Bioremediation Potential of Sunflower-Derived Biosurfactants: A Bibliometric Description
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Overview of Articles
3.2. Biosurfactant Production from Sunflowers
3.2.1. Sunflower Substrates
3.2.2. Selected Microorganisms
3.2.3. Fermentation Type
3.3. Bioremediation Applications
3.3.1. Bioremediation in Soil Samples
3.3.2. Bioremediation in Water Samples
3.3.3. Bioremediation in Liquid Effluent Samples
3.4. Bibliometric Analysis
3.4.1. Journals
3.4.2. Publications by Country
3.4.3. Most Cited Articles
3.4.4. Keywords
3.4.5. Most Productive Institutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, P.; Gaur, V.K.; Gupta, S.; Varjani, S.; Pandey, A.; Gnansounou, E.; You, S.; Ngo, H.H.; Wong, J.W.C. Trends in Mitigation of Industrial Waste: Global Health Hazards, Environmental Implications and Waste Derived Economy for Environmental Sustainability. Sci. Total Environ. 2022, 811, 152357. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, T.; Govindarajan, R.K.; Vinayagam, S.; Krishnan, V.; Nagarajan, S.; Gnanasekaran, G.R.; Baek, K.-H.; Rajamani Sekar, S.K. Advancements in Biosurfactant Production Using Agro-Industrial Waste for Industrial and Environmental Applications. Front. Microbiol. 2024, 15, 1357302. [Google Scholar] [CrossRef] [PubMed]
- Vieira, I.M.M.; Santos, B.L.P.; Santos, C.V.M.; Ruzene, D.S.; Silva, D.P. Valorization of Pineapple Waste: A Review on How the Fruit’s Potential Can Reduce Residue Generation. Bioenergy Res. 2022, 15, 924–934. [Google Scholar] [CrossRef]
- da Silva Marinho, P.S.; da Silva, R.R.; de Luna, J.M. Biossurfactantes Microbianos e Aplicações Ambientais: Uma Revisão Narrativa. Res. Soc. Dev. 2022, 11, e103111234123. [Google Scholar] [CrossRef]
- Das, S.; Rao, K.V.B. A Comprehensive Review of Biosurfactant Production and Its Uses in the Pharmaceutical Industry. Arch. Microbiol. 2024, 206, 60. [Google Scholar] [CrossRef]
- Nikolova, C.; Gutierrez, T. Biosurfactants and Their Applications in the Oil and Gas Industry: Current State of Knowledge and Future Perspectives. Front. Bioeng. Biotechnol. 2021, 9, 626639. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Varjani, S.; Taherzadeh, M.J.; Chang, J.-S.; Yong Ng, H.; Wong, J.W.C.; Kim, S.-H. Production of Biosurfactants from Agro-Industrial Waste and Waste Cooking Oil in a Circular Bioeconomy: An Overview. Bioresour. Technol. 2022, 343, 126059. [Google Scholar] [CrossRef]
- Liepins, J.; Balina, K.; Soloha, R.; Berzina, I.; Lukasa, L.K.; Dace, E. Glycolipid Biosurfactant Production from Waste Cooking Oils by Yeast: Review of Substrates, Producers and Products. Fermentation 2021, 7, 136. [Google Scholar] [CrossRef]
- Vieira, I.M.M.; Santos, B.L.P.; Ruzene, D.S.; Silva, D.P. An Overview of Current Research and Developments in Biosurfactants. J. Ind. Eng. Chem. 2021, 100, 1–18. [Google Scholar] [CrossRef]
- Bouassida, M.; Mnif, I.; Hammami, I.; Triki, M.-A.; Ghribi, D. Bacillus subtilis SPB1 Lipopeptide Biosurfactant: Antibacterial Efficiency against the Phytopathogenic Bacteria Agrobacterium tumefaciens and Compared Production in Submerged and Solid State Fermentation Systems. Food Sci. Biotechnol. 2023, 32, 1595–1609. [Google Scholar] [CrossRef]
- Jimoh, A.A.; Lin, J. Biosurfactant: A New Frontier for Greener Technology and Environmental Sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. [Google Scholar] [CrossRef] [PubMed]
