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Abstract: The development of the subway system in Shenyang City, China, plays a vital
role in alleviating traffic congestion and promoting sustainable societal growth. However,
the deformation of the surface caused by the tunneling of the shield presents a significant
threat to the structural integrity of Shenyang Subway Line 2 and adjacent geotechnical
structures. To tackle this challenge, a set of FEA (finite element analysis) simulations were
carried out to examine surface deformation under various construction scenarios for Line
2. These simulations were compared with empirical formulas and numerical analyses
conducted using Midas GTS NX 2019 software, in addition to actual site measurements.
The outcomes of the finite element analysis (FEA) demonstrated a closer alignment with the
empirical data than with traditional formulas. The maximum deformation was observed to
be approximately twice as large as the equivalent diameter at the back of the excavation face.
The analysis indicated that surface deformation is inversely correlated with overburden
thickness (H), soil elasticity (E), and the grout filling rate of the shield tail (ψ), while it is
directly proportional to the shield’s outer diameter (D). This study provides important
methods used in the shield tunneling process employed in the Shenyang subway and
suggests that the developed methodologies may be applicable to similar subway projects.

Keywords: shield tunnel; surface settlement; numerical simulation; empirical method;
overburden thickness; geotechnical properties

1. Introduction
The rapid expansion of transit networks in China has played a vital role in promoting

the sustainability of tunnel infrastructure development over the past two decades [1]. As a
result, predicting and managing surface settlement due to shield tunneling construction
(STC) has emerged as a central theme of extensive research [2–4]. Single-circular shield
tunneling machines are commonly employed to excavate and line tunnels in soft and other
unstable geological conditions [5].

Shield tunneling encompasses the construction process, eliminating the need for
temporary shoring. During Earth Pressure Balance (EPB) operations, shield mechanisms
are deployed to control surface deformations and mitigate potential damage to adjacent
infrastructure [6–10]. To achieve these crucial construction and design objectives, a pre-
cise estimation of the magnitude and distribution of settlements in both horizontal and
vertical planes is imperative. Surface settlement is generally determined through three
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distinct methods: experimental testing, empirical and theoretical models, and numerical
modeling [11].

Experimental testing serves as a reliable method for investigating surface settlement
resulting from shield tunneling [12–15]. The empirical data collected from field tests, using
various techniques across a range of soil types, significantly inform the development of con-
struction and design protocols for shield tunneling [16]. Research has utilized transparent
soil models to simulate and observe surface settlement during shield tunneling construc-
tion, with the findings indicating a decrease in settlement magnitude as the tunnel depth
increases [17]. Furthermore, laboratory tests conducted under 1 g conditions have been
performed to examine surface settlement in unsaturated sandy soil [6]. These experimental
methodologies enhance our understanding of settlement behavior and contribute to the
refinement of shield tunneling practices.

A number of empirical formulae, theoretical models, and simplified representations
have been proposed for the evaluation of the ground displacements caused by the shield
tunneling method [18,19]. Gui et al. (2013) employed an empirical formula to estimate the
settlement pattern above a tunnel, followed a Gaussian distribution, and utilized FEA to
predict excessive settlements that could potentially damage adjacent structures [20]. Fang
et al. (2017) studied surface deformation resulting from shield tunneling [6]. Researchers
have developed analytical techniques to compute the surface settlement induced by tunnel-
ing [21,22]. Zhu et al. (2017a, 2017b) provided a comprehensive review of methodologies for
estimating and calculating surface settlement, together with definitions of parameters like
volume loss, peak surface settlement, as well as the width of the settlement trough [23,24].
These studies have shown that the profile of the settlement trough conforms to the Gaus-
sian curve. Although analytical methods offer advantages in addressing ground surface
settlement, they face significant limitations in practical applications. For instance, they
rely on numerous assumptions and simplifications inherent to analytical methods, includ-
ing the assumptions of soil isotropy, plane strain conditions, and modulus of elasticity.
Such assumptions may prove invalid when actual site conditions are reduced to a 2D
(two-dimensional) scenario with plane strain. Furthermore, some assumptions disregard
the influence of the tunnel face and adjacent ground, resulting in questionable settlement
estimates [25–27]. Notably, Brinkgreve’s (2005) research indicates that the Mohr–Coulomb
model has limited capacity for accurately representing soil deformation prior to failure [28].

