Monitoring Eco-Efficiency and Its Convergence Towards Sustainability in the European Rubber and Plastics Industry Through Circular Economy Transition
Abstract
:1. Introduction
- RQ1:
- What is the current eco-efficiency in the European rubber and plastics industry and how can be strengthened by circular economy strategies?
- RQ2:
- Is there convergence among the DMUs?
2. Literature Review
2.1. Eco-Efficiency Measurement
2.2. Circular Technologies for Higher Industrial Performance
3. Materials and Methods
3.1. Hybrid DEA Method
3.2. Window DEA Method
Bootstrapping Analysis
3.3. Inspecting for Convergence
- -
- Effit represents eco-efficiency performance respecting efforts toward a green transition for a DMU i (i = 1,…, 27) at time t (t = 2014,…, 2022).
- -
- git represents the systematic common components, and ait embodies transitory components.
- -
- ut denotes a single common component, and δit is a time-varying idiosyncratic element that captures the idiosyncratic distance between the common factor ut and the systematic part of Effit.
- -
- δi and a scale parameter σi are fixed, across the panels.
- -
- ξit is an i.i.d. random variable with a mean equal to zero and variance equal to unity across i, but weakly dependent over t.
- -
- L(t) is a slowly varying function; an example of the function L(t) is log(t), which becomes infinite as t approaches infinity.
- -
- α captures the decay rate of cross-sectional variations, that is, the rate of convergence of Effit toward δi.
4. Results and Discussion
5. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Appendix A
DMUs (Period) | Techniques | Inputs | Outputs | Ref. |
---|---|---|---|---|
28 industries in Malaysia including the plastics and rubber industries (1981–1996) | MPI-DEA (output-based) |
| Value Added | [54] |
440 firms in the Greek plastics and rubber industry (1989–1997) | technical efficiency and scale efficiency |
| Total value of shipments | [62] |
359 firms in the Greek plastics and rubber industry (1989–1997) | technical efficiency and scale efficiency |
| Total value of shipments | [63] |
14 Chinese industrial sectors (1999–2008) | MPI-DEA |
| Gross industry output value | [57] |
30 Chinese manufacturing industries (2004–2012) | global Malmquist–Luenberger productivity index |
|
| [58] |
28 Manufacturing industries in China (2006–2014) | Traditional DEA, WDEA (window width 5), and absolute β convergence analysis |
|
| [59] |
17 Iranian plastic production firms (2015–2016) | CCR and BCC DEA and Bootstrapped Tobit regression model |
|
| [56] |
586 firms inthe plastic products manufacturing industry in Malaysia (2015) | DEA (output-oriented) and Tobit regression analysis |
|
| [55] |
36 Chinese industries (2006–2015) | Multiple DEA model with a Gini criterion with a clustering analysis |
|
| [60] |
26 European countries (2006–2016) | MEA |
|
| [9] |
34 Chinese sectors (2005–2015) | Biennial Malmquist–Luenberger and fixed-effect panel quantile regression |
|
| [61] |
Appendix B
Country | Surface Area (1000 sq. km) | Population (Million Persons) | Life Expectancy (Years) | GDP Growth (Annual %) |
---|---|---|---|---|
Austria | 83.88 | 9.13 | 81.09 | 4.81 |
Belgium | 30.53 | 11.82 | 81.70 | 3.01 |
Croatia | 88.07 | 3.85 | 77.58 | 7.03 |
Cyprus | 9.25 | 1.26 | 81.89 | 5.06 |
Czechia | 78.87 | 10.87 | 79.03 | 2.35 |
Denmark | 42.92 | 5.95 | 81.30 | 2.73 |
Estonia | 45.34 | 1.37 | 77.94 | −0.46 |
Finland | 338.47 | 5.58 | 81.19 | 1.34 |
France | 549.09 | 68.17 | 82.23 | 2.45 |
Germany | 357.59 | 84.48 | 80.71 | 1.81 |
Greece | 131.96 | 10.36 | 80.64 | 5.56 |
