The Impact of Building and Green Space Combination on Urban Thermal Environment Based on Three-Dimensional Landscape Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Functional Urban Zoning
2.2.2. Selection and Calculation of Landscape Pattern Indices
2.2.3. Surface Temperature Retrieval
2.2.4. Identification of Hot/Cold Spot
2.3. Statistical Analysis
2.4. Random Forest Algorithm
3. Results
3.1. Spatial Pattern of Land Surface Temperature (LST)
3.2. Relationship Between LST and Landscape Pattern Indices
3.3. Spatial Interaction Between LST and Landscape Pattern Indices by RF Algorithm
3.4. Relationship Between LST and Parameters at the Scale of Temperature Classes
4. Discussion
4.1. Spatial Pattern of Surface Temperature
4.2. The Impact of Landscape Pattern Indices on Surface Temperature
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviation | Fullname | Unit |
---|---|---|
LST | land surface temperature | °C |
UFZ | Urban Functional Zone | None |
RF | Random Forest | None |
URZ | Urban Residential Zone | None |
UVZ | Urban Village Zone | None |
COZ | Commercial Zone | None |
MUZ | Municipal Utilities Zone | None |
IWZ | Industrial Warehouse Zone | None |
NDVI | Normalized Difference Vegetation Index | None |
NDBI | Normalized Difference Building Index | None |
BCR | Building Coverage Ratio | None |
FAR | Floor Area Ratio | None |
SkyVF | Sky View Factor | None |
SunVF | Sun View Factor | None |
References
- Sun, L.; Chen, J.; Li, Q.; Huang, D. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun. 2020, 11, 5366. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Liu, X.; Zhou, Y.; Liu, Y. Impacts of urban configuration on urban heat island: An empirical study in China mega-cities. Sci. Total Environ. 2019, 671, 1036–1046. [Google Scholar] [CrossRef]
- McCarthy, M.P.; Best, M.J.; Betts, R.A. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. 2010, 37, L09705. [Google Scholar] [CrossRef]
- Guo, L.; Di, L.; Zhang, C.; Lin, L.; Chen, F.; Molla, A. Evaluating contributions of urbanization and global climate change to urban land surface temperature change: A case study in Lagos, Nigeria. Sci. Rep. 2022, 12, 14168. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Liu, J. Nonlinear and spatial spillover effects of urbanization on air pollution and ecological resilience in the Yellow River Basin. Environ. Sci. Pollut. Res. 2023, 30, 43229–43244. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Fang, C.; Liao, X.; Guo, X.; Liu, Z. The relationship between urbanization and air pollution affected by intercity factor mobility: A case of the Yangtze River Delta region. Environ. Impact Assess. Rev. 2023, 100, 7092. [Google Scholar] [CrossRef]
- Zhao, J.J.; Shi, X.C.; Wang, K.L.; Yu, W.H.; Yin, H.C. The Influence of Land Intensive Use and Urbanization to Air Pollution: Evidence from China. In Proceedings of the 2017 3rd International Conference on Energy, Environment and Materials Science (EEMS), Northwestern Polytechnical University, Singapore, 28–30 July 2017. [Google Scholar]
- Wang, H.; Shi, Y.; Zhang, A.; Cao, Y.; Liu, H. Does Suburbanization Cause Ecological Deterioration? An Empirical Analysis of Shanghai, China. Sustainability 2017, 9, 124. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.-c.; Destech Publicat, I. Study on Ecological Environmental Problems and Their Countermeasures in the Process of Rural Urbanization. In Proceedings of the International Conference on Environmental Science and Engineering (ESE), Guilin, China, 15–17 April 2016; pp. 822–827. [Google Scholar]
- Li, G.; Zhang, X.; Mirzaei, P.A.; Zhang, J.; Zhao, Z. Urban heat island effect of a typical valley city in China: Responds to the global warming and rapid urbanization. Sustain. Cities Soc. 2018, 38, 736–745. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Wu, D. Impact of Rapid Urbanization on Urban Heat Island Effect in a Typical Valley-City. In Proceedings of the 25th International Conference on Geoinformatics, Buffalo, NY, USA, 2–4 August 2017. [Google Scholar]