- Perfumo, A.; Rudden, M.; Smyth, T.J.P.; Marchant, R.; Stevenson, P.S.; Parry, N.J.; Banat, I.M. Rhamnolipids Are Conserved Biosurfactants Molecules: Implications for Their Biotechnological Potential. Appl. Microbiol. Biotechnol. 2013, 97, 7297–7306. [Google Scholar] [CrossRef] [PubMed]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; Rtimi, S. Preparation, Characterization and Application of Biosurfactant in Various Industries: A Critical Review on Progress, Challenges and Perspectives. Environ. Technol. Innov. 2021, 24, 102090. [Google Scholar] [CrossRef]
- Pardhi, D.S.; Panchal, R.R.; Raval, V.H.; Joshi, R.G.; Poczai, P.; Almalki, W.H.; Rajput, K.N. Microbial Surfactants: A Journey from Fundamentals to Recent Advances. Front. Microbiol. 2022, 13, 982603. [Google Scholar] [CrossRef]
- Santos, B.L.P.; Vieira, I.M.M.; Ruzene, D.S.; Silva, D.P. Unlocking the Potential of Biosurfactants: Production, Applications, Market Challenges, and Opportunities for Agro-Industrial Waste Valorization. Environ. Res. 2024, 244, 117879. [Google Scholar] [CrossRef]
- Dierickx, S.; Castelein, M.; Remmery, J.; De Clercq, V.; Lodens, S.; Baccile, N.; De Maeseneire, S.L.; Roelants, S.L.K.W.; Soetaert, W.K. From Bumblebee to Bioeconomy: Recent Developments and Perspectives for Sophorolipid Biosynthesis. Biotechnol. Adv. 2022, 54, 107788. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Koul, Y.; Varjani, S.; Pandey, A.; Ngo, H.H.; Chang, J.-S.; Wong, J.W.C.; Bui, X.-T. A Critical Review on Various Feedstocks as Sustainable Substrates for Biosurfactants Production: A Way towards Cleaner Production. Microb. Cell Factories 2021, 20, 120. [Google Scholar] [CrossRef]
- Prado, A.A.O.S.; Santos, B.L.P.; Vieira, I.M.M.; Ramos, L.C.; de Souza, R.R.; Silva, D.P.; Ruzene, D.S. Evaluation of a New Strategy in the Elaboration of Culture Media to Produce Surfactin from Hemicellulosic Corncob Liquor. Biotechnol. Rep. 2019, 24, e00364. [Google Scholar] [CrossRef]
- Siddeeg, S.M.; Tahoon, M.A.; Ben Rebah, F. Agro-Industrial Waste Materials and Wastewater as Growth Media for Microbial Bioflocculants Production: A Review. Mater. Res. Express 2020, 7, 012001. [Google Scholar] [CrossRef]
- Kee, S.H.; Ganeson, K.; Rashid, N.F.M.; Yatim, A.F.M.; Vigneswari, S.; Amirul, A.-A.A.; Ramakrishna, S.; Bhubalan, K. A Review on Biorefining of Palm Oil and Sugar Cane Agro-Industrial Residues by Bacteria into Commercially Viable Bioplastics and Biosurfactants. Fuel 2022, 321, 124039. [Google Scholar] [CrossRef]
- Domínguez Rivera, Á.; Martínez Urbina, M.Á.; López y López, V.E. Advances on Research in the Use of Agro-Industrial Waste in Biosurfactant Production. World J. Microbiol. Biotechnol. 2019, 35, 155. [Google Scholar] [CrossRef] [PubMed]
- Santos, B.L.P.; Jesus, M.S.; Mata, F.; Prado, A.A.O.S.; Vieira, I.M.M.; Ramos, L.C.; López, J.A.; Vaz-Velho, M.; Ruzene, D.S.; Silva, D.P. Use of Agro-Industrial Waste for Biosurfactant Production: A Comparative Study of Hemicellulosic Liquors from Corncobs and Sunflower Stalks. Sustainability 2023, 15, 6341. [Google Scholar] [CrossRef]
- Havrysh, V.; Kalinichenko, A.; Pysarenko, P.; Samojlik, M. Sunflower Residues-Based Biorefinery: Circular Economy Indicators. Processes 2023, 11, 630. [Google Scholar] [CrossRef]
- Puttha, R.; Venkatachalam, K.; Hanpakdeesakul, S.; Wongsa, J.; Parametthanuwat, T.; Srean, P.; Pakeechai, K.; Charoenphun, N. Exploring the Potential of Sunflowers: Agronomy, Applications, and Opportunities within Bio-Circular-Green Economy. Horticulturae 2023, 9, 1079. [Google Scholar] [CrossRef]
