The Impact of Sustainability Certification Schemes and Labels on Greenhouse Gas Emissions: A Systematic Evidence Map
Abstract
:1. Introduction
1.1. Background
1.2. Stakeholder Engagement
1.3. Objectives of the Review
- Do sustainability certification schemes and labels, used in the bioeconomy, reduce greenhouse gas emissions?
- Are there differences between the production of raw materials compared with other parts of the value chain in the bioeconomy?
- Are there differences in the primary tools adopted by certification schemes and labels to track GHG emissions?
- Where are there significant knowledge gaps in the evidence base in this field of study?
2. Materials and Methods
2.1. Systematic Mapping Protocol
2.1.1. Search Strategy
2.1.2. Article Screening and Study Inclusion Criteria
2.1.3. Risk of Bias Assessment
- Are there any missing data? (Are data collected in the Methods section of a study all reported in the Results section).
- Are all missing data accounted for? (If there are unreported data does the author explain why they have not reported them).
- Are the study subjects and the setting described in detail?
- Is the intervention(s) described including details of certification timing and duration?
- Is there a clear account of the statistical methods used to compare groups for all outcome(s)?
- Are all raw data available (in the published article or as Supplementary Material)?
2.1.4. Data Coding and Extraction Strategy
3. Results
3.1. Studies in the Evidence Base
3.2. Access to Articles
3.3. Location of Studies from Articles
3.4. Source of Articles
3.5. Publication Date
3.6. Certification Scheme/Label
3.7. Sector
3.8. Feedstock/Product
3.9. Stage of Value Chain
3.10. Study Design
3.11. Impact of Certification/Labels on GHG Emissions
3.12. Risk of Bias of the Evidence Base
4. Discussion
4.1. Evidence Gaps
4.2. Organic Agriculture
4.2.1. International Federation of Organic Agriculture Movements (IFOAM)
4.2.2. VIVA
4.2.3. Naturland and Bioland
4.2.4. Green Food Program (China)
4.2.5. Label Rouge
4.2.6. USDA Organic
4.2.7. Danish Crown’s Sustainability Certification Scheme
4.2.8. Sweden’s Organic Certifier (KRAV)
4.2.9. Environmentally Friendly Agricultural Products Certification (EFAPC) Standard (Republic of Korea)
4.2.10. China Organic Agricultural Product Standard
4.2.11. Unspecified Organic
4.3. Palm Oil
4.3.1. The Roundtable on Sustainable Palm Oil (RSPO)
4.3.2. MSPO
4.4. Forestry
4.5. Cattle Production
4.6. Aquaculture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Bioeconomy. 2018. Available online: https://research-and-innovation.ec.europa.eu/research-area/environment/bioeconomy_en#:~:text=The%20bioeconomy%20means%20using%20renewable,circular%20and%20low%2Dcarbon%20economy (accessed on 6 December 2024).
- Dolge, K.; Balode, L.; Laktuka, K.; Kirsanovs, V.; Barisa, A.; Kubule, A. A comparative analysis of bioeconomy development in European Union Countries. Environ. Manag. 2023, 71, 215–233. [Google Scholar] [CrossRef]
- Rossi, C.; Shen, L.; Junginger, M.; Wicke, B. Sustainability certification of bio-based products: Systematic literature review of socio-economic impacts along the supply chain. J. Clean. Prod. 2024, 468, 143079. [Google Scholar] [CrossRef]
- Lago-Olveira, S.; Arias, A.; Rebolledo-Leiva, R.; Feijoo, G.; González-García, S.; Moreira, M.T. Monitoring the bioeconomy: Value chains under the framework of life cycle assessment indicators. Clean. Circ. Bioeconomy 2024, 7, 100072. [Google Scholar] [CrossRef]
- Ladu, L.; Blind, K. Overview of policies, standards and certifications supporting the European bio-based economy. Curr. Opin. Green Sustain. Chem. 2017, 8, 30–35. [Google Scholar] [CrossRef]
- Collaboration for Environmental Evidence. In Guidelines and Standards for Evidence Synthesis in Environmental Management; Version 5.1; Pullin, A.S., Frampton, G.K., Livoreil, B., Petrokofsky, G., Eds.; Collaboration for Environmental Evidence; 2022; Available online: www.environmentalevidence.org/information-for-authors (accessed on 4 December 2024).
