Zero Deforestation Agreement Assessment at Farm Level in Colombia Using ALOS PALSAR
Abstract
:1. Introduction
- To develop an ALOS PALSAR processing workflow to classify forest and generate forest change products at local scales.
- To assess zero deforestation agreements implementation in 2615 farms participating to the Colombian Mainstream Sustainable Cattle Ranching project by exploiting ALOS PALSAR forest-change products.
2. Materials and Methods
2.1. Study Area
2.2. Data Processing
2.2.1. Project Impact Areas: Farms Delineation
2.2.2. Fine Beam Dual ALOS PALSAR Imagery Preprocessing
2.2.3. Forest Mapping
3. Results
3.1. Forest Extents and Change
3.2. Forest Mapping Accuracy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Etter, A.; McAlpine, C.; Possingham, H. Historical Patterns and Drivers of Landscape Change in Colombia Since 1500: A Regionalized Spatial Approach. Ann. Assoc. Am. Geogr. 2008, 98, 2–23. [Google Scholar] [CrossRef]
- Ministerio de Ambiente y Desarrollo Sostenible. Quinto Informe Nacional de Biodiversidad de Colombia ante el Convenio de Diversidad Biológica; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2014; pp. 1–101.
- Rosenqvist, A.; Shimada, M.; Chapman, B.; Freeman, A.; De Grandi, G.; Saatchi, S.; Rauste, Y. The Global Rain Forest Mapping project—A review. Int. J. Remote Sens. 2000, 21, 1375–1387. [Google Scholar] [CrossRef]
- Achard, F.; Eva, H.D.; Stibig, H.-J.; Mayaux, P.; Gallego, J.; Richards, T.; Malingreau, J.-P. Determination of Deforestation Rates of the World’s Humid Tropical Forests. Science 2002, 297, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107, 8650–8655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Kim, D.-H.; Sexton, J.O.; Townshend, J.R. Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys. Res. Lett. 2015, 42, 3495–3501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbera, E.; Schroeder, H. Governing and implementing REDD+. Environ. Sci. Policy 2011, 14, 89–99. [Google Scholar] [CrossRef]
- Edenhoffer, O.; Pichs-Madruga, R.; Sokona, Y.; Minx, J.C.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; et al. Climate Change 2014 Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1–1454. [Google Scholar]
- Visseren-Hamakers, I.J.; McDermott, C.; Vijge, M.J.; Cashore, B. Trade-offs, co-benefits and safeguards: Current debates on the breadth of REDD. Curr. Opin. Environ. Sustain. 2012, 4, 646–653. [Google Scholar] [CrossRef]
- UNFCCC Report. In Proceedings of the Conference of the Parties on Its Nineteenth Session, Warsaw, Poland, 11–23 November 2013.
- Ochieng, R.M.; Visseren-Hamakers, I.J.; Arts, B.; Brockhaus, M.; Herold, M. Institutional effectiveness of REDD+ MRV: Countries progress in implementing technical guidelines and good governance requirements. Environ. Sci. Policy 2016, 61, 42–52. [Google Scholar] [CrossRef]
- Rosenqvist, A. Earth Observation Support to the UN Framework Convention on Climate Change: The Example of REDD. In Satellite Earth Observations and Their Impact on Society and Policy; Onoda, M., Young, O.R., Eds.; Springer: Singapore, 2017; Volume 352, pp. 143–153. [Google Scholar]
- Rosenqvist, A.; Shimada, M.; Chapman, B.; McDonald, K.; De Grandi, G.; Jonsson, H.; Williams, C.; Rauste, Y.; Nilsson, M.; Sango, D.; et al. An Overview of the JERS-1 SAR Global Boreal Forest Mapping (GBFM) Project. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 2, pp. 1033–1036. [Google Scholar]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- Reiche, J.; Lucas, R.; Mitchell, A.L.; Verbesselt, J.; Hoekman, D.H.; Haarpaintner, J.; Kellndorfer, J.M.; Rosenqvist, A.; Lehmann, E.A.; Woodcock, C.E.; et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Chang. 2016, 6, 120–122. [Google Scholar] [CrossRef]
- Ryan, C.M.; Hill, T.; Woollen, E.; Ghee, C.; Mitchard, E.; Cassells, G.; Grace, J.; Woodhouse, I.H.; Williams, M. Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery. Glob. Chang. Biol. 2011, 18, 243–257. [Google Scholar] [CrossRef]
- Reiche, J.; Hamunyela, E.; Verbesselt, J.; Hoekman, D.; Herold, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sens. Environ. 2018, 204, 147–161. [Google Scholar] [CrossRef]
- Cartus, O.; Santoro, M.; Kellndorfer, J. Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band. Remote Sens. Environ. 2010, 124, 1–13. [Google Scholar] [CrossRef]
- Lucas, R.; Rebelo, L.-M.; Fatoyinbo, L.; Rosenqvist, A.; Itoh, T.; Shimada, M.; Simard, M.; Souza-Filho, P.W.; Thomas, N.; Trettin, C.; et al. Contribution of L-band SAR to systematic global mangrove monitoring. Mar. Freshw. Res. 2014, 65, 589–616. [Google Scholar] [CrossRef]