- Pantazaki, A.A.; Choli-Papadopoulou, T. On the Thermus Thermophilus HB8 Potential Pathogenicity Triggered from Rhamnolipids Secretion: Morphological Alterations and Cytotoxicity Induced on Fibroblastic Cell Line. Amino Acids 2012, 42, 1913–1926. [Google Scholar] [CrossRef]
- Hamed, S.R.; Al-Wasify, R.S.; Ragab, S. The Production of Biosurfactants by Local Fungi Isolated from Egyptian Soil. ARPN J. Eng. Appl. Sci. 2023, 18, 730–742. [Google Scholar] [CrossRef]
- Albasri, H.M.; Almohammadi, A.A.; Alhhazmi, A.; Bukhari, D.A.; Waznah, M.S.; Mawad, A.M.M. Production and Characterization of Rhamnolipid Biosurfactant from Thermophilic Geobacillus stearothermophilus Bacterium Isolated from Uhud Mountain. Front. Microbiol. 2024, 15, 1358175. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Babalola, O.O. Oilseed Crop Sunflower (Helianthus annuus) as a Source of Food: Nutritional and Health Benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef]
- El-Halmouch, Y.H.; Nasr, E.E.; Al-Sodany, Y.M.; El-Nogoumy, B.A.; Mahmoud, Y.A.G. Biosurfactants Production by Some Aspergilli Species under Solid State Fermentation. Egypt. J. Bot. 2024, 64, 745–764. [Google Scholar] [CrossRef]
- Elazzazy, A.M.; Abdelmoneim, T.S.; Almaghrabi, O.A. Isolation and Characterization of Biosurfactant Production under Extreme Environmental Conditions by Alkali-Halo-Thermophilic Bacteria from Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 466–475. [Google Scholar] [CrossRef]
- Jimoh, A.A.; Lin, J. Enhancement of Paenibacillus Sp. D9 Lipopeptide Biosurfactant Production Through the Optimization of Medium Composition and Its Application for Biodegradation of Hydrophobic Pollutants. Appl. Biochem. Biotechnol. 2019, 187, 724–743. [Google Scholar] [CrossRef] [PubMed]
- Amani, H. Study of Enhanced Oil Recovery by Rhamnolipids in a Homogeneous 2D Micromodel. J. Pet. Sci. Eng. 2015, 128, 212–219. [Google Scholar] [CrossRef]
- Hazra, C.; Kundu, D.; Chaudhari, A. Lipopeptide Biosurfactant from Bacillus Clausii BS02 Using Sunflower Oil Soapstock: Evaluation of High Throughput Screening Methods, Production, Purification, Characterization and Its Insecticidal Activity. RSC Adv. 2015, 5, 2974–2982. [Google Scholar] [CrossRef]
- Ciurko, D.; Czyżnikowska, Ż.; Kancelista, A.; Łaba, W.; Janek, T. Sustainable Production of Biosurfactant from Agro-Industrial Oil Wastes by Bacillus subtilis and Its Potential Application as Antioxidant and ACE Inhibitor. Int. J. Mol. Sci. 2022, 23, 10824. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; Guerra, J.M.C.; Sarubbo, L.A. Potential Food Application of a Biosurfactant Produced by Saccharomyces Cerevisiae URM 6670. Front Bioeng Biotechnol 2020, 8, 434. [Google Scholar] [CrossRef]
- Ibrahim, S.; Diab, A.; Abdulla, H. Bio-Cleaning Efficiency of Rhamnolipids Produced from Native Pseudomonas aeruginosa Grown on Agro-Industrial By-Products for Liquid Detergent Formulation. Appl. Biochem. Biotechnol. 2021, 193, 2616–2633. [Google Scholar] [CrossRef]
- da Silva, R.R.; Santos, J.C.V.; Meira, H.M.; Almeida, S.M.; Sarubbo, L.A.; Luna, J.M. Microbial Biosurfactant: Candida bombicola as a Potential Remediator of Environments Contaminated by Heavy Metals. Microorganisms 2023, 11, 2772. [Google Scholar] [CrossRef]