Hungary | 93.03 | 9.59 | 76.02 | 4.58 |
Ireland | 70.28 | 5.26 | 83.06 | 9.43 |
Italy | 302.07 | 58.76 | 82.90 | 3.99 |
Latvia | 64.59 | 1.88 | 74.58 | 2.95 |
Lithuania | 65.29 | 2.87 | 75.79 | 2.44 |
Netherlands | 41.54 | 17.88 | 81.71 | 4.33 |
Norway | 624.50 | 5.52 | 82.56 | 3.01 |
Poland | 312.71 | 36.69 | 77.30 | 5.64 |
Portugal | 92.23 | 10.53 | 81.58 | 6.83 |
Romania | 238.40 | 19.06 | 75.30 | 4.11 |
Slovakia | 49.03 | 5.43 | 77.07 | 1.87 |
Slovenia | 20.48 | 2.12 | 81.28 | 2.46 |
Spain | 505.96 | 48.37 | 83.08 | 5.77 |
Sweden | 528.86 | 10.54 | 83.11 | 2.66 |
Switzerland | 41.29 | 8.85 | 83.45 | 2.57 |
Türkiye | 785.35 | 85.33 | 78.48 | 5.53 |
Average | 207.10 | 20.06 | 80.10 | 3.85 |
Appendix C
Appendix D
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options; OECD Publishing: Paris, France, 2022; Available online: https://www.oecd.org/en/publications/global-plastics-outlook_de747aef-en.html (accessed on 14 December 2024).
- OECD. Global Plastics Outlook: Policy Scenarios to 2060. Available online: https://www.oecd.org/en/publications/global-plastics-outlook_aa1edf33-en.html (accessed on 14 December 2024).
- Andersen, I. Circular Solutions to the Triple Planetary Crisis. Available online: https://www.unep.org/news-and-stories/speech/circular-solutions-triple-planetary-crisis (accessed on 14 December 2024).
- Woodruff, T.J. Health Effects of Fossil Fuel–Derived Endocrine Disruptors. N. Engl. J. Med. 2024, 390, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Watkins, E.; Schweitzer, J.-P. Moving Towards a Circular Economy for Plastics in the EU by 2030. Available online: https://ieep.eu/wp-content/uploads/2022/12/Think-2030-A-circular-economy-for-plastics-by-2030-1.pdf (accessed on 14 December 2024).
- Bucknall, D.G. Plastics as a Materials System in a Circular Economy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190268. [Google Scholar] [CrossRef]
- Halkos, G.E.; Aslanidis, P.-S.C. How Waste Crisis Altered the Common Understanding: From Fordism to Circular Economy and Sustainable Development. Circ. Econ. Sustain. 2024, 4, 1513–1537. [Google Scholar] [CrossRef]
- Robaina, M.; Murillo, K.; Rocha, E.; Villar, J. Circular Economy in Plastic Waste—Efficiency Analysis of European Countries. Sci. Total Environ. 2020, 730, 139038. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.-T.; Domenech, T.; McDowall, W. How Circular Are Plastics in the EU?: MFA of Plastics in the EU and Pathways to Circularity. Clean. Environ. Syst. 2021, 2, 100004. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Dzarfan Othman, M.H.; Hwang, G.H.; Gikas, P. Unlocking Digital Technologies for Waste Recycling in Industry 4.0 Era: A Transformation towards a Digitalization-Based Circular Economy in Indonesia. J. Clean. Prod. 2022, 357, 131911. [Google Scholar] [CrossRef]
- Borchardt, S.; Barbero Vignola, G.; Buscaglia, D.; Maroni, M.; Marelli, L. Mapping EU Policies with the 2030 Agenda and SDGs. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC130904 (accessed on 27 January 2024).
- UN. The Sustainable Development Goals. Available online: https://unstats.un.org/sdgs/report/2016/the%20sustainable%20development%20goals%20report%202016.pdf (accessed on 12 August 2022).
- EC. The Green Deal Industrial Plan Putting Europe’s Net-Zero Industry in the Lead. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/green-deal-industrial-plan_en (accessed on 14 May 2023).
- EC. Circular Economy Action Plan. Available online: https://ec.europa.eu/environment/circular-economy/pdf/new_circular_economy_action_plan.pdf (accessed on 19 November 2022).