Numerous investigations have demonstrated that numerical modeling methodologies
can accurately simulate surface settlement induced by tunneling operations [29–31]. A 3D
(three-dimensional) finite difference model (FDM) was used to compute the Double-O-Tube
shield tunneling process [24,32,33]. Gao et al. (2014) developed a 3D non-linear FEM for
the Z1 subway line in Tianjin, China [34]. Mathew et al. (2013) assessed the efficacy of 2D
and 3D finite element analysis (FEA) in predicting ground displacement [35]. To examine
the impact of tail void grouting, 3D finite element simulations were performed on a simpli-
fied scenario involving a tunnel excavated through homogeneous sandy soil beneath the
groundwater table [36]. Several factors, such as construction techniques, surface pavement,
traffic disturbances, significant surface settlement, and inaccuracies in manual measure-
ments, can lead to discrepancies between field-monitoring data and analytical results [37].
Furthermore, long-term field observations often include consolidation settlements that
are typically not considered in numerical models, potentially resulting in field-measured
settlements exceeding numerical predictions [38].

Shenyang Subway Line 2 constitutes a critical element of Shenyang’s metropolitan
transit network, extending 31.88 km and comprising 26 subterranean stations. The excava-
tion of Line 2 was carried out using a single-diameter Earth Pressure Balance (EPB) shield
machine. During the construction period, the shield machine navigated through regions
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prone to settlement, implementing rigorous control measures to minimize ground displace-
ment. The project’s complexity was exacerbated by the site’s intricate geological features,
presenting substantial challenges. It is essential to predict the extent of the excavation-
induced damage zone and potential dynamic hazards, including surface movement, to
ensure the safety of the entire excavation process before initiating operations [39,40].

This study is structured with the following objectives: (1) to develop a three-
dimensional (3D) numerical model for predicting surface settlement; (2) to simulate surface
settlement across various construction scenarios, considering tunnel parameters such as
overburden thickness and other geotechnical properties; and (3) to validate the model’s
efficacy and reliability by integrating empirical formulas and field measurement data. The
methodologies presented in this paper provide valuable technical insights for the shield
tunnel construction of the Shenyang metro Line 2 and can be adapted for use in other
similar metro tunneling projects.

2. Research Methods
2.1. Numerical Modeling
2.1.1. FEM Methodology

Midas GTS (Geotechnical Analysis and Design Software) is a powerful tool for an-
alyzing soil–structure interactions and simulating a wide range of scenarios frequently
encountered in geotechnical engineering. The software utilizes a comprehensive set of mod-
eling equations and constitutive relationships to accurately characterize the response of soil
and rock masses under varying loading states. The following section outlines key concepts
associated with the modeling equations and constitutive relationships implemented in
Midas GTS.

The constitutive models used in Midas GTS are all based on the laws of elasticity and
plasticity. The linear elastic models adhere to Hooke’s law, which gives a linear correlation
between stress and strain, as defined by Young’s modulus (E) and a constant Poisson’s ratio
(ν). In comparison, non-linear elastic models use more complicated relationships to describe
the non-linear stress–strain response of the materials under specific circumstances. In the
area of plasticity models, Midas GTS contains the Mohr–Coulomb and Drucker–Prager
(DP) models. The first one is widely used to determine the yield surface of materials like
soil and rock, which is characterized by the cohesion (c) and the angle of internal friction
(φ), and it enables the simulation of plastic deformation and soil failure. The second one
expands the Mohr–Coulomb model to describe material response under three-dimensional
stresses, making it particularly suited to cohesive materials.

Midas GTS employs the FEM to solve the governing equations of geotechnical prob-
lems. By discretizing the soil region in finite elements, the software facilitates the analysis of
stress, strain, and displacement within the soil structure. This discretion permits a precise
evaluation of how soil and rock respond under various simulated conditions, offering a
thorough understanding of their behavior.