- Päivinen, R.; Petrokofsky, G.; Harvey, W.J.; Petrokofsky, L.; Puttonen, P.; Kangas, J.; Mikkola, E.; Byholm, L.; Käär, L. State of forest research in 2010s–a bibliographic study with special reference to Finland, Sweden and Austria. Scand. J. For. Res. 2023, 38, 23–38. [Google Scholar] [CrossRef]
- Ramírez-Castañeda, V. Disadvantages in preparing and publishing scientific papers caused by the dominance of the English language in science: The case of Colombian researchers in biological sciences. PLoS ONE 2020, 15, e0238372. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Bayliss, H.R. Shades of grey: Two forms of grey literature important for reviews in conservation. Biol. Conserv. 2015, 191, 827–829. [Google Scholar] [CrossRef]
- Gotschall, T. EndNote 20 desktop version. J. Med. Libr. Assoc. JMLA 2021, 109, 520. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G. Mathematics for kappa. Pract. Stat. Med. Res. 1991, 1991, 406–407. [Google Scholar]
- Joanna Briggs Institute (JBI). Critical Appraisal Tools. 2021. Available online: https://jbi.global/critical-appraisal-tools (accessed on 6 December 2024).
- United Nations. Standard Country or Area Codes for Statistics Use; Revision 4; United Nations: NewYork, NY, USA, 1999. [Google Scholar]
- Lernoud, J.; Potts, J.; Sampson, G.; Garibay, S.V.; Lynch, M.; Voora, V.; Willer, H.; Wozniak, J. The State of Sustainable Markets 2017-Statistics and Emerging Trends. International Trade Centre (ITC), International Institute for Sustainable (IISD), Research Institute of Organic Agriculture (FiBL). 2017. Available online: https://www.proterrafoundation.org/wp-content/uploads/2017/07/State-of-Sustainable-Market-2017_web.pdf (accessed on 14 January 2025).
- IFOAM. About US. 2023. Available online: https://www.ifoam.bio/about-us (accessed on 25 September 2023).
- Lazzerini, G.; Migliorini, P.; Moschini, V.; Pacini, C.; Merante, P.; Vazzana, C. A simplified method for the assessment of carbon balance in agriculture: An application in organic and conventional micro-agroecosystems in a long-term experiment in Tuscany, Italy. Ital. J. Agron. 2014, 9, 55–62. [Google Scholar] [CrossRef]
- Treu, H.; Nordborg, M.; Cederberg, C.; Heuer, T.; Claupein, E.; Hoffmann, H.; Berndes, G. Carbon footprints and land use of conventional and organic diets in Germany. J. Clean. Prod. 2017, 161, 127–142. [Google Scholar] [CrossRef]
- Guareschui, R.F.; Martins, M.D.R.; Sarkis, L.F.; Alves, B.J.R.; Jantalia, C.P.; Boddey, R.M.; Caballero, S.S.U. An Analysis of Energy Efficiency and Greenhouse Gas Emissions from Organic Soybean Cultivation in Brazil. Uma Análise da Eficiência Energética e da Emissão de Gases de Efeito Estufa no Cultivo Orgânico de Soja no Brasil; Semina: Ciências Agrárias, Londrina, 2019; Volume 40, pp. 3461–3476. [Google Scholar]
- Yuttitham, M. Comparison of carbon footprint of organic and conventional farming of Chinese Kale. Environ. Nat. Resour. J. 2019, 17, 78–92. [Google Scholar] [CrossRef]
- Bos, J.F.; de Haan, J.; Sukkel, W.; Schils, R.L. Energy use and greenhouse gas emissions in organic and conventional farming systems in the Netherlands. NJAS-Wagening. J. Life Sci. 2014, 68, 61–70. [Google Scholar] [CrossRef]
- Hermanto, F.W.; Purwanto, B.H.; Maas, A.; Utami, S.N.H. N2O emission and grain yield of rice from organic and conventional farming in the paddy field. IOP Conf. Ser. Earth Environ. Sci. 2021, 724, 012065. [Google Scholar] [CrossRef]
- Jirapornvaree, I.; Suppadit, T.; Kumar, V. Assessing the economic and environmental impact of jasmine rice production: Life cycle assessment and Life Cycle Costs analysis. J. Clean. Prod. 2021, 303, 127079. [Google Scholar] [CrossRef]
- Viana, L.R.; Dessureault, P.L.; Marty, C.; Loubet, P.; Levasseur, A.; Boucher, J.F.; Paré, M.C. Would transitioning from conventional to organic oat grains production reduce environmental impacts? A LCA case study in North-East Canada. J. Clean. Prod. 2022, 349, 131344. [Google Scholar] [CrossRef]
- Bux, C.; Lombardi, M.; Varese, E.; Amicarelli, V. Economic and environmental assessment of conventional versus organic durum wheat production in Southern Italy. Sustainability 2022, 14, 9143. [Google Scholar] [CrossRef]
- Lambotte, M.; De Cara, S.; Brocas, C.; Bellassen, V. Organic farming offers promising mitigation potential in dairy systems without compromising economic performances. J. Environ. Manag. 2023, 334, 117405. [Google Scholar] [CrossRef] [PubMed]
- VIVA. Viva Program. 2022. Available online: https://viticolturasostenibile.org/en/viva-program/ (accessed on 25 September 2023).