- Karali, N.; Khanna, N.; Shah, N. Climate Impact of Primary Plastic Production. Available online: https://escholarship.org/uc/item/12s624vf (accessed on 14 December 2024).
- UNEP. Resolution Adopted by the United Nations Environment Assembly on 2 March 2022 5/14. End Plastic Pollution: Towards an International Legally Binding Instrument. Available online: https://digitallibrary.un.org/record/3999257?ln=en&v=pdf (accessed on 14 December 2024).
- Sefeedpari, P.; Shokoohi, Z.; Pishgar-Komleh, S.H. Dynamic Energy Efficiency Assessment of Dairy Farming System in Iran: Application of Window Data Envelopment Analysis. J. Clean. Prod. 2020, 275, 124178. [Google Scholar] [CrossRef]
- Kyrgiakos, L.S.; Vlontzos, G.; Pardalos, P.M. Ranking EU Agricultural Sectors under the Prism of Alternative Widths on Window DEA. Energies 2021, 14, 1021. [Google Scholar] [CrossRef]
- Hemmasi, A.; Talaeipour, M.; Eslam, H.K.-; Sean, R.F.; Pourmousa, S.H. Using DEA Window Analysis for Performance Evaluation of Iranian Wood Panels Industry. Afr. J. Agric. Res. 2011, 6, 1802–1806. [Google Scholar]
- Lo, C.K.Y.; Yeung, A.C.L.; Cheng, T.C.E. The Impact of Environmental Management Systems on Financial Performance in Fashion and Textiles Industries. Int. J. Prod. Econ. 2012, 135, 561–567. [Google Scholar] [CrossRef]
- Veiga, G.L.; Pinheiro de Lima, E.; Frega, J.R.; Gouvea da Costa, S.E. A DEA-Based Approach to Assess Manufacturing Performance through Operations Strategy Lenses. Int. J. Prod. Econ. 2021, 235, 108072. [Google Scholar] [CrossRef]
- Kang, Y.-Q.; Xie, B.-C.; Wang, J.; Wang, Y.-N. Environmental Assessment and Investment Strategy for China’s Manufacturing Industry: A Non-Radial DEA Based Analysis. J. Clean. Prod. 2018, 175, 501–511. [Google Scholar] [CrossRef]
- Hahn, G.J.; Brandenburg, M.; Becker, J. Valuing Supply Chain Performance within and across Manufacturing Industries: A DEA-Based Approach. Int. J. Prod. Econ. 2021, 240, 108203. [Google Scholar] [CrossRef]
- Wang, X.; Ding, H.; Liu, L. Eco-Efficiency Measurement of Industrial Sectors in China: A Hybrid Super-Efficiency DEA Analysis. J. Clean. Prod. 2019, 229, 53–64. [Google Scholar] [CrossRef]
- Halkos, G.E.; Moll de Alba, J.; Aslanidis, P.-S.C. An Eco-Efficient European Metal Industry Transition towards Circular Economy. J. Clean. Prod. 2024, 479, 144063. [Google Scholar] [CrossRef]
- Halkos, G.E.; Moll de Alba, J.; Aslanidis, P.-S.C. Examining Energy and Carbon Intensity of the European Fashion Industry: A Hybrid DEA Analysis for Circular Economy. Circ. Econ. Sustain. 2024. [Google Scholar] [CrossRef]
- Zhou, P.; Poh, K.L.; Ang, B.W. A Non-Radial DEA Approach to Measuring Environmental Performance. Eur. J. Oper. Res. 2007, 178, 1–9. [Google Scholar] [CrossRef]
- Pérez, K.; González-Araya, M.C.; Iriarte, A. Energy and GHG Emission Efficiency in the Chilean Manufacturing Industry: Sectoral and Regional Analysis by DEA and Malmquist Indexes. Energy Econ. 2017, 66, 290–302. [Google Scholar] [CrossRef]
- Giannakitsidou, O.; Giannikos, I.; Chondrou, A. Ranking European Countries on the Basis of Their Environmental and Circular Economy Performance: A DEA Application in MSW. Waste Manag. 2020, 109, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Taleb, M.; Khalid, R.; Emrouznejad, A.; Ramli, R. Environmental Efficiency under Weak Disposability: An Improved Super Efficiency Data Envelopment Analysis Model with Application for Assessment of Port Operations Considering NetZero. Environ. Dev. Sustain. 2023, 25, 6627–6656. [Google Scholar] [CrossRef]