2.1.2. Model Establishment

The foundational soil within the study area is composed of three distinct layers, clayey
soil, sandy soil, and gravelly sandy soil, which belong to the Quaternary formation and
are arranged from the tunnel’s crown to its base, as determined by geological surveys.
Numerical models offer enhanced accuracy in predicting surface settlements by accounting
for the shield tail void, grout filling, and soil disturbance around the tunnel. A 3D FEM
model has been constructed for the Shengyang Subway Line 2, as depicted in Figure 1a.
The model dimensions are 54 m along the x-axis, 36 m along the y-axis, and 32 m along
the z-axis. The tunnel progresses along the y-axis, with the model’s upper boundary set
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at the natural ground level and the lower boundary 12 m beneath the tunnel floor. The
computational domain is discretized into 32,086 four-node quadrilateral elements.
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Figure 1. (a) Finite element model; (b) loads in excavation step.

The modeling process is predicated on several assumptions: (1) the earth’s surface and
all soil layers are considered to have a uniform and horizontal stratification; (2) the soil’s
behaviors are presumed to adhere to the Mohr-Coulomb failure criterion and to exhibit
an elastic–plastic stressstrain behavior; and (3) groundwater flow is disregarded, and soil
deformation is assumed to be time-independent.

Regarding the boundary conditions, the model is subjected to rest compression in
the x-direction (left and right sides) and y-direction (front and back sides), and it is fully
constrained at the bottom, with the top surface remaining unobstructed. It is anticipated
that the ground pressure at rest will gradually change with depth. The simulation was
performed under drained conditions. It is estimated that the earth pressure in soil chamber
P is roughly equal to the sum of the supporting pressure and the soil’s static water pressure.
This is expressed by the following formula:

P = K·P0, (1)

where P0 is the total of the static water pressure and the supporting pressure. The value of
K could typically be assumed to be 1.0 in clayey soil [41]. Figure 1b displays a typical finite
element mesh used in the investigation. The mesh dimensions for the excavated portion are
established at 0.8 m, while the grid dimensions for the unexcavated area are set at 1 m. The
tunnel, with a diameter of 6 m, is constructed within a sandy soil stratum. It is unavoidable
that the surrounding soil will be impacted by the tunnel structure’s excavation.

2.1.3. Parameters Setup of Soils and Structures

Three representative sections (K18 + 288.163, K18 + 192.163, and K18 + 048.163) were
selected for modeling calculations to enhance the credibility and general applicability
of the numerical model. Tables 1–3 provide specifics on the mechanical and physical
characteristics of the tunnel lining, equivalent layer, and soil for each section, respectively.
The simulation of a 24 m tunnel excavation was conducted using a step-by-step approach,
comprising 20 sequential stages, each with an excavation length of 1.2 m.



Sustainability 2025, 17, 20 5 of 18

Table 1. Soil properties and other parameters of each layer of soil and structures at section
K18 + 288.163.

Soil and
Structure

Thickness
(m)

Poisson
Ratio

Density
(kN/m3)

Young’s
Modulus

(GPa)

Cohesion
(kPa)

Friction
Angle

(◦)

Silty clay 8.5 0.29 19.0 5.200 30.0
Sand1 17.5 0.26 19.5 30.000 0.0 35.0
Sand2 6.0 0.25 19.9 36.000 3.9 37.8
Lining - 0.20 26.0 20.400 - -

Softening slurry - 0.30 21.0 0.001 - -
Hardening slurry - 0.25 21.0 0.050 - -

Table 2. Soil properties and other parameters of each layer of soil and structures at section
K18 + 192.163.