- Sayed, K.; Baloo, L.; Sharma, N.K. Bioremediation of Total Petroleum Hydrocarbons (Tph) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin. Int. J. Environ. Res. Public Health 2021, 18, 2226. [Google Scholar] [CrossRef]
- Dasgupta, A.; Saha, S.; Ganguli, P.; Das, I.; De, D.; Chaudhuri, S. Characterization of Pumilacidin, a Lipopeptide Biosurfactant Produced from Bacillus Pumilus NITDID1 and Its Prospect in Bioremediation of Hazardous Pollutants. Arch. Microbiol. 2023, 205, 274. [Google Scholar] [CrossRef]
- Vale, K.D.V.; Soares, D.W.F.; da Silva, A.L.B.; Abreu, F.O.M.D.S.; de Oliveira Almeida, J.L.I.; Oliveira, M.R.F.; Reck, L.; Melo, V.M.M.; Alves, D.R.; Alves, C.R. Biossurfactant Production by Isolated Bacteria from Petroleum Industry’s Effluent Targeting Bioremediation. Results Chem. 2023, 6, 101038. [Google Scholar] [CrossRef]
- Durval, I.J.B.; Resende, A.H.M.; Ostendorf, T.A.; Oliveira, K.G.O.; Luna, J.M.; Rufino, R.D.; Sarubbo, L.A. Application of Bacillus Cereus UCP 1615 Biosurfactant for Increase Dispersion and Removal of Motor Oil from Contaminated Sea Water. Chem. Eng. Trans. 2019, 74, 319–324. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; De Luna, J.M.; Rufino, R.D.; Brasileiro, P.P.F. Production of a Low-Cost Biosurfactant for Application in the Remediation of Sea Water Contaminated with Petroleum Derivates. Chem. Eng. Trans. 2016, 49, 523–528. [Google Scholar] [CrossRef]
- Braz, L.M.; Goda, R.T.; Teixeira, J.; de Alencar, R.G.; Giovanni Freschi, G.P.; Brucha, G.; Andrade, G.S.S.; Tambourgi, E.B. Evaluating the Efficiency of Rhamnolipid in Removing Atrazine and 2,4-D from Soil. J. Polym. Environ. 2024, 32, 1672–1683. [Google Scholar] [CrossRef]
- Schalchli, H.; Lamilla, C.; Rubilar, O.; Briceño, G.; Gallardo, F.; Durán, N.; Huenchupan, A.; Diez, M.C. Production and Characterization of a Biosurfactant Produced by Bacillus amyloliquefaciens C11 for Enhancing the Solubility of Pesticides. J. Environ. Chem. Eng. 2023, 11, 111572. [Google Scholar] [CrossRef]
- Wattanaphon, H.T.; Kerdsin, A.; Thammacharoen, C.; Sangvanich, P.; Vangnai, A.S. A Biosurfactant from Burkholderia Cenocepacia BSP3 and Its Enhancement of Pesticide Solubilization. J. Appl. Microbiol. 2008, 105, 416–423. [Google Scholar] [CrossRef]
- Femina Carolin, C.; Kumar, P.S.; Joshiba, G.J.; Madhesh, P.; Ramamurthy, R. Sustainable Strategy for the Enhancement of Hazardous Aromatic Amine Degradation Using Lipopeptide Biosurfactant Isolated from Brevibacterium casei. J. Hazard. Mater. 2021, 408, 124943. [Google Scholar] [CrossRef]
- Fiebig, R.; Schulze, D.; Chung, J.-C.; Lee, S.-T. Biodegradation of Polychlorinated Biphenyls (PCBs) in the Presence of a Bioemulsifier Produced on Sunflower Oil. Biodegradation 1997, 8, 67–75. [Google Scholar] [CrossRef]
- Elsevier Scopus LibGuide: Home. Available online: https://elsevier.libguides.com/Scopus/home (accessed on 17 August 2024).
- El-Housseiny, G.S.; Aboshanab, K.M.; Aboulwafa, M.M.; Hassouna, N.A. Rhamnolipid Production by a Gamma Ray-Induced Pseudomonas aeruginosa Mutant under Solid State Fermentation. AMB Express 2019, 9, 7. [Google Scholar] [CrossRef]
- Wang, H.; Gao, R.; Song, X.; Yuan, X.; Chen, X.; Zhao, Y. Study on the Production of Sophorolipid by Starmerella bombicola Yeast Using Fried Waste Oil Fermentation. Biosci. Rep. 2024, 44, BSR20230345. [Google Scholar] [CrossRef]
- Waltman, L.; Van Eck, N.J. VOSviewer Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 17 August 2024).