- Halkos, G.E.; Aslanidis, P.-S.C. New Circular Economy Perspectives on Measuring Sustainable Waste Management Productivity. Econ. Anal. Policy 2023, 77, 764–779. [Google Scholar] [CrossRef]
- Halkos, G.E.; Aslanidis, P.-S.C. Promoting Sustainable Waste Management for Regional Economic Development in European Mediterranean Countries. Euro-Mediterr. J. Environ. Integr. 2023, 8, 767–775. [Google Scholar] [CrossRef]
- Halkos, G.E.; Moll de Alba, J.; Bampatsou, C. Determinants of Environmental Efficiency and Sources of Productivity Change in the Manufacturing Sector: A Comparative Analysis between Europe and Asia. Energy 2024, 291, 130355. [Google Scholar] [CrossRef]
- Halkos, G.E.; Polemis, M.L. The Impact of Economic Growth on Environmental Efficiency of the Electricity Sector: A Hybrid Window DEA Methodology for the USA. J. Environ. Manag. 2018, 211, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Charnes, A.; Clark, C.T.; Cooper, W.W.; Golany, B. A Development Study of Data Envelopment Analysis in Measuring the Efficiency of Maintenance Units in the US Air Forces. Ann. Oper. Res. 1984, 2, 95–112. [Google Scholar] [CrossRef]
- Tone, K. A Hybrid Measure of Efficiency in DEA; National Graduate Institute for Policy Studies Research Report Series I-2004-0003; National Graduate Institute for Policy Studies: Tokyo, Japan, 2004. [Google Scholar]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Development Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Avkiran, N.K.; Tone, K.; Tsutsui, M. Bridging Radial and Non-Radial Measures of Efficiency in DEA. Ann. Oper. Res. 2008, 164, 127–138. [Google Scholar] [CrossRef]
- Tone, K. A Slacks-Based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Zhang, N.; Danao, D.; Zhang, N. Environmental Efficiency Analysis of Transportation System in China: A Non-Radial DEA Approach. Energy Policy 2013, 58, 277–283. [Google Scholar] [CrossRef]
- Zhang, G.; Cui, J. A General Inverse DEA Model for Non-Radial DEA. Comput. Ind. Eng. 2020, 142, 106368. [Google Scholar] [CrossRef]
- Liu, W.B.; Meng, W.; Li, X.X.; Zhang, D.Q. DEA Models with Undesirable Inputs and Outputs. Ann. Oper. Res. 2010, 173, 177–194. [Google Scholar] [CrossRef]
- Halkos, G.E.; Petrou, K.N. Treating Undesirable Outputs in DEA: A Critical Review. Econ. Anal. Policy 2019, 62, 97–104. [Google Scholar] [CrossRef]
- Førsund, F.R. Multi-Equation Modelling of Desirable and Undesirable Outputs Satisfying the Materials Balance. Empir. Econ. 2018, 54, 67–99. [Google Scholar] [CrossRef]
- Shepard, R.W. Theory of Cost and Production Functions; Princeton University Press: Princeton, NJ, USA, 1970; ISBN 0-691-04198-9. [Google Scholar]
- Färe, R.; Grosskopf, S. A Comment on Weak Disposability in Nonparametric Production Analysis. Am. J. Agric. Econ. 2009, 91, 535–538. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Modeling Undesirable Factors in Efficiency Evaluation: Comment. Eur. J. Oper. Res. 2004, 157, 242–245. [Google Scholar] [CrossRef]
- Kuosmanen, T. Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs. Am. J. Agric. Econ. 2005, 87, 1077–1082. [Google Scholar] [CrossRef]
- Kuosmanen, T.; Podinovski, V. Weak Disposability in Nonparametric Production Analysis: Reply to Färe and Grosskopf. Am. J. Agric. Econ. 2009, 91, 539–545. [Google Scholar] [CrossRef]
- Chen, C.-M. A Critique of Non-Parametric Efficiency Analysis in Energy Economics Studies. Energy Econ. 2013, 38, 146–152. [Google Scholar] [CrossRef]
- Mehdiloo, M.; Podinovski, V.V. Selective Strong and Weak Disposability in Efficiency Analysis. Eur. J. Oper. Res. 2019, 276, 1154–1169. [Google Scholar] [CrossRef]