- VIVA. Specifications and Indicators. 2022. Available online: https://viticolturasostenibile.org/en/specifications-and-indicators/the-indicators/ (accessed on 31 August 2023).
- Borsato, E.; Zucchinelli, M.; D’Ammaro, D.; Giubilato, E.; Zabeo, A.; Criscione, P.; Pizzol, L.; Cohen, Y.; Tarolli, P.; Lamastra, L.; et al. Use of multiple indicators to compare sustainability performance of organic vs. conventional vineyard management. Sci. Total Environ. 2020, 711, 135081. [Google Scholar] [CrossRef] [PubMed]
- Casolani, N.; Chiodo, E.; Liberatore, L. Continuous Improvement of VIVA-Certified Wines: Analysis and Perspective of Greenhouse Gas Emissions. Sustainability 2023, 15, 2349. [Google Scholar] [CrossRef]
- Naturland. Who We Are. 2023. Available online: https://www.naturland.de/en/naturland/who-we-are.html (accessed on 25 September 2023).
- Naturland. Naturland Standards. 2023. Available online: https://www.naturland.de/en/naturland/what-we-stand-for/quality/naturland-standards (accessed on 4 September 2023).
- Jonell, M.; Henriksson, P.J.G. Mangrove–shrimp farms in Vietnam—Comparing organic and conventional systems using life cycle assessment. Aquaculture 2015, 447, 66–75. [Google Scholar] [CrossRef]
- Kiefer, L.; Menzel, F.; Bahrs, E. The effect of feed demand on greenhouse gas emissions and farm profitability for organic and conventional dairy farms. J. Dairy Sci. 2014, 97, 7564–7574. [Google Scholar] [CrossRef] [PubMed]
- Bioland. Über Bioland (About Bioland). 2023. Available online: https://www.bioland.de/ueber-bioland (accessed on 25 September 2023).
- Paull, J. Green food in China. Elem. J. Bio-Dyn. Tasman. 2008, 91, 48–53. [Google Scholar]
- Wang, F.; Liu, Y.; Ouyang, X.; Hao, J.; Yang, X. Comparative environmental impact assessments of green food certified cucumber and conventional cucumber cultivation in China. Renew. Agric. Food Syst. 2018, 33, 432–442. [Google Scholar] [CrossRef]
- INAO. Plaquette Label Rouge “Le Label Rouge: La Garantie D’une Qualite Superieure”. (PDF). 2016. Available online: https://www.inao.gouv.fr/Les-signes-officiels-de-la-qualite-et-de-l-origine-SIQO/Label-Rouge (accessed on 20 September 2023).
- United States Congress. Food, Agriculture, Conservation and Trade Act of 1990; Public Law; United States Congress: Washington, DC, USA, 1990; Volume 101, pp. 3705–3706.