Soil and
Structure

Thickness
(m)

Poisson
Ratio

Density
(kN/m3)

Young’s
Modulus

(GPa)

Cohesion
(kPa)

Friction
Angle

(◦)

Fine sand 1 0.27 18.5 7.300 6.0 20.0
Sand1 15 0.26 19.5 30.000 0.0 35.0
Sand2 6 0.25 19.9 36.000 3.9 37.8
Lining - 0.20 26.0 20.400 - -

Softening slurry - 0.30 21.0 0.001 - -
Hardening slurry - 0.25 21.0 0.050 - -

Table 3. Soil properties and other parameters of each layer of soil and structures at section
K18 + 048.163.

Soil and
Structure

Thickness
(m)

Poisson
Ratio

Density
(kN/m3)

Young’s
Modulus

(GPa)

Cohesion
(kPa)

Friction
Angle

(◦)

Silty clay 8 0.29 19.0 5.200 30 18
Sand 12 0.26 19.5 30.000 0 35

Medium coarse sand 10 0.26 19.5 15.000 0 30
Lining - 0.20 26.0 20.400 - -

Softening slurry - 0.30 21.0 0.001 - -
Hardening slurry - 0.25 21.0 0.050 - -

2.2. Empirical Method

Over the past few decades, various empirical and semi-empirical methods have been
devised to address the challenges in geotechnical engineering. Prominent among these are
the Peck method [42,43], the Oteo method [44,45], and the Romo–Diaz method [46,47]. No-
tably, the most widely used empirical formulation in practice is the one created by Peck [43].
According to this formulation, a Gaussian distribution curve can accurately represent the
ground surface settlement profile (see Figure 2). The mathematical representation of this
model is as follows:

S(x) = Smax(x) exp
(
− x2

2i2

)
, (2)

where i is the trough width parameter, which is the distance between the tunnel center
and the inflection point, m; Sx is the ground surface settlement at a distance x from the
tunnel center, m; and Smax is the maximum ground surface settlement at the vertical tunnel
axis, m.
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Figure 2. Transverse settlement trough.

In actuality, the phrase “volume loss” (Vs), which is a percentage of the hypothetical
excavated volume of the tunnel, m3, is frequently used to describe the settlements brought
on by tunneling. The relationship between Smax and Vs could be expressed as follows by
integrating Equation (2):

Smax =
Vs√
2πi

, (3)

Vs = Vlπ(D/2)2, (4)

where D is the outside tunnel diameter, m, and Vl is the ground volume loss rate, m3/d.
Therefore, the only factors influencing the surface settlement curve’s magnitude and shape
for a given D are the volume loss Vs and the trough width parameter i.

A number of formulas have been put out to estimate the trough width parameter, i.
The most widely used expression, summarized as Equation (5), is used in this study, which
was proposed by Knothe [48]. The parameter i is related to the friction angle of the soil (φ)
and tunnel depth (Z0) in the form of i = f (φ, Z0). The trough width parameter i for the soils
with three typical tunnel sections are listed in Table 4, derived from Equation (5).

i =
Z0√

2π tan(45◦ − φ
2 )

. (5)

Table 4. Trough width parameter i of different sections and layers.

Cross Section Soil and
Structure

Thickness
(m)

Friction
Angle (◦)

Trough Width
Parameter i

K18 + 288.163
Silty clay 8.5 18.0 4.67

Sand 1 17.5 35.0 13.41
Sand 2 6.0 37.8 4.89

K18 + 192.163
Fine sand 1.0 20.0 0.57

Sand 1 15.0 350 11.50
Sand 2 6.0 37.8 4.89

K18 + 048.163
Silty clay 8.0 18.0 4.39

Sand 12.0 35.0 9.20
Medium

coarse sand 10.0 30.0 6.91

3. Results
Many factors affect surface settlement during shield tunneling, including the overbur-

den thickness (H), shield outer diameter (D), the relative burial depth (H/D), soil properties,
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and construction details. Establishing an accurate correlation between these factors and
surface settlement is challenging due to the limited availability of empirical and experimen-
tal data. However, the FEM provides a robust framework for handling complex boundary
conditions and delivering reliable results [49]. This study employs FEM to simulate and
quantify surface settlement across various construction scenarios, as well as to investigate
the interplay between different parameters and the resulting ground settlement during
tunneling. Numerical simulations were performed on three specific sections (K18 + 288.163,
K18 + 192.163, and K18 + 048.163), demonstrating consistent patterns among them. Notably,
the section K18 + 288.163 is highlighted as a representative case in subsequent analyses.