- Oke, T.R. The energetic basis of the urban heat-island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Jalali, Z.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Donn, M.; Almhafdy, A.; Walker, C.; Berardi, U. What we know and do not know about New Zealand’s urban microclimate: A critical review. Energy Build. 2022, 274, 112430. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 2019, 174, 407–419. [Google Scholar] [CrossRef]
- Singh, M.; Sharston, R. Quantifying the dualistic nature of urban heat Island effect (UHI) on building energy consumption. Energ. Build. 2022, 255, 111649. [Google Scholar] [CrossRef]
- Singh, M.; Sharston, R. Normalized urban heat island (UHI) indicators: Classifying the temporal variation of UHI for building energy simulation (BES) applications. Build. Simul. 2023, 16, 1645–1658. [Google Scholar] [CrossRef]
- Rossi, F.; Bonamente, E.; Nicolini, A.; Anderini, E.; Cotana, F. A carbon footprint and energy consumption assessment methodology for UHI-affected lighting systems in built areas. Energy Build. 2016, 114, 96–103. [Google Scholar] [CrossRef]
- Roxon, J.; Ulm, F.J.; Pellenq, R.J.M. Urban heat island impact on state residential energy cost and CO2 emissions in the United States. Urban Clim. 2020, 31, 100546. [Google Scholar] [CrossRef]
- Arnberger, A.; Allex, B.; Eder, R.; Ebenberger, M.; Wanka, A.; Kolland, F.; Wallner, P.; Hutter, H.-P. Elderly resident’s uses of and preferences for urban green spaces during heat periods. Urban For. Urban Green. 2017, 21, 102–115. [Google Scholar] [CrossRef]
- Cai, J.; Tan, W.; Yan, B. The Structure of Urban Green Space System to tackle Heat-island Effect. Res. J. Chem. Environ. 2011, 15, 755–758. [Google Scholar]
- Chun, B.; Guldmann, J.-M. Impact of greening on the urban heat island: Seasonal variations and mitigation strategies. Comput. Environ. Urban Syst. 2018, 71, 165–176. [Google Scholar] [CrossRef]
- Mukherjee, M.; Takara, K. Urban green space as a countermeasure to increasing urban risk and the UGS-3CC resilience framework. Int. J. Disaster Risk Reduct. 2018, 28, 854–861. [Google Scholar] [CrossRef]
- Huang, M.; Cui, P.; He, X. Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect. Sustainability 2018, 10, 1101. [Google Scholar] [CrossRef]
- Lin, J.; Qiu, S.; Tan, X.; Zhuang, Y. Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods. Build. Environ. 2023, 228, 109910. [Google Scholar] [CrossRef]
- Na, N.; Lou, D.; Xu, D.; Ni, X.; Liu, Y.; Wang, H. Measuring the cooling effects of green cover on urban heat island effects using Landsat satellite imagery. Int. J. Digit. Earth 2024, 17, 2358867. [Google Scholar] [CrossRef]
- Xu, C.; Wang, W.; Zhu, H. Spatial Gradient Differences in the Cooling Island Effect and Influencing Factors of Urban Park Green Spaces in Beijing. Buildings 2024, 14, 1206. [Google Scholar] [CrossRef]
- Moon, S.-Y.; Kim, J.; Chong, W.K.O.; Ariaratnam, S.T. Urban Green Space Layouts and Urban Heat Island: Case Study on Apartment Complexes in South Korea. J. Urban Plan. Dev. 2018, 144, 04018004. [Google Scholar] [CrossRef]
- Liu, J.; Wu, J.; Yang, Y.; Zhang, B.; Yin, L. Exploring the spatiotemporal impacts of urban green space patterns on the core area of urban heat island. Ecol. Indic. 2024, 166, 112254. [Google Scholar] [CrossRef]
- Lin, A.; Wu, H.; Luo, W.; Fan, K.; Liu, H. How does urban heat island differ across urban functional zones? Insights from 2D/3D urban morphology using geospatial big data. Urban Clim. 2024, 53, 101787. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, H.; Han, L.; Zhang, H.; Peng, J.; Yao, X. Day and night: Impact of 2D/3D urban features on land surface temperature and their spatiotemporal non-stationary relationships in urban building spaces. Sustain. Cities Soc. 2024, 108, 105507. [Google Scholar] [CrossRef]