- Jadhav, M.; Kagalkar, A.; Jadhav, S.; Govindwar, S. Isolation, Characterization, and Antifungal Application of a Biosurfactant Produced by Enterobacter sp. MS16. Eur. J. Lipid Sci. Technol. 2011, 113, 1347–1356. [Google Scholar] [CrossRef]
- Pirog, T.P.; Kliuchka, L.V.; Shevchuk, T.A.; Iutynska, G.O. Destruction of Biofilms on Silicone Tubes under the Action of a Mixture of Nocardia Vaccinii IMV B-7405 Surfactants with Other Biocides. Mikrobiol. Zh. 2021, 83, 43–53. [Google Scholar] [CrossRef]
- Rashad, M.M.; Nooman, M.U.; Ali, M.M.; Al-Kashef, A.S.; Mahmoud, A.E. Production, Characterization and Anticancer Activity of Candida bombicola Sophorolipids by Means of Solid State Fermentation of Sunflower Oil Cake and Soybean Oil. Grasas y Aceites 2014, 65, e017. [Google Scholar] [CrossRef]
- Pirog, T.P.; Nikituk, L.V.; Antonuk, S.I.; Shevchuk, T.A.; Iutynskaya, G.A. Intensification of Acinetobacter Calcoaceticus Imv B-7241 Surfactants Synthesis on Waste Sunflower Oil. Mikrobiol. Zh. 2018, 80, 15–26. [Google Scholar] [CrossRef]
- Ferraz, C.; De Araújo, Á.A.; Pastore, G.M. The Influence of Vegetable Oils on Biosurfactant Production by Serratia Marcescens. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2002, 98–100, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Ianieva, O.D. Characterization, Stability and Antimicrobial Activity of Biosurfactants Produced by Candida Yeasts Isolated from Flowering Plants. Mikrobiol. Zh. 2019, 81, 51–64. [Google Scholar] [CrossRef]
- Hajfarajollah, H.; Mokhtarani, B.; Noghabi, K.A. Newly Antibacterial and Antiadhesive Lipopeptide Biosurfactant Secreted by a Probiotic Strain, Propionibacterium Freudenreichii. Appl. Biochem. Biotechnol. 2014, 174, 2725–2740. [Google Scholar] [CrossRef]
- Vollbrecht, E.; Heckmann, R.; Wray, V.; Nimtz, M.; Lang, S. Production and Structure Elucidation of Di- and Oligosaccharide Lipids (Biosurfactants) from Tsukamurella sp. Nov. Appl. Microbiol. Biotechnol. 1998, 50, 530–537. [Google Scholar] [CrossRef]
- Langer, O.; Palme, O.; Wray, V.; Tokuda, H.; Lang, S. Production and Modification of Bioactive Biosurfactants. Process Biochem. 2006, 41, 2138–2145. [Google Scholar] [CrossRef]
- Bezza, F.A.; Chirwa, E.M.N. Improvement of Biosurfactant Production by Microbial Strains through Supplementation of Hydrophobic Substrates. Chem. Eng. Trans. 2020, 79, 91–96. [Google Scholar] [CrossRef]
- Pantazaki, A.A.; Dimopoulou, M.I.; Simou, O.M.; Pritsa, A.A. Sunflower Seed Oil and Oleic Acid Utilization for the Production of Rhamnolipids by Thermus thermophilus HB8. Appl. Microbiol. Biotechnol. 2010, 88, 939–951. [Google Scholar] [CrossRef]
- Wei, Y.-H.; Chen, W.-C. Enhanced Production of Prodigiosin-like Pigment from Serratia marcescens SMΔR by Medium Improvement and Oil-Supplementation Strategies. J. Biosci. Bioeng. 2005, 99, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Jakovetić, S.M.; Kneževic-Jugovic, Z.D.; Grbavčić, S.Z.; Bezbradica, D.I.; Avramović, N.S.; Karadžić, I.M. Rhamnolipid and Lipase Production by Pseudomonas aeruginosa San-Ai: The Process Comparison Analysis by Statistical Approach | Proizvodnja Ramnolipida i Lipaze Iz Pseudomonas aeruginosa San-Ai: Optimizacija Procesa Primenom Metode Odzivnih Površina. Hem. Ind. 2013, 67, 677–685. [Google Scholar] [CrossRef]