- Teixeira, R.; Himeno, A.; Gustavus, L. Carbon footprint of Breton pate production: A case study. Integr. Environ. Assess. Manag. 2013, 9, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Sun, F.; Wattiaux, M.A.; Cabrera, V.E.; Hedtcke, J.L.; Silva, E.M. Effect of feeding strategies and cropping systems on greenhouse gas emission from Wisconsin certified organic dairy farms. J. Dairy Sci. 2017, 100, 5957–5973. [Google Scholar] [CrossRef] [PubMed]
- McGee, J.A. Does certified organic farming reduce greenhouse gas emissions from agricultural production? Agric. Hum. Values 2015, 32, 255–263. [Google Scholar] [CrossRef]
- Olsen, J.V.; Andersen, H.M.L.; Kristensen, T.; Schlægelberger, S.V.; Udesen, F.; Christensen, T.; Sandøe, P. Multidimensional sustainability assessment of pig production systems at herd level–The case of Denmark. Livest. Sci. 2023, 270, 105208. [Google Scholar] [CrossRef]
- KRAV. This Is KRAV, KRAV—A Label for Organic Food. 2021. Available online: https://www.krav.se/en/this-is-krav/a-label-for-organic-food/ (accessed on 25 September 2023).
- Aggestam, V.; Buick, J. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production. J. Dairy Res. 2017, 84, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, T.; Smith, T.M.; Suh, K. Environmental implications of eco-labeling for rice farming systems. Sustainability 2018, 10, 1050. [Google Scholar] [CrossRef]
- Standardization Administration of the People’s Republic of China (SAC). China National Organic Standard. 2005. Available online: https://www.controlunion.com/certification-program/china-national-organic-standard/ (accessed on 17 January 2025).
- ECOCERT. Organic Agriculture China. 2023. Available online: https://www.ecocert.com/en/certification-detail/organic-farming-china-gb-t19630-2019 (accessed on 4 September 2023).
- Zhen, H.; Feng, X.; Waqas, M.A.; Cascante, M.Q.; Ju, X.; Qiao, Y.; Lohrum, N.; Knudsen, M.T. Solutions to neutralize greenhouse gas emissions of the rice value chain—A case study in China. Sustain. Prod. Consum. 2023, 35, 444–452. [Google Scholar] [CrossRef]
- Cordes, H.; Iriarte, A.; Villalobos, P. Evaluating the carbon footprint of Chilean organic blueberry production. Int. J. Life Cycle Assess. 2016, 21, 281–292. [Google Scholar] [CrossRef]
- Vaglia, V.; Bacenetti, J.; Orlando, F.; Alali, S.; Bosso, E.; Bocchi, S. The environmental impacts of different organic rice management in Italy considering different productive scenarios. Sci. Total Environ. 2022, 853, 158365. [Google Scholar] [CrossRef]
- Baydar, G.; Ciliz, N.; Mammadov, A. Life cycle assessment of cotton textile products in Turkey. Resour. Conserv. Recycl. 2015, 104, 213–223. [Google Scholar] [CrossRef]
- Biermann, G.; Geist, J. Life cycle assessment of common carp (Cyprinus carpio L.)—A comparison of the environmental impacts of conventional and organic carp aquaculture in Germany. Aquaculture 2019, 501, 404–415. [Google Scholar] [CrossRef]
- Kontopoulou, C.K.; Bilalis, D.; Pappa, V.A.; Rees, R.M.; Savvas, D. Effects of organic farming practices and salinity on yield and greenhouse gas emissions from a common bean crop. Sci. Hortic. 2015, 183, 48–57. [Google Scholar] [CrossRef]
- Montalba, R.; Vieli, L.; Spirito, F.; Muñoz, E. Environmental and productive performance of different blueberry (Vaccinium corymbosum L.) production regimes: Conventional, organic, and agroecological. Sci. Hortic. 2019, 256, 108592. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, S.; Guo, Y.; Liu, Q.; Zou, J. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol. Fertil. Soils 2010, 46, 825–834. [Google Scholar] [CrossRef]
- Bandanaa, J.; Asante, I.K.; Egyir, I.S.; Schader, C.; Annang, T.Y.; Blockeel, J.; Kadzere, I.; Heidenreich, A. Sustainability performance of organic and conventional cocoa farming systems in Atwima Mponua District of Ghana. Environ. Sustain. Indic. 2021, 11, 100121. [Google Scholar] [CrossRef]
- Roundtable on Sustainable Palm Oil (RSPO). Who We Are. 2023. Available online: https://rspo.org/who-we-are/ (accessed on 25 September 2023).