- Wang, Y.; He, Z.; Zhai, W.; Wang, S.; Zhao, C. How do the 3D urban morphological characteristics spatiotemporally affect the urban thermal environment? A case study of San Antonio. Build. Environ. 2024, 261, 111738. [Google Scholar] [CrossRef]
- Guo, A.D.; Yue, W.Z.; Yang, J.; He, T.T.; Zhang, M.X.; Li, M.M. Divergent impact of urban 2D/3D morphology on thermal environment along urban gradients. Urban Clim. 2022, 45, 101278. [Google Scholar] [CrossRef]
- Chen, X.T.; Wang, Z.T.; Bao, Y.; Luo, Q.Y.; Wei, W.F. Combined impacts of buildings and urban remnant mountains on thermal environment in multi-mountainous city. Sustain. Cities Soc. 2022, 87, 104247. [Google Scholar] [CrossRef]
- Lin, J.; Wei, K.; Guan, Z. Exploring the connection between morphological characteristic of built-up areas and surface heat islands based on MSPA. Urban Clim. 2024, 53, 101764. [Google Scholar] [CrossRef]
- Das, A.; Saha, P.; Dasgupta, R.; Inacio, M.; Das, M.; Pereira, P. How Do the Dynamics of Urbanization Affect the Thermal Environment? A Case from an Urban Agglomeration in Lower Gangetic Plain (India). Sustainability 2024, 16, 1147. [Google Scholar] [CrossRef]
- Al Shawabkeh, R.; AlHaddad, M.; Al-Fugara, A.k.; Al-Hawwari, L.; Al-Hawwari, M.I.; Omoush, A.; Arar, M. Modeling the impact of urban land cover features and changes on the land surface temperature (LST): The case of Jordan. Ain. Shams Eng. J. 2024, 15, 102359. [Google Scholar] [CrossRef]
- Xu, N.; Luo, J.C.; Wu, T.J.; Dong, W.; Liu, W.; Zhou, N. Identification and Portrait of Urban Functional Zones Based on Multisource Heterogeneous Data and Ensemble Learning. Remote Sens. 2021, 13, 373. [Google Scholar] [CrossRef]
- Sun, R.; Lü, Y.; Chen, L.; Yang, L.; Chen, A. Assessing the stability of annual temperatures for different urban functional zones. Build. Environ. 2013, 65, 90–98. [Google Scholar] [CrossRef]
- Huang, X.; Li, L.; Yan, X.; Ji, W.; Zhao, K.; Zhao, X. Assessment of heat exposure risk for urban populations and spatio-temporal patterns: A perspective of urban functional zones in Xi’an, China. Urban Clim. 2024, 55, 101992. [Google Scholar] [CrossRef]
- Liu, Y.F.; Zhang, W.J.; Liu, W.K.; Tan, Z.Z.; Hu, S.; Ao, Z.R.; Li, J.J.; Xing, H.F. Exploring the seasonal effects of urban morphology on land surface temperature in urban functional zones. Sustain. Cities Soc. 2024, 103, 105268. [Google Scholar] [CrossRef]
- Mo, Y.; Bao, Y.; Wang, Z.; Wei, W.; Chen, X. Spatial coupling relationship between architectural landscape characteristics and urban heat island in different urban functional zones. Build. Environ. 2024, 257, 111545. [Google Scholar] [CrossRef]
- Chen, J.; Wang, K.; Du, P.; Zang, Y.; Zhang, P.; Xia, J.; Chen, C.; Yu, Z. Quantifying the main and interactive effects of the dominant factors on the diurnal cycles of land surface temperature in typical urban functional zones. Sustain. Cities Soc. 2024, 114, 105727. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Scarano, M.; Mancini, F. Assessing the relationship between sky view factor and land surface temperature to the spatial resolution. Int. J. Remote Sens. 2017, 38, 6910–6929. [Google Scholar] [CrossRef]
- Scarano, M.; Sobrino, J.A. On the relationship between the sky view factor and the land surface temperature derived by Landsat-8 images in Bari, Italy. Int. J. Remote Sens. 2015, 36, 4820–4835. [Google Scholar] [CrossRef]
- Wu, Z.; Yao, L.; Ren, Y. Characterizing the spatial heterogeneity and controlling factors of land surface temperature clusters: A case study in Beijing. Build. Environ. 2020, 169, 106598. [Google Scholar] [CrossRef]
- Güller, C.; Toy, S. The Impacts of Urban Morphology on Urban Heat Islands in Housing Areas: The Case of Erzurum, Turkey. Sustainability 2024, 16, 791. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Pardo-Iguzquiza, E.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 515–527. [Google Scholar] [CrossRef]