- Velioglu, Z.; Ozturk Urek, R. Optimization of Cultural Conditions for Biosurfactant Production by Pleurotus djamor in Solid State Fermentation. J. Biosci. Bioeng. 2015, 120, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Velioglu, Z.; Ozturk Urek, R. Concurrent Biosurfactant and Ligninolytic Enzyme Production by Pleurotus spp. in Solid-State Fermentation. Appl. Biochem. Biotechnol. 2014, 174, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- De França, Í.W.L.; Lima, A.P.; Lemos, J.A.M.; Lemos, C.G.F.; Melo, V.M.M.; De Sant’ana, H.B.; Gonçalves, L.R.B. Production of a Biosurfactant by Bacillus subtilis ICA56 Aiming Bioremediation of Impacted Soils. Catal. Today 2015, 255, 10–15. [Google Scholar] [CrossRef]
- Jimoh, A.A.; Lin, J. Bioremediation of Contaminated Diesel and Motor Oil through the Optimization of Biosurfactant Produced by Paenibacillus sp. D9 on Waste Canola Oil. Bioremediat. J. 2020, 24, 21–40. [Google Scholar] [CrossRef]
- Velioglu, Z.; Urek, R.O. Physicochemical and Structural Characterization of Biosurfactant Produced by Pleurotus djamor in Solid-State Fermentation. Biotechnol. Bioprocess Eng. 2016, 21, 430–438. [Google Scholar] [CrossRef]
- Bezza, F.A.; Chirwa, E.M.N. Possible Use of Biosurfactant Produced by Microbial Consortium from Contaminated Soil for Microbially Enhanced Oil Recovery. Chem. Eng. Trans. 2017, 57, 1411–1416. [Google Scholar] [CrossRef]
- Xia, W.J.; Luo, Z.B.; Dong, H.P.; Yu, L. Studies of Biosurfactant for Microbial Enhanced Oil Recovery by Using Bacteria Isolated from the Formation Water of a Petroleum Reservoir. Pet. Sci. Technol. 2013, 31, 2311–2317. [Google Scholar] [CrossRef]
- Rashad, M.M.; Al-kashef, A.S.; Nooman, M.U.; Mahmoud, A.E.E. Engco-Utilization of Motor Oil Waste and Sunflower Oil Cake on the Production of New Sophorolipids by Candida bombicola NRRL Y-17069. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 1515–1528. [Google Scholar]
- Minucelli, T.; Ribeiro-Viana, R.M.; Borsato, D.; Andrade, G.; Cely, M.V.T.; de Oliveira, M.R.; Baldo, C.; Celligoi, M.A.P.C. Sophorolipids Production by Candida bombicola ATCC 22214 and Its Potential Application in Soil Bioremediation. Waste Biomass Valorization 2017, 8, 743–753. [Google Scholar] [CrossRef]
- Samadi, S.; Amani, H.; Najafpour, G.D.; Kariminezhad, H.; Banaei, A. Investigating the Potential of Rhamnolipid as an Eco-Friendly Surfactant for Environmental Protection in Oil Spill Clean-Up. Int. J. Environ. Sci. Technol. 2023, 20, 7277–7292. [Google Scholar] [CrossRef]
- Elkhouly, H.I.; Mohamed, H.F.; Hamed, A.A.; Sidkey, N.M. Sequencing of Three Genes from Pseudomonas aeruginosa Responsible for Rhl Production and Application in Pharmaceutical and Bioremediation Fields. Egypt. J. Chem. 2022, 65, 73–86. [Google Scholar] [CrossRef]
- Jayalatha, N.A.; Devatha, C.P. Degradation of Triclosan from Domestic Wastewater by Biosurfactant Produced from Bacillus licheniformis. Mol. Biotechnol. 2019, 61, 674–680. [Google Scholar] [CrossRef]
- Jayalatha, N.A.; Devatha, C.P. Experimental Investigation for Treating Ibuprofen and Triclosan by Biosurfactant from Domestic Wastewater. J. Environ. Manag. 2023, 328, 116913. [Google Scholar] [CrossRef]
- Sonde, R.; Di Vakaran, D. Studies on Bioremediation of Waste Water Containing Lead by Using Biosufactant from Pseudomonas Putida. J. Environ. Sci. Eng. 2017, 59, 289–292. [Google Scholar] [CrossRef]
- Colla, L.M.; Rizzardi, J.; Pinto, M.H.; Reinehr, C.O.; Bertolin, T.E.; Costa, J.A.V. Simultaneous Production of Lipases and Biosurfactants by Submerged and Solid-State Bioprocesses. Bioresour. Technol. 2010, 101, 8308–8314. [Google Scholar] [CrossRef]
