big Data and Supply Chain (IIoTBDSC), Wuhan, China, 22–24 September 2023; pp. 223–229. [Google Scholar]
- Shu, S.J.; Wang, Y.; Xiong, A.Y. Estimation and analysis for geographic and orographic influences on precipitation distribution in China. Chin. J. Geophys.-Chin. Ed. 2007, 50, 1703–1712. [Google Scholar]
- Liu, L.; Zheng, Z.; Lu, G. Relations of Opening-River and Closing-River Time with the Climate Change in the Three-River Plain. J. Nanjing Inst. Meteorol. 2003, 26, 677–684. [Google Scholar]
- Pandey, B.K.; Tiwari, H.; Khare, D. Trend analysis using discrete wavelet transform (DWT) for long-term precipitation (1851-2006) over India. Hydrol. Sci. J. 2017, 62, 2187–2208. [Google Scholar] [CrossRef]
- Fan, L.; Wang, H.; Liu, Z.; Li, N. Quantifying the Relationship between Drought and Water Scarcity Using Copulas: Case Study of Beijing–Tianjin–Hebei Metropolitan Areas in China. Water 2018, 10, 1622. [Google Scholar] [CrossRef]
- Bazrafshan, O.; Zamani, H.; Shekari, M. A copula-based index for drought analysis in arid and semi-arid regions of Iran. Nat. Resour. Model. 2020, 33, e12237. [Google Scholar] [CrossRef]
- Pabaghi, Z.; Bazrafshan, O.; Zamani, H.; Shekari, M.; Singh, V.P. Bivariate Analysis of Extreme Precipitation Using Copula Functions in Arid and Semi-Arid Regions. Atmosphere 2023, 14, 275. [Google Scholar] [CrossRef]
- Zeng, W.; Xu, M.; Song, S.; Wu, H. Joint probability distribution and risk identification of extreme precipitation based on R-Vine Copula function. Water Resour. Prot. 2022, 38, 96–103. [Google Scholar] [CrossRef]
- Wang, C.L.; Ren, X.H.; Li, Y. Analysis of extreme precipitation characteristics in low mountain areas based on three-dimensional copulas-taking Kuandian County as an example. Theor. Appl. Climatol. 2017, 128, 169–179. [Google Scholar] [CrossRef]
- Xie, A.; Luo, B.; Deng, J.; Gao, X. Characteristics and causes of persistent extreme drought events in summer, autumn and winter in Hunan, 2022/2023. Dry Weather 2023, 41, 910–922. [Google Scholar]
- Li, B.; Wen, Q.; Zhang, X.; Yang, L.; Liu, D.; Yang, L. Climatic characterisation of heavy rainfall during flood season in Zishui Basin of Hunan Province. J. Irrig. Drain. 2020, 39, 136–144. [Google Scholar] [CrossRef]
- Li, C. Study on the Dilemma and Countermeasures of Collaborative Governance of Multiple Subjects in the Ecological Environment of Zishui Basin. Sci. Technol. Ind. 2020, 20, 140–147+168. [Google Scholar]
- Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes Workshop Summary. In Weather and Climate Extremes: Changes, Variations and a Perspective from the Insurance Industry; Karl, T.R., Nicholls, N., Ghazi, A., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 3–7. [Google Scholar]
- Ongoma, V.; Chen, H.S.; Gao, C.J.; Nyongesa, A.M.; Polong, F. Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat. Hazards 2018, 90, 901–920. [Google Scholar] [CrossRef]
- Pei, F.; Wu, C.; Liu, X.; Hu, Z.; Xia, Y.; Liu, L.-A.; Wang, K.; Zhou, Y.; Xu, L. Detection and attribution of extreme precipitation changes from 1961 to 2012 in the Yangtze River Delta in China. Catena 2018, 169, 183–194. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Zhu, W.; Ren, H.; Zhang, L.; Zhu, L. Spatiotemporal variations of extreme precipitation and its potential driving factors in China’s North-South Transition Zone during 1960–2017. Atmos. Res. 2021, 252, 105429. [Google Scholar] [CrossRef]
- Liu, W.L.; Zhu, S.N.; Huang, Y.P.; Wan, Y.F.; Wu, B.; Liu, L. Spatiotemporal Variations of Drought and Their Teleconnections with Large-Scale Climate Indices over the Poyang Lake Basin, China. Sustainability 2020, 12, 3526. [Google Scholar] [CrossRef]
- Zhang, T.; Ren, L.; Dong, Z.; Cui, C.; Wang, W.; Li, Z.; Han, Y.; Peng, Y.; Yang, J. Temporal changes in precipitation and correlation with large climate indicators in the Hengshao Drought Corridor, China. Ecol. Indic. 2024, 167, 112715. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Method; Charles Grifin: London, UK, 1975. [Google Scholar] [CrossRef]
- Güçlü, Y.S. Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. J. Hydrol. 2020, 584, 124674. [Google Scholar] [CrossRef]
- Zhao, J.; Qiao, Y.; Wang, C. Interdecadal change of winter rainfall over Hunan and its physical factors. Acta Sci. Nat. Univ. Sunyatseni 2016, 55, 143–150. [Google Scholar]
- Labudova, L.; Stastny, P.; Trizna, M. The north atlantic oscillation and winter precipitation totals in slovakia. Morav. Geogr. Rep. 2013, 21, 38–49. [Google Scholar] [CrossRef]
- Hollander, M.; Sethuraman, J. Nonparametric Statistics: Rank-Based Methods. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 891–897. [Google Scholar]
- Sklar, A. Distribution Functions of n Dimensions and Margins. Publ. Inst. Stat. Univ. Paris 1959, 229–231. Available online: https://www.scirp.org/reference/referencespapers?referenceid=1056342 (accessed on 17 December 2024).