- Kebede, T.A.; Hailu, B.T.; Suryabhagavan, K.V. Evaluation of spectral built-up indices for impervious surface extraction using Sentinel-2A MSI imageries: A case of Addis Ababa city, Ethiopia. Environ. Chall. 2022, 8, 100568. [Google Scholar] [CrossRef]
- Jaiswal, T.; Jhariya, D.C.; Sahu, M. Variability in land surface temperature concerning escalating urban development using thermal data of Landsat sensor: A case study of Lower Kharun Catchment, Chhattisgarh, India. Meas. Sens. 2024, 35, 101290. [Google Scholar] [CrossRef]
- Pradeep Kumar, B.; Anusha, B.N.; Raghu Babu, K.; Padma Sree, P. Identification of climate change impact and thermal comfort zones in semi-arid regions of AP, India using LST and NDBI techniques. J. Clean. Prod. 2023, 407, 137175. [Google Scholar] [CrossRef]
- Robinson, A.H. The necessity of weighting values in correlation analysis of areal data. Ann. Assoc. Am. Geogr. 1956, 46, 233–236. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Johnsson, T. A procedure for stepwise regression analysis. Stat. Pap. 1992, 33, 21–29. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Peng, W.; Wang, R.; Duan, J.; Gao, W.; Fan, Z. Surface and canopy urban heat islands: Does urban morphology result in the spatiotemporal differences? Urban Clim. 2022, 42, 101136. [Google Scholar] [CrossRef]
- Primajaya, A.; Sari, B.N. Random forest algorithm for prediction of precipitation. Indones. J. Artif. Intell. Data Min. 2018, 1, 27–31. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Han, L. Quantifying the nonlinear relationship between block morphology and the surrounding thermal environment using random forest method. Sustain. Cities Soc. 2023, 91, 104443. [Google Scholar] [CrossRef]
- Wang, J.L.; Yang, Y.Z.; Zu, J.X.; Cai, W.H.; Yang, J. Investigating the spatial interaction between urban expansion and the regional thermal environment in Guangxi Beibu Gulf urban agglomeration of China. Phys. Chem. Earth 2024, 135, 103666. [Google Scholar] [CrossRef]
- Ke, X.; Men, H.; Zhou, T.; Li, Z.; Zhu, F. Variance of the impact of urban green space on the urban heat island effect among different urban functional zones: A case study in Wuhan. Urban For. Urban Green. 2021, 62, 127159. [Google Scholar] [CrossRef]
- Zhang, Y.; Middel, A.; Turner, B.L. Evaluating the effect of 3D urban form on neighborhood land surface temperature using Google Street View and geographically weighted regression. Landsc. Ecol. 2019, 34, 681–697. [Google Scholar] [CrossRef]
- Ding, Z.; Gu, J.; Zeng, D.; Wang, X. Effects of ’Inhaling’ and ’Exhaling’ of buildings in three-dimensional built environment on Land Surface Temperature. Build. Environ. 2023, 246, 110930. [Google Scholar] [CrossRef]
- Meng, Q.Y.; Liu, W.X.; Zhang, L.N.; Allam, M.; Bi, Y.X.; Hu, X.L.; Gao, J.F.; Hu, D.; Jancsó, T. Relationships between Land Surface Temperatures and Neighboring Environment in Highly Urbanized Areas: Seasonal and Scale Effects Analyses of Beijing, China. Remote Sens. 2022, 14, 4340. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 2015, 90, 146–156. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E.; An, X.; Ren, C.; Lee, M.; Wang, U.; He, Z. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. Int. J. Climatol. 2012, 32, 121–136. [Google Scholar] [CrossRef]
Type | Name | Description |
---|---|---|
1 | Normalized Difference Vegetation Index (NDVI) | NDVI = Band 4 and band 5: red and near infra-red bands of Landsat 8 OLI image, respectively. The Normalized Difference Vegetation Index (NDVI) quantifies vegetation by measuring the difference between near-infrared (strong vegetation reflection) and red light (vegetation absorption). |
2 | Normalized Difference Building Index (NDBI) | NDVI = Band 5 and band 6: near infra-red bands and middle infra-red of Landsat 8 OLI image, respectively. The Normalized Difference Building Index (NDBI) is a remote sensing feature index that describes urbanization intensity information. |