- Schmidt, J.; De Rosa, M. Certified palm oil reduces greenhouse gas emissions compared to non-certified. J. Clean. Prod. 2020, 277, 124045. [Google Scholar] [CrossRef]
- De Rosa, M.; Schmidt, J.; Pasang, H. Industry-driven mitigation measures can reduce GHG emissions of palm oil. J. Clean. Prod. 2022, 365, 132565. [Google Scholar] [CrossRef]
- Hilmi, Y.S.; Utami, A.W. Does RSPO certification affects the amount of CO2 emission in Indonesia? IOP Conf. Ser. Earth Environ. Sci. 2021, 637, 012051. [Google Scholar] [CrossRef]
- Malaysia Sustainable Palm Oil Standard (MSPO). Malaysia Sustainable Palm Oil Standard. 2023. Available online: https://www.mpocc.org.my/ (accessed on 31 August 2023).
- Bok, C.H.; Lim, C.H.; Ngan, S.L.; How, B.S.; Ng, W.P.Q.; Lam, H.L. Life cycle assessment and life cycle costing analysis for uncertified and Malaysia sustainable palm oil-MSPO-certified independent smallholders. J. Clean. Prod. 2022, 379, 134646. [Google Scholar] [CrossRef]
- Forest Stewardship Council (FSC). FSC Principles and Criteria for Forest Stewardship. 2023. Available online: https://adria-balkan.fsc.org/sites/default/files/2023-05/FSC-STD-01-001%20V5-3%20FSC%20Principles%20and%20Criteria%20for%20Forest%20Stewardship.pdf (accessed on 31 August 2023).
- Umunay, P.M.; Gregoire, T.G.; Gopalakrishna, T.; Ellis, P.W.; Putz, F.E. Selective logging emissions and potential emission reductions from reduced-impact logging in the Congo Basin. For. Ecol. Manag. 2019, 437, 360–371. [Google Scholar] [CrossRef]
- Ellis, E.A.; Montero, S.A.; Gómez, I.U.H.; Montero, J.A.R.; Ellis, P.W.; Rodríguez-Ward, D.; Blanco-Reyes, P.; Putz, F.E. Reduced-impact logging practices reduce forest disturbance and carbon emissions in community managed forests on the Yucatán Peninsula, Mexico. For. Ecol. Manag. 2019, 437, 396–410. [Google Scholar] [CrossRef]
- Goodman, R.C.; Aramburu, M.H.; Gopalakrishna, T.; Putz, F.E.; Gutiérrez, N.; Alvarez, J.L.M.; Aguilar-Amuchastegui, N.; Ellis, P.W. Carbon emissions and potential emissions reductions from low-intensity selective logging in southwestern Amazonia. For. Ecol. Manag. 2019, 439, 18–27. [Google Scholar] [CrossRef]
- Griscom, B.; Ellis, P.; Putz, F.E. Carbon emissions performance of commercial logging in East Kalimantan, Indonesia. Glob. Chang. Biol. 2014, 20, 923–937. [Google Scholar] [CrossRef] [PubMed]
- Armenta-Montero, S.; Ellis, E.A.; Ellis, P.W.; Hunter Manson, R.; López-Binnqüist, C.; Villaseñor Pérez, J.A. Carbon emissions from selective logging in the southern Yucatan Peninsula, Mexico. Madera y Bosques 2020, 26, e2611891. [Google Scholar] [CrossRef]
- Bogaerts, M.; Cirhigiri, L.; Robinson, I.; Rodkin, M.; Hajjar, R.; Junior, C.C.; Newton, P. Climate change mitigation through intensified pasture management: Estimating greenhouse gas emissions on cattle farms in the Brazilian Amazon. J. Clean. Prod. 2017, 162, 1539–1550. [Google Scholar] [CrossRef]
- Aquaculture Stewardship Council Foundation (ASC). About ASC. 2023. Available online: https://asc-aqua.org/about-asc/ (accessed on 25 September 2023).