- Wang, W.; Yang, H.; Huang, S.; Wang, Z.; Liang, Q.; Chen, S. Trivariate copula functions for constructing a comprehensive atmosphere-land surface-hydrology drought index: A case study in the Yellow River basin. J. Hydrol. 2024, 642, 131784. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, X.; Li, C.; Xu, Y.; Fei, J. Compound ecological drought assessment of China using a Copula-based drought index. Ecol. Indic. 2024, 164, 112141. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Gronneberg, S.; Hjort, N.L. The Copula Information Criteria. Scand. J. Stat. 2014, 41, 436–459. [Google Scholar] [CrossRef]
- Wu, S.; Hu, Z.; Wang, Z.; Cao, S.; Yang, Y.; Qu, X.; Zhao, W. Spatiotemporal variations in extreme precipitation on the middle and lower reaches of the Yangtze River Basin (1970–2018). Quat. Int. 2021, 592, 80–96. [Google Scholar] [CrossRef]
- He, B.-R.; Zhai, P.-M. Changes in persistent and non-persistent extreme precipitation in China from 1961 to 2016. Adv. Clim. Change Res. 2018, 9, 177–184. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.L.; Duan, Q.; Ji, D.; Li, H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Zeng, Y.; Huang, C.; Tang, Y.; Peng, J. Precipitation Variations in the Flood Seasons of 1910–2019 in Hunan and Its Association With the PDO, AMO, and ENSO. Front. Earth Sci. 2021, 9, 656594. [Google Scholar] [CrossRef]
- Yang, B.; Qin, C.; Bräuning, A.; Osborn, T.J.; Trouet, V.; Ljungqvist, F.C.; Esper, J.; Schneider, L.; Griessinger, J.; Büntgen, U.; et al. Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6,700 years. Proc. Natl. Acad. Sci. USA 2021, 118, e2102007118. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, B.; Gu, X.; Lu, J.; Ju, J. Rainfall index since 1873 for middle-lower reaches of Yangtze River basin during the eastern Asia summer monsoon. Quat. Int. 2009, 208, 19–27. [Google Scholar] [CrossRef]
- Xie Ao, L.B.L. Summer precipitation in Hunan in relation to pre-existing North Pacific SST anomalies. Meteorol. Environ. Sci. 2020, 43, 49–57. [Google Scholar] [CrossRef]
- Zhang, D.; Yuan, Y.; Han, R. Analysis of the characteristics and causes of climate anomalies in China in the summer of 2022. Aeronautical 2023, 49, 110–121. [Google Scholar] [CrossRef]
Category | Indicator Code | Indicator Name | Physical Significance | Unit |
---|---|---|---|---|
Extreme Precipitation Duration Index | CDD | Sustained Drought Index | Maximum number of days with daily precipitation <1 mm | d |
CWD | Sustained Wetness Index | Maximum number of days with daily precipitation ≥1 mm | d | |
Extreme Precipitation Days | R10 | Number of days with moderate rain | Number of days with daily precipitation ≥10 mm | d |
R25 | Number of days with heavy rain | Number of days with daily precipitation ≥25 mm | d | |
Extreme Precipitation Index | PRCPTOT | Cumulative Precipitation Total | Total precipitation ≥1 mm | mm |
RX1day | Maximum Precipitation for One Day | Maximum 1 d of precipitation in April–August | mm | |