3 | Building Coverage Ratio (BCR) | BCR = F: the land area of the building taken; A: the study area. Building coverage ratio (BCR) is used to reflect the ratio of building base area to plot area. |
4 | Floor Area Ratio (FAR) | FAR = C: number of floors; F: the land area of the building taken; A: the study area. Floor Area Ratio (FAR) is used to reflect the ratio of the total building area above ground to the land area. |
5 | Sky View Factor (SkyVF) | SkyVF = B: the binary image of shadow patterns; n: the total number of shadow images generated; αi: the altitude angle at the ith annulus level; βi: the azimuth angle used at the ith annulus level. Sky View Factor (SkyVF) is commonly used to measure the degree to which radiation transmission at a specific location is blocked. This project uses the UMEP plugin of QGIS Desktop 3.16.11 software to calculate the sky viewing angle. |
6 | Sun View Factor (SunVF) | S = SunVF = P: transmittance of atmosphere; n: the total number of time steps; I0: the solar constant with a value of 1367 W/m2; αi: the altitude angle at the ith annulus level; βi: the azimuth angle used at the ith annulus level; S: the total direct solar radiation incident on the target point. Sun View Factor (SunVF) considered that the aforementioned sky view angle did not take into account the orientation of the sun when describing incident solar radiation, and Wu et al. [46] developed a sun view angle. |
LST | Regression Model | R2 | SE |
---|---|---|---|
CLASS 1 | TURZ = −5.353NDVI + 35.535 | 0.190 | 0.893 |
CLASS 2 | TURZ = 4.400NDVI + 8.599NDBI + 36.591 | 0.126 | 0.696 |
CLASS 3 | TURZ = −1.370SkyVF + 8.262NDBI + 37.493 | 0.322 | 0.704 |
CLASS 4 | TURZ = −0.053FAR + 8.670NDBI + 37.943 | 0.395 | 0.789 |
CLASS 1 | TUVZ = −3.642NDVI + 1.732FAR − 14.212SunVF + 48.871 | 0.791 | 0.912 |
CLASS 2 | TUVZ = −3.432SkyVF + 9.079NDBI + 37.797 | 0.718 | 0.75 |
CLASS 3 | TUVZ = 6.711NDBI + 37.812 | 0.393 | 0.519 |
CLASS 4 | TUVZ = −3.903NDVI + 37.479 | 0.349 | 0.592 |
CLASS 1 | TCOZ = 3.722NDBI + 0.842BCR − 1.766NDVI − 0.049FAR + 35.431 | 0.383 | 0.793 |
CLASS 2 | TCOZ = 6.065NDBI − 0.024FAR + 36.685 | 0.201 | 0.835 |
CLASS 3 | TCOZ = 9.603NDBI + 7.168SunVF + 31.556 | 0.347 | 0.878 |
CLASS 4 | TCOZ = 4.540NDBI − 2.077SunVF + 38.253 | 0.229 | 1.012 |
CLASS 1 | TMUZ = −1.192NDVI − 0.650SkyVF + 35.546 | 0.132 | 0.331 |
CLASS 2 | TMUZ = −0.556BCR + 36.257 | 0.072 | 0.256 |
CLASS 3 | TMUZ = −12.346SunVF + 48.543 | 0.153 | 1.187 |
CLASS 4 | TMUZ = −1.278NDVI + 2.508NDBI + 0.613BCR + 38.297 | 0.211 | 0.284 |
CLASS 1 | TIWZ = −1.546NDVI + 36.924 | 0.093 | 0.429 |
CLASS 2 | TIWZ = −1.126NDVI + 0.031FAR + 37.383 | 0.22 | 0.265 |
CLASS 3 | TIWZ = 3.101SkyVF + 37.683 | 0.212 | 0.91 |
CLASS 4 | TIWZ = 2.362NDBI + 39.244 | 0.114 | 1.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ren, Y.; Zheng, X.; Wu, Z. The Impact of Building and Green Space Combination on Urban Thermal Environment Based on Three-Dimensional Landscape Index. Sustainability 2025, 17, 241. https://doi.org/10.3390/su17010241
Wang Y, Ren Y, Zheng X, Wu Z. The Impact of Building and Green Space Combination on Urban Thermal Environment Based on Three-Dimensional Landscape Index. Sustainability. 2025; 17(1):241. https://doi.org/10.3390/su17010241
Chicago/Turabian StyleWang, Ying, Yin Ren, Xiaoman Zheng, and Zhifeng Wu. 2025. "The Impact of Building and Green Space Combination on Urban Thermal Environment Based on Three-Dimensional Landscape Index" Sustainability 17, no. 1: 241. https://doi.org/10.3390/su17010241
APA StyleWang, Y., Ren, Y., Zheng, X., & Wu, Z. (2025). The Impact of Building and Green Space Combination on Urban Thermal Environment Based on Three-Dimensional Landscape Index. Sustainability, 17(1), 241. https://doi.org/10.3390/su17010241