- Nhu, T.T.; Schaubroeck, T.; Henriksson, P.J.; Bosma, R.; Sorgeloos, P.; Dewulf, J. Environmental impact of non-certified versus certified (ASC) intensive Pangasius aquaculture in Vietnam, a comparison based on a statistically supported LCA. Environ. Pollut. 2016, 219, 156–165. [Google Scholar] [CrossRef] [PubMed]
Element | Description |
---|---|
Population | Value chains in the bioeconomy—from producers of primary feedstock to consumers of bioproducts, in any geographic location, excluding biofuels. Feedstock to include primary agriculture (including horticulture, beekeeping, silk production, etc.), forestry, marine products, biological waste material, or residues. |
Intervention | Sustainability certification schemes and labels (applicable to the bioeconomy). |
Comparator | A different/absence of sustainability certification scheme(s) or label(s) applicable to the bioeconomy (see further information in the inclusion criteria). |
Outcome | Greenhouse gas emission measurement. |
Bibliographic Database | URL |
---|---|
Web of Science (Core collection) | www.webofscience.com/ (accessed on 7 June 2023) |
CAB Abstracts | www.cabi.org/ (accessed on 7 June 2023) |
Scopus | www.scopus.com/ (accessed on 7 June 2023) |
Element | Inclusion | Exclusion |
---|---|---|
Population | Value chains in the bioeconomy—from producers of primary feedstock to consumers of bioproducts. Feedstock to include primary agriculture (including horticulture, beekeeping, silk production, etc.), forestry, marine products, biological waste material, or residues. | Studies not addressing value chains in the bioeconomy. Biofuels and bioenergy, except where the focus is on the production of the feedstock. |
Intervention | Studies examining certification schemes and labels relevant to the bioeconomy. | Studies not addressing sustainability certification schemes and labels applicable to the bioeconomy. |
Outcomes | Any reported greenhouse gas emission, combination of gasses, or reports of unspecified greenhouse gasses. | Studies not reporting greenhouse gas emissions |
Geographic Scope | All geographical regions | N/A |
Publication Type | Published studies, reports, articles, and conference proceedings presenting original research data. | Unpublished materials, personal communications, opinions, editorials, and letters without original research data, systematic reviews, routine monitoring reports, descriptive resources, and modelling studies that examine future scenarios using third-party data |
Date | Studies published after and including 2010. | Studies published before 2010. |
Key Journals | Number |
---|---|
Journal of Cleaner Production | 7 |
Sustainability | 3 |
Forest Ecology and Management | 3 |
Scientia Horticulturae | 2 |
Science of the Total Environment | 2 |
Journal of Dairy Science | 2 |
IOP Conference Series: Earth and Environmental Science | 2 |
Aquaculture | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harvey, W.J.; Black, N.; Essaouabi, S.; Petrokofsky, L.; Rangan, V.; Bird, M.S.; Villar, D.; Waite, M.; Petrokofsky, G. The Impact of Sustainability Certification Schemes and Labels on Greenhouse Gas Emissions: A Systematic Evidence Map. Sustainability 2025, 17, 792. https://doi.org/10.3390/su17020792
Harvey WJ, Black N, Essaouabi S, Petrokofsky L, Rangan V, Bird MS, Villar D, Waite M, Petrokofsky G. The Impact of Sustainability Certification Schemes and Labels on Greenhouse Gas Emissions: A Systematic Evidence Map. Sustainability. 2025; 17(2):792. https://doi.org/10.3390/su17020792
Chicago/Turabian StyleHarvey, William J., Naomi Black, Salma Essaouabi, Leo Petrokofsky, Vidya Rangan, Matt Stancliffe Bird, Daniel Villar, Marxine Waite, and Gillian Petrokofsky. 2025. "The Impact of Sustainability Certification Schemes and Labels on Greenhouse Gas Emissions: A Systematic Evidence Map" Sustainability 17, no. 2: 792. https://doi.org/10.3390/su17020792
APA StyleHarvey, W. J., Black, N., Essaouabi, S., Petrokofsky, L., Rangan, V., Bird, M. S., Villar, D., Waite, M., & Petrokofsky, G. (2025). The Impact of Sustainability Certification Schemes and Labels on Greenhouse Gas Emissions: A Systematic Evidence Map. Sustainability, 17(2), 792. https://doi.org/10.3390/su17020792