3.1. Surface Settlements with Different Steps

The simulation of a 24 m tunnel excavation was conducted using a sequential method,
comprising 20 stages, each excavating 1.2 m. As depicted in Figure 3, the surface settlement
at K18 + 288.163 escalates to a significant value of 10.15 mm upon the shield machine
reaching the 20th stage. Upon examination of the symmetry in the measured settlement
trough curve, it is observed to be roughly symmetrical about the tunnel’s central axis.
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Figure 3. The surface settlement trough section K18 + 288.163 for different excavation steps.

Important surface stations along the tunnel axis were chosen as observation sites in
order to look into the longitudinal trend of settlement. Settlement patterns at varying
distances from the tunnel entrance were independently modeled using Midas GTS. Figure 4
delineates the 20 stages of excavation, providing a detailed depiction of the tunneling
process. It is observed that prior to the shield’s arrival, the soil experiences a minor uplift
of 1–2 mm, attributable to the extrusion effect at the tunnel face. But as the barrier moves
forward, the soil starts to settle, and the settlement becomes more intense. When the shield
tail reaches the twentieth excavation stage, the peak settlement is noted.
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The excavation process involves the removal of soil at a length of 24 m per cycle. The
vertical displacement of the soil around the tunnel is depicted in Figure 5. Notably, the
soil displacement is significantly greater near the tunnel and varies along its length. The
soil above the tunnel exhibits downward displacement, whereas the soil beneath it shows
an upward trend. The maximum downward displacement recorded is 22.8 mm, and the
maximum upward displacement is 15.7 mm. This displacement diminishes progressively
with an increasing distance from the tunnel’s radius. The tunnel face experiences greater
displacement as excavation progresses, and the displacement of soil previously removed
increases with each excavation step. Consequently, shield tunneling exerts a significant
impact on soil displacement.

3.2. Surface Settlements with Different Overburden Depths

Figure 6 illustrates the surface settlement at section K18 + 288.163 for varying cover
depths of 10 m, 14 m, 18 m, and 22 m. The settlement profiles across all sections exhibit
a comparable pattern, with the maximum settlement consistently occurring above the
tunnel’s central axis. At point A (K18 + 288.163), the surface settlement values escalate to
−14.34 mm, −14.89 mm, −15.17 mm, and −16.41 mm as the shield machine’s cover depth
increases from Z = 0 m (ground level) to H = 10 m, 14 m, 18 m, and 22 m (the overburden
soil layer thickness), respectively. To verify the feasibility of the results of the study, the
results are compared with those in the existing literature [50–56].

In this study, we compared the maximum ground surface settlements across four
scenarios, each with soil cover layers with varying thicknesses, H, as depicted in Figure 7.
The analysis reveals that the soil cover layer exerts a limited influence on the transverse
settlement profile. Specifically, the maximum settlement reached 20.58 mm for H = 10 at a
distance D of 10 m, exceeding that for H = 22 by 4.02 mm. It is clear that when the cover
depth H decreases, the maximum ground surface settlement increases. The amount of
settlement at the observation location decreases as the soil cover layer becomes thicker, yet
this reduction remains modest, akin to its effect on the transverse behavior.
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3.3. Surface Settlements with Outer Shields with Different Diameters

When the outer tunnel diameter is 10 m and the cover depth is 14 m, the surface
settlement at section K18 + 288.163 increases to a significant value of −19.19 mm, as
shown in Figure 8. The occurrence of “ground rebound” is not consistent but can manifest
sporadically. Conversely, when the outer tunnel diameter is reduced to 4 m with the
cover depth remaining at 14 m, the maximum surface settlement recorded is −7.59 mm,
significantly lower than that observed with a 10 m diameter. Figure 9 delineates the
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characteristics of maximum ground surface settlement at section K18 + 288.163 under
varying cover depths with different outer tunnel diameters. It is clear that a significant
increase in ground surface settling is correlated with an increase in the outer tunnel width.
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3.4. The Surface Settlements with Different Grout Filling Rates of Shield Tail