- Das, K.; Mukherjee, A.K. Comparison of Lipopeptide Biosurfactants Production by Bacillus subtilis Strains in Submerged and Solid State Fermentation Systems Using a Cheap Carbon Source: Some Industrial Applications of Biosurfactants. Process Biochem. 2007, 42, 1191–1199. [Google Scholar] [CrossRef]
- Chaprão, M.J.; Ferreira, I.N.S.; Correa, P.F.; Rufino, R.D.; Luna, J.M.; Silva, E.J.; Sarubbo, L.A. Application of Bacterial and Yeast Biosurfactants for Enhanced Removal and Biodegradation of Motor Oil from Contaminated Sand. Electron. J. Biotechnol. 2015, 18, 471–479. [Google Scholar] [CrossRef]
- Decesaro, A.; Rempel, A.; Machado, T.S.; Cappellaro, Â.C.; Machado, B.S.; Cechin, I.; Thomé, A.; Colla, L.M. Bacterial Biosurfactant Increases Ex Situ Biodiesel Bioremediation in Clayey Soil. Biodegradation 2021, 32, 389–401. [Google Scholar] [CrossRef]
- Mohd Syahriansyah, U.K.; Hamzah, A. Determination of Optimum Conditions and Stability Study of Biosurfactant Produced by Bacillus subtilis UKMP-4M5 | Penentuan Keadaan Optimum Dan Kajian Kestabilan Biosurfaktan Yang Dihasilkan Oleh Bacillus subtilis UKMP-4M5. Malays. J. Anal. Sci. 2016, 20, 986–1000. [Google Scholar] [CrossRef]
- Tabagari, I.; Varazi, T.; Chokheli, L.; Kurashvili, M.; Pruidze, M.; Khatisashvili, G.; Karpenko, O.; Lubenets, V.; Fragstein und Niemsdorff, P. Enhancement of Spirulina Platensis Remediation Action Using Biosurfactants for Wastewater Treatment. Int. J. Environ. Res. 2022, 16, 14. [Google Scholar] [CrossRef]
- Guo, Q.; Yan, J.; Wen, J.; Hu, Y.; Chen, Y.; Wu, W. Rhamnolipid-Enhanced Aerobic Biodegradation of Triclosan (TCS) by Indigenous Microorganisms in Water-Sediment Systems. Sci. Total Environ. 2016, 571, 1304–1311. [Google Scholar] [CrossRef]
- Poirier, A.; Ozkaya, K.; Gredziak, J.; Talbot, D.; Baccile, N. Heavy Metal Removal from Water Using the Metallogelation Properties of a New Glycolipid Biosurfactant. J. Surfactants Deterg. 2023, 26, 175–184. [Google Scholar] [CrossRef]
- Simões, A.J.A.; Macêdo-Júnior, R.O.; Santos, B.L.P.; Silva, D.P.; Ruzene, D.S. A Bibliometric Study on the Application of Advanced Oxidation Processes for Produced Water Treatment. Water Air Soil. Pollut. 2021, 232, 297. [Google Scholar] [CrossRef]
- Padilla, F.M.; Gallardo, M.; Manzano-Agugliaro, F. Global Trends in Nitrate Leaching Research in the 1960–2017 Period. Sci. Total Environ. 2018, 643, 400–413. [Google Scholar] [CrossRef]
- Redeker, G.A.; Kessler, G.Z.; Kipper, L.M. Lean Information for Lean Communication: Analysis of Concepts, Tools, References, and Terms. Int. J. Inf. Manag. 2019, 47, 31–43. [Google Scholar] [CrossRef]
- Yataganbaba, A.; Kurtbaş, I. A Scientific Approach with Bibliometric Analysis Related to Brick and Tile Drying: A Review. Renew. Sustain. Energy Rev. 2016, 59, 206–224. [Google Scholar] [CrossRef]
- Farooq, R. Mapping the Field of Knowledge Management: A Bibliometric Analysis Using R. VINE J. Inf. Knowl. Manag. Syst. 2023, 53, 1178–1206. [Google Scholar] [CrossRef]
- FAOSTAT Food Balances. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 5 November 2024).
- Geng, Y.; Chen, W.; Liu, Z.; Chiu, A.S.F.; Han, W.; Liu, Z.; Zhong, S.; Qian, Y.; You, W.; Cui, X. A Bibliometric Review: Energy Consumption and Greenhouse Gas Emissions in the Residential Sector. J. Clean. Prod. 2017, 159, 301–316. [Google Scholar] [CrossRef]
- Elsevier Field-Weighted Citation Impact (FWCI) Metrics. Available online: https://helpcenter.pure.elsevier.com/en_US/data-sources-and-integrations/field-weighted-citation-impact-fwci-metrics (accessed on 4 November 2024).