- Mahadevan, R. A DEA Approach to Understanding the Productivity Growth of Malaysia’s Manufacturing Industries. Asia Pac. J. Manag. 2002, 19, 587–600. [Google Scholar] [CrossRef]
- Sabli, M.A.N.; Fahmy-Abdullah, M.; Sieng, L.W. Application of Two-Stage Data Envelopment Analysis (DEA) in Identifying the Technical Efficiency and Determinants in the Plastic Manufacturing Industry in Malaysia. Int. J. Supply Chain Manag. 2019, 8, 899–907. [Google Scholar]
- Ghondaghsaz, N.; Kordnaeij, A.; Delkhah, J. Operational Efficiency of Plastic Producing Firms in Iran: A DEA Approach. Benchmarking Int. J. 2018, 25, 2126–2144. [Google Scholar] [CrossRef]
- Han, X.; Xue, X.; Ge, J.; Wu, H.; Su, C. Measuring the Productivity of Energy Consumption of Major Industries in China: A DEA-Based Method. Math. Probl. Eng. 2014, 2014, 121804. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Yang, G. A Framework for Measuring Global Malmquist–Luenberger Productivity Index with CO2 Emissions on Chinese Manufacturing Industries. Energy 2016, 115, 840–856. [Google Scholar] [CrossRef]
- Lin, S.; Sun, J.; Marinova, D.; Zhao, D. Evaluation of the Green Technology Innovation Efficiency of China’s Manufacturing Industries: DEA Window Analysis with Ideal Window Width. Technol. Anal. Strateg. Manag. 2018, 30, 1166–1181. [Google Scholar] [CrossRef]
- Xie, L.; Chen, C.; Yu, Y. Dynamic Assessment of Environmental Efficiency in Chinese Industry: A Multiple DEA Model with a Gini Criterion Approach. Sustainability 2019, 11, 2294. [Google Scholar] [CrossRef]
- Wang, K.L.; Pang, S.Q.; Ding, L.L.; Miao, Z. Combining the Biennial Malmquist–Luenberger Index and Panel Quantile Regression to Analyze the Green Total Factor Productivity of the Industrial Sector in China. Sci. Total Environ. 2020, 739, 140280. [Google Scholar] [CrossRef]
- Tsekouras, K.; Skuras, D.; Daskalopoulou, I. Is Productive Inefficiency a Fatal Disease? The Effects of Technical and Scale Efficiency in Firm Exit: The Case of the Greek Rubber and Plastic Industry. Appl. Econ. 2007, 39, 2175–2187. [Google Scholar] [CrossRef]
- Tsekouras, K.; Skuras, D.; Daskalopoulou, I. The Role of Productive Efficiency on Entry and Post-entry Performance under Different Strategic Orientation: The Case of the Greek Plastics and Rubber Industry. Manag. Decis. Econ. 2008, 29, 37–55. [Google Scholar] [CrossRef]
- OECD. A Chemicals Perspective on Designing with Sustainable Plastics; OECD Series on Risk Management of Chemicals; OECD: Paris, France, 2021; ISBN 9789264683754. [Google Scholar]
- Giordano, V.; Castagnoli, A.; Pecorini, I.; Chiarello, F. Identifying Technologies in Circular Economy Paradigm through Text Mining on Scientific Literature. PLoS ONE 2024, 19, e0312709. [Google Scholar] [CrossRef] [PubMed]
- Castagnoli, A.; Salem, A.M.; Desideri, U.; Pecorini, I. Environmental Assessment of Gasification and Green Hydrogen Potential Role in Waste Management Decarbonization. J. Clean. Prod. 2024, 482, 144174. [Google Scholar] [CrossRef]
- Pagoropoulos, A.; Pigosso, D.C.A.; McAloone, T.C. The Emergent Role of Digital Technologies in the Circular Economy: A Review. Procedia CIRP 2017, 64, 19–24. [Google Scholar] [CrossRef]
- Chauhan, C.; Parida, V.; Dhir, A. Linking Circular Economy and Digitalisation Technologies: A Systematic Literature Review of Past Achievements and Future Promises. Technol. Forecast. Soc. Change 2022, 177, 121508. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. The New Plastics Economy: Rethinking the Future of Plastics & Catalysing Action. 2017. Available online: http://www.ellenmacarthurfoundation.org/ (accessed on 10 December 2024).