The tunnel segments, each 1.2 m wide, are assembled under the protective shield
shell, which imparts greater rigidity and minimizes ground settlement due to its structural
integrity. As the shield advances, the tail segment becomes exposed, necessitating grouting
to fill the void and mitigate further settlement. In order to evaluate their support inde-
pendently of the shield shell, simulations of the segment and tail gap filling materials are
carried out. Concurrently, pressure P is applied to the excavation face to emulate the earth
pressure exerted by the shield, facilitating a simulation of the shield construction process.

The initial 3D equilibrium of the surrounding soil may be upset by inadequate or
postponed grouting at the shield tail, which could cause soil displacement in the direction
of the void, tunnel-induced displacement, and surface settling. Synchronous and secondary
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grouting are common engineering practices aimed at reducing surface settlement associated
with shield tail voids. While a small grouting volume can partially counteract soil settle-
ment, an excessive volume may result in ground uplift. Figure 10 shows the results of the
FEM simulations used to assess the link between grouting volume and surface settlement at
different filling rates (ψ). The findings show a linear relationship between lower maximum
surface settlement and higher grout filling rates.
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Table 5 provides specifics on the soil layer as well as the mechanical and physical charac-
teristics of the slurry and segments used in the K18 + 288.163 tunnel section computations.

Table 5. The mechanical parameters of the materials of the structural components.

Structural
Element

Unit Weight
(kN/m3)

Modulus of
Elasticity (MPa) Poisson Ratio Construction

Technique

Duct piece 26 20.4 × 103 0.2 C50 reinforced concrete
Soft slurry 21 1.0 0.3 Cement slurry

Sclerosis slurry 21 50 0.25 Cement slurry

Synchronous or secondary grouting is extensively employed in engineering to mitigate
ground settlement resulting from shield tail gaps. While a limited grouting volume can
lead to partial ground subsidence, an excessive volume may induce ground heave. The
specific filling rates, denoted by ψ, are calculated using the finite element method at 10%,
30%, 55%, 79%, 100%, 120%, 150%, and 170%. The summarized findings, as depicted
in Figure 10, show that when the grouting filling rate increases, the maximum ground
settlement decreases and may result in ground uplift. The relationship between these
variables is fundamentally logarithmic, and the fitting relationship is as follows. The
computational findings show that ground settlement is significantly impacted by the
grouting rate at the shield tail, highlighting the importance of enhancing the filling rate at
the shield tail as a key strategy to reduce ground subsidence.

S(ψ) = 15.832In(ψ)− 85.671, (6)
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where ψ represents the grout filling rates; S(ψ) represents the maximum ground
surface settlement.

4. Discussion
4.1. Comparisons Between the Measured Surface Settlements and Different Calculation Methods

The numerical predictions were juxtaposed with field measurements at section K18
+ 048.163, as depicted in Figure 11a. The highest surface settlement (Smax) of 7.82 mm, as
determined using the numerical model, is only 27.1% (1.67 mm) greater than the measured
value of 6.15 mm. Discrepancies are evident, with the actual ground movement at the
observation point exhibiting a more intricate pattern than the simulations, characterized by
occasional “up and down” fluctuations rather than a smooth, consistent trend. Furthermore,
there is a 0 m deviation between the observed data’s symmetry axis and the tunnel axis
(origin in the diagram).
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Figure 11b illustrates the transverse settlement curves at K18 + 192.163 during the
shield machine’s advancement to the 403rd ring. Despite minor anomalies in the measured
curve, the three curves are broadly similar in shape and terminal values. For every curve
shown in Figure 11b, the maximum surface settlement (Smax), trough width parameter (i),
and volume loss (Vs) were determined using Equation (2).
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In section K18 + 288.163, presented in Figure 11c, the maximum settlement reached
8.61 mm as the shield machine progressed to the 483rd ring. The measured settlement
trough curve exhibits approximate symmetry with respect to the tunnel’s central line.
However, it displays fluctuations around the stability line, with occasional instances of
“ground rebound.” The left-hand measurement stations, which were over 10 m from the
tunnel’s center line, were notable for exhibiting a notable “heave” phenomenon.