- Ioannidis, J.P.A. A Generalized View of Self-Citation: Direct, Co-Author, Collaborative, and Coercive Induced Self-Citation. J. Psychosom. Res. 2015, 78, 7–11. [Google Scholar] [CrossRef] [PubMed]
Authors | Applications in Bioremediation |
---|---|
França et al. [67] | Removal of hydrocarbons and heavy metals from soils and effluents |
Jimoh and Lin [68] | Removal of motor oil and diesel from sand |
Velioglu and Urek [69] | Removal of residual frying oil from beach sand |
Bezza and Chirwa [70] | Removal of oil from sand |
Xia et al. [71] | Removal of oil from sand |
Rashad et al. [72] | Removal of oil from sand |
Minucelli et al. [73] | Biodegradation of oil from soil |
Samadi et al. [74] | Removal of oil from seawater |
Elkhouly et al. [75] | Remediation of the aqueous solution of heavy metals |
Jayalatha and Devatha [76] | Biodegradation of Triclosan in domestic effluents |
Jayalatha and Devatha [77] | Biodegradation of Triclosan and Ibuprofen in domestic effluents |
Sonde and Di Vakaran [78] | Precipitation of lead in effluents |
Research Area | Publication Number | Percentage (%) |
---|---|---|
Chemical Engineering | 5 | 20 |
Environmental Science | 4 | 16 |
Biochemistry, Genetics and Molecular Biology | 3 | 12 |
Chemistry | 3 | 12 |
Immunology and Microbiology | 2 | 8 |
Energy | 2 | 8 |
Agricultural and Biological Sciences | 1 | 4 |
Pharmacology, Toxicology and Pharmaceuticals | 1 | 4 |
Materials Sciences | 1 | 4 |
Medicine | 1 | 4 |
Earth and Planetary Sciences | 1 | 4 |
Engineering | 1 | 4 |
Microorganisms | Biosurfactant Type | References |
---|---|---|
Bacillus subtilis ICA56 * | Lipopeptide | França et al. [67] |
Bacillus licheniformis * | Lipopeptide | Jayalatha and Devatha [76] |
Paenibacillus sp. D9 * | Lipopeptide | Jimoh and Lin [68] |
Pseudomonas aeruginosa CB1 and Bacillus subtilis CN1 * | − | Bezza and Chirwa [70] |
Pseudomonas aeruginosa * | Rhamnolipid (glycolipid) | Xia et al. [71] |
Pseudomonas aeruginosa PTCC 1340 * | Rhamnolipid (glycolipid) | Samadi et al. [74] |
Pseudomonas aeruginosa MTCC 1688 * | Rhamnolipid (glycolipid) | Jayalatha and Devatha [77] |
Pseudomonas aeruginosa * | Rhamnolipid (glycolipid) | Elkhouly et al. [75] |
Pseudomonas Putida 1 | − | Sonde and Di Vakaran [78] |
Candida bombicola NRRL Y-17069 ** | Sophorolipid (glycolipid) | Rashad et al. [72] |
Candida bombicola ATCC 22214 ** | Sophorolipid (glycolipid) | Minucelli et al. [73] |
Pleurotus djamor *** | − | Velioglu and Urek [69] |
Authors | Journals | TC | SC | FWCI * |
---|---|---|---|---|
França et al. [67] | Catalysis Today | 83 | 7 | 1.21 |
Minucelli et al. [73] | Waste and Biomass Valorization | 50 | 8 | 0.74 |
Velioglu and Urek [65] | Biotechnology and Bioprocess Engineering | 26 | 0 | 0.97 |
Xia et al. [71] | Petroleum Science and Technology | 21 | 4 | 1.34 |
Jayalatha and Devatha [76] | Molecular Biotechnology | 20 | 1 | 0.89 |
Keywords | Occurence |
---|---|
Bio-surfactants | 9 |
Biomolecules | 9 |
Sunflower oil | 9 |
Surface-active agents | 9 |
Bioremediation | 7 |
Surface tension reduction | 7 |
Bacterial strain | 5 |
Critical micelle concentration | 4 |
Emulsification | 4 |
Nitrogen | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passos, W.A.; Jesus, M.; Mata, F.; Menezes, M.S.; dos Santos, P.O.L.; Santos, B.L.P.; Santana, H.E.P.; Ruzene, D.S.; Silva, D.P. Bioremediation Potential of Sunflower-Derived Biosurfactants: A Bibliometric Description. Sustainability 2025, 17, 330. https://doi.org/10.3390/su17010330
Passos WA, Jesus M, Mata F, Menezes MS, dos Santos POL, Santos BLP, Santana HEP, Ruzene DS, Silva DP. Bioremediation Potential of Sunflower-Derived Biosurfactants: A Bibliometric Description. Sustainability. 2025; 17(1):330. https://doi.org/10.3390/su17010330
Chicago/Turabian StylePassos, Wesley Araújo, Meirielly Jesus, Fernando Mata, Millena Souza Menezes, Pablo Omar Lubarino dos Santos, Brenda Lohanny P. Santos, Hortência E. P. Santana, Denise Santos Ruzene, and Daniel Pereira Silva. 2025. "Bioremediation Potential of Sunflower-Derived Biosurfactants: A Bibliometric Description" Sustainability 17, no. 1: 330. https://doi.org/10.3390/su17010330
APA StylePassos, W. A., Jesus, M., Mata, F., Menezes, M. S., dos Santos, P. O. L., Santos, B. L. P., Santana, H. E. P., Ruzene, D. S., & Silva, D. P. (2025). Bioremediation Potential of Sunflower-Derived Biosurfactants: A Bibliometric Description. Sustainability, 17(1), 330. https://doi.org/10.3390/su17010330