RX5day | Maximum Precipitation for Five Consecutive Days | Maximum 5-d precipitation in April–August | mm | |
R95PTOT | Extreme Precipitation | Total precipitation with daily precipitation >95% quantile | mm | |
Extreme Precipitation Intensity Index | SDII | Precipitation intensity | Cumulative total precipitation/number of days with precipitation | mm/d |
Variable | Distribution | Parameters | KS-Value | p-Value |
---|---|---|---|---|
CWD | Beta | 0.09 | 0.86 | |
.49 | ||||
PDO | Beta | 0.06 | 0.99 | |
AMO | Beta | 0.11 | 0.75 | |
RX1day | Beta | 0.10 | 0.81 | |
PNO | Laplace | 0.11 | 0.76 | |
Index | Copula | AIC | BIC | RMSE |
---|---|---|---|---|
CWD-AMO | Frank | 3591.52 | 3597.56 | 0.79 |
Clayton | 2205.44 | 2211.48 | 0.09 | |
Gumbel | 2406.48 | 2412.52 | 0.21 | |
CWD-PDO | Frank | 2779.36 | 2785.40 | 0.42 |
Clayton | 2165.36 | 2171.40 | 0.07 | |
Gumbel | 2496.64 | 2502.68 | 0.26 | |
AMO-PDO | Frank | 2371.12 | 2377.16 | 0.18 |
Clayton | 2085.20 | 2091.24 | 0.04 | |
Gumbel | 2205.44 | 2211.48 | 0.09 | |
RX1day-PNO | Frank | 3381.04 | 3387.08 | 0.66 |
Clayton | 2265.60 | 2271.64 | 0.12 | |
Gumbel | 2659.04 | 2665.08 | 0.34 | |
RX1day-PDO | Frank | 2641.76 | 2647.80 | 0.33 |
Clayton | 2125.28 | 2131.32 | 0.05 | |
Gumbel | 2285.68 | 2291.72 | 0.13 | |
PNO-PDO | Frank | 2305.76 | 2311.80 | 0.14 |
Clayton | 2065.12 | 2071.16 | 0.03 | |
Gumbel | 2596.88 | 2602.92 | 0.31 |
Index | Vine | Copula | AIC | BIC | RMSE |
---|---|---|---|---|---|
CWD-AMO-PDO | C-Vine | Clayton | 3317.81 | 3324.26 | 0.64 |
D-Vine | Clayton | 2713.98 | 2720.43 | 0.37 | |
R-Vine | Gumbel | 3709.34 | 3715.45 | 0.88 | |
RX1day-PNO-PDO | C-Vine | Frank | 2454.12 | 2460.57 | 0.23 |
D-Vine | Clayton | 3252.71 | 3259.16 | 0.60 | |
R-Vine | Clayton | 2520.51 | 2526.96 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Dong, Z.; Zhang, T.; Cui, C.; Zhu, S.; Wu, S.; Li, Z.; Cui, X. Assessment of Teleconnections of Extreme Precipitation with Large-Scale Climate Indices: A Case Study of the Zishui River Basin, China. Sustainability 2024, 16, 11235. https://doi.org/10.3390/su162411235
Peng Y, Dong Z, Zhang T, Cui C, Zhu S, Wu S, Li Z, Cui X. Assessment of Teleconnections of Extreme Precipitation with Large-Scale Climate Indices: A Case Study of the Zishui River Basin, China. Sustainability. 2024; 16(24):11235. https://doi.org/10.3390/su162411235
Chicago/Turabian StylePeng, Yuqing, Zengchuan Dong, Tianyan Zhang, Can Cui, Shengnan Zhu, Shujun Wu, Zhuozheng Li, and Xun Cui. 2024. "Assessment of Teleconnections of Extreme Precipitation with Large-Scale Climate Indices: A Case Study of the Zishui River Basin, China" Sustainability 16, no. 24: 11235. https://doi.org/10.3390/su162411235
APA StylePeng, Y., Dong, Z., Zhang, T., Cui, C., Zhu, S., Wu, S., Li, Z., & Cui, X. (2024). Assessment of Teleconnections of Extreme Precipitation with Large-Scale Climate Indices: A Case Study of the Zishui River Basin, China. Sustainability, 16(24), 11235. https://doi.org/10.3390/su162411235