4.2. The Influence Factors of Surface Settlement in Shield Tunneling

Several factors affect surface settlement when building shield tunnels, which this study
examines individually using the Finite Element Method (FEM). Typically, surface settlement
increases progressively with shield advancement (Figure 5); however, it decreases as one
moves farther away from the tunnel’s axis (Figure 3). For a constant excavation radius,
a greater overburden thickness leads to a wider settlement trough and, consequently, a
reduced maximum surface settlement (Figure 6). In essence, an increased overburden
thickness extends the area affected by surface settlement. A linear correlation is observed
between surface settlement increase and the shield’s outer diameter, assuming a constant
overburden thickness (Figures 7 and 8). Specifically, a larger excavation radius, for a given
overburden thickness, results in greater soil loss per unit length and a more pronounced
maximum ground settlement. The study’s calculations indicate that the grout filling rate
at the shield tail significantly impacts surface settlement, with an increased fill rate being
crucial for mitigating settlement (Figure 11).

In addition to excavation circumstances, the mechanical and physical characteristics of
the tunnel’s foundation have a major impact on surface settlement brought on by tunneling.
Figure 12 illustrates the surface settlement in the transverse direction for varying foundation
deformation moduli, with all curves exhibiting a similar pattern. However, the maximum
settlement values vary, with the highest being 2.75 times the lowest value, as depicted in
Figure 12. This variation is attributed to the increased grouting volume resulting from the
injection pipe.
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5. Conclusions
Using an upgraded FEM model in combination with the Midas GTS software, this

study provides a thorough investigation of ground surface settlements related to the
building of a large-diameter shield-driven tunnel for Shenyang Subway Line 2. The
geological layers of Shenyang Subway Line 2 were incorporated into a computer model
that was created to simulate the sequential construction of a 24 m tunnel through three
separate segments. The model’s simulated surface settlements correlated more closely
with the actual measurements than those predicted using the Peck empirical formula.
The findings reveal that maximum settlement typically occurs at approximately twice
the equivalent diameter behind the excavation face. Surface settlement was inversely
proportional to the overburden thickness (H), the soil’s elastic modulus (E), and shield
tail grout filling rate (ψ), and directly proportional to the shield’s outer diameter (D).
When H is equal to 10 m, 14 m, 18 m, and 22 m (section K18 + 288.163), the maximum
settlement increases to −14.34 mm, −14.89 mm, −15.17 mm, and −16.41 mm. When E
is equal to 23.4 MPa, 117.0 MPa, and 234.0 MPa (section K18 + 288.163), the maximum
settlement increases to −3.18 mm, −4.73 mm, and −8.76 mm. This study suggests that
increasing overburden soil thickness and reducing the excavation’s outer diameter are
effective strategies for mitigating surface settlement. In practice, surface settlement can
be managed by soil reinforcement, and enhancing the shield tail filling rate is crucial for
minimizing ground subsidence. For sections with stringent settlement requirements, slurry
filling can be employed to reduce ground settlement. The developed model provides a
valuable reference for understanding surface settlements along Shenyang Subway Line
2 and serves as a predictive tool for simulating and estimating surface settlements under
various construction conditions in similar geotechnical engineering projects.

In numerical calculations, finer mesh sizes result in more complex computations, neces-
sitating longer processing times and higher computer performance. Given the constraints of
our computer’s capabilities, the model presented here is of a smaller scale. It is anticipated
that with advancements in computer performance, it will be possible to simulate a broader
range of settlements, potentially covering the entire subway line. Accurately simulating
the detailed excavation process of the shield, post-wall grouting, shoring, reinforcement,
and interactions with adjacent structure foundations remain challenging. Therefore, future
studies should aim to refine the model to address these limitations.
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