- Vanhamäki, S.; Rinkinen, S.; Manskinen, K. Adapting a Circular Economy in Regional Strategies of the European Union. Sustainability 2021, 13, 1518. [Google Scholar] [CrossRef]
- UNIDO. INDSTAT Revision 4: 22. Rubber and Plastics Products. Available online: https://stat.unido.org/data/table?dataset=indstat&revision=4 (accessed on 1 December 2024).
- EUROSTAT. Energy Supply and Use by NACE Rev. 2 Activity. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ac_pefasu__custom_13701047/default/table?lang=en&page=time:2008 (accessed on 1 December 2024).
- EUROSTAT. Air Emissions Accounts by NACE Rev. 2 Activity. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ac_ainah_r2__custom_13300350/default/table?lang=en (accessed on 1 December 2024).
- UNDESA. International Standard Industrial Classification of All Economic Activities (ISIC) Revision 3. Available online: https://unstats.un.org/unsd/classifications/Econ/Download/In%20Text/ISIC_Rev_3_English.pdf (accessed on 15 April 2023).
- Ebner, N.; Iacovidou, E. The Challenges of Covid-19 Pandemic on Improving Plastic Waste Recycling Rates. Sustain. Prod. Consum. 2021, 28, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd ed.; Springer: New York, NY, USA, 2007; ISBN 0387452818. [Google Scholar]
- Du, K. Econometric Convergence Test and Club Clustering Using Stata. Stata J. Promot. Commun. Stat. Stata 2017, 17, 882–900. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Sul, D. Transition Modeling and Econometric Convergence Tests. Econometrica 2007, 75, 1771–1855. [Google Scholar] [CrossRef]
INPUTS | OUTPUTS | ||||
---|---|---|---|---|---|
GFCF | Energy Use | Labor | Value Added | GHGs/CO2 | |
(Current USD) | (Terajoules) | (Number of Employees) | (Current USD) | (Tonnes) | |
Mean | 690,700,815.65 | 14,153.70 | 65,674.00 | 4,150,932,116.64 | 316,791.42 |
Min | 2,077,775.77 | 61.60 | 840.00 | 27,734,506.75 | 3632.44 |
Max | 4,897,864,010.77 | 99,336.50 | 471,527.00 | 41,925,714,434.40 | 3,142,295.41 |
STDEV | 948,814,254.64 | 21,727.37 | 97,433.00 | 6,992,657,417.51 | 532,583.64 |
GFCF | Labor | Value Added | GHGs/CO2 | Energy Use | |
---|---|---|---|---|---|
GFCF | 1 | ||||
Labor | 0.971 ** | 1 | |||
Value Added | 0.957 ** | 0.924 ** | 1 | ||
GHGs/CO2 | 0.862 ** | 0.863 ** | 0.893 ** | 1 | |
Energy Use | 0.952 ** | 0.932 ** | 0.928 ** | 0.838 ** | 1 |
Country | 2014 | 2022 | Change in Hierarchy |
---|---|---|---|
Latvia | 27 | 11 | 16 |
Croatia | 15 | 5 | 10 |
Finland | 8 | 1 | 7 |
Sweden | 10 | 4 | 6 |
Estonia | 16 | 10 | 6 |
Belgium | 11 | 6 | 5 |
Czechia | 18 | 15 | 3 |
France | 20 | 17 | 3 |
Spain | 21 | 18 | 3 |
Greece | 23 | 20 | 3 |
Germany | 13 | 12 | 1 |
Ireland | 1 | 1 | = |
Switzerland | 1 | 1 | = |
Italy | 7 | 7 | = |
Hungary | 25 | 25 | = |
Netherlands | 12 | 13 | −1 |
Lithuania | 22 | 23 | −1 |
Romania | 26 | 27 | −1 |
Slovakia | 24 | 26 | −2 |
Denmark | 5 | 8 | −3 |
Austria | 6 | 9 | −3 |
Slovenia | 19 | 22 | −3 |
Cyprus | 17 | 21 | −4 |
Portugal | 9 | 14 | −5 |
Türkiye | 14 | 19 | −5 |
Norway | 1 | 16 | −15 |
Poland | 1 | 24 | −23 |
Eco-Efficiency | |
---|---|
B | −1.122 |
standard error | 0.010 |
t-statistic | −108.851 |
Initial Classification (No. of Countries) | Club Members | b | t-Statistic | Test the Merging | b | SE | t-Statistic |
---|---|---|---|---|---|---|---|
Club 1 (4) | Croatia, Finland, Ireland, Latvia | 0.523 | 2.620 | Club 1 + 2 | 0.541 | 0.211 | 2.564 |
Club 2 (2) | Sweden, Switzerland | 0.040 | 0.290 | Club 2 + 3 | −0.444 | 0.033 | −13.521 |
Club 3 (6) | Austria, Belgium, Denmark, Estonia, Germany, Italy | 0.807 | 5.060 | Club 3 + 4 | −0.709 | 0.034 | −20.740 |
Club 4 (9) | Czechia, France, Greece, Lithuania, Netherlands, Norway, Portugal, Spain, Türkiye | 0.057 | 0.471 | Club 4 + 5 | −0.642 | 0.040 | −15.964 |
Club 5 (6) | Cyprus, Hungary, Poland, Romania, Slovakia, Slovenia | 0.060 | 0.611 |
Final Classification (No. of Countries) | Club Members | b | t-Statistic |
---|---|---|---|
Club 1 (12) | Austria, Belgium, Croatia, Denmark, Estonia, Finland, Germany, Ireland, Italy, Latvia, Sweden, Switzerland | 0.190 | 2.139 |
Club 2 (9) | Czechia, France, Greece, Lithuania, Netherlands, Norway, Portugal, Spain, Türkiye | 0.057 | 0.471 |
Club 3 (6) | Cyprus, Hungary, Poland, Romania, Slovakia, Slovenia | 0.060 | 0.611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halkos, G.E.; Moll de Alba, J.; Aslanidis, P.-S.C.; Bampatsou, C. Monitoring Eco-Efficiency and Its Convergence Towards Sustainability in the European Rubber and Plastics Industry Through Circular Economy Transition. Sustainability 2025, 17, 1272. https://doi.org/10.3390/su17031272
Halkos GE, Moll de Alba J, Aslanidis P-SC, Bampatsou C. Monitoring Eco-Efficiency and Its Convergence Towards Sustainability in the European Rubber and Plastics Industry Through Circular Economy Transition. Sustainability. 2025; 17(3):1272. https://doi.org/10.3390/su17031272
Chicago/Turabian StyleHalkos, George E., Jaime Moll de Alba, Panagiotis-Stavros C. Aslanidis, and Christina Bampatsou. 2025. "Monitoring Eco-Efficiency and Its Convergence Towards Sustainability in the European Rubber and Plastics Industry Through Circular Economy Transition" Sustainability 17, no. 3: 1272. https://doi.org/10.3390/su17031272
APA StyleHalkos, G. E., Moll de Alba, J., Aslanidis, P.-S. C., & Bampatsou, C. (2025). Monitoring Eco-Efficiency and Its Convergence Towards Sustainability in the European Rubber and Plastics Industry Through Circular Economy Transition. Sustainability, 17(3), 1272. https://doi.org/10.3390/su17031272