- Shimada, M.; Isoguchi, O. JERS-1 SAR mosaics of Southeast Asia using calibrated path images. Int. J. Remote Sens. 2002, 23, 1507–1526. [Google Scholar] [CrossRef]
- Kalamandeen, M.; Gloor, E.; Mitchard, E.; Quincey, D.; Ziv, G.; Spracklen, D.; Spracklen, B.; Adami, M.; Aragão, L.E.; Galbraith, D. Pervasive Rise of Small-scale Deforestation in Amazonia. Sci. Rep. 2018, 8, 1600. [Google Scholar] [CrossRef] [PubMed]
- Godar, J.; Gardner, T.A.; Tizado, E.J.; Pacheco, P. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2014, 111, 15591–15596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, H.K.; Munger, J.; L’Roe, J.; Barreto, P.; Pereira, R.; Christie, M.; Amaral, T.; Walker, N.F. Did Ranchers and Slaughterhouses Respond to Zero-Deforestation Agreements in the Brazilian Amazon? Conserv. Lett. 2015, 9, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Filho, R.; Shimabukuro, Y.E.; Rosenqvist, A.; Sanchez, G.A. Using dual-polarized ALOS PALSAR data for detecting new fronts of deforestation in the Brazilian Amazonia. Int. J. Remote Sens. 2009, 30, 3735–3743. [Google Scholar] [CrossRef]
- Etter, A.; Mcalpine, C.; Wilson, K.; Phinn, S.; Possingham, H. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 2006, 114, 369–386. [Google Scholar] [CrossRef]
- Pizano, C.; García, H. El Bosque seco Tropical en Colombia; UBC Press: Vancouver, BC, Canada, 2014. [Google Scholar]
- Armenteras, D.; Gast, F.; Villareal, H. Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biol. Conserv. 2003, 113, 245–256. [Google Scholar] [CrossRef]
- Galvis, G.; Iván Mojica, J. The Magdalena River fresh water fishes and fisheries. Aquat. Ecosyst. Health Manag. 2007, 10, 127–139. [Google Scholar] [CrossRef]
- JAXA Calibration Result of ALOS-2/PALSAR-2 JAXA Standard Products. Available online: http://www.eorc.jaxa.jp/ALOS-2/en/calval/calval_index.htm (accessed on 15 June 2018).
- Werner, C.; Wegmller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000. [Google Scholar]
- Lopes, A.; Touzi, R.; Nezry, E. Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 1990, 28, 992–1000. [Google Scholar] [CrossRef]
- Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley: Reading, MA, USA, 1974. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Vermote, E.F.; El Saleous, N.; Justice, C.O.; Kaufman, Y.J.; Privette, J.L.; Remer, L.; Roger, J.C.; Tanre, D. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J. Geophys. Res. Atmos. 1997, 102, 17131–17141. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.; Jenkerson, C.; Masek, J.G. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description; U.S. Geological Survey: Reston, VA, USA, 2013.
- Masek, J.G.; Vermote, E.F.; Saleous, N.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. LEDAPS Calibration, Reflectance, Atmospheric Correction Preprocessing Code, Version 2; ORNL DAAC: Oak Ridge, TN, USA, 2013. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Ouaidrari, H.; Vermote, E.F. Operational Atmospheric Correction of Landsat TM Data. Remote Sens. Environ. 1999, 70, 4–15. [Google Scholar] [CrossRef]
- Motohka, T.; Shimada, M.; Uryu, Y.; Setiabudi, B. Using time series PALSAR gamma nought mosaics for automatic detection of tropical deforestation: A test study in Riau, Indonesia. Remote Sens. Environ. 2014, 155, 79–88. [Google Scholar] [CrossRef]
- Reiche, J.; Verbesselt, J.; Hoekman, D.; Herold, M. Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sens. Environ. 2015, 156, 276–293. [Google Scholar] [CrossRef]
- Whittle, M.; Quegan, S.; Uryu, Y.; Stüewe, M.; Yulianto, K. Detection of tropical deforestation using ALOS-PALSAR: A Sumatran case study. Remote Sens. Environ. 2012, 124, 83–98. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Gelautz, M.; Frick, H.; Raggam, J.; Burgstaller, J.; Leberl, F. SAR image simulation and analysis of alpine terrain. ISPRS J. Photogramm. Remote Sens. 1998, 53, 17–38. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernández-Merodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Cigna, F.; Bateson, L.B.; Jordan, C.J.; Dashwood, C. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens. Environ. 2014, 152, 441–466. [Google Scholar] [CrossRef]
- Rubiano, K.; Clerici, N.; Norden, N.; Etter, A. Secondary Forest and Shrubland Dynamics in a Highly Transformed Landscape in the Northern Andes of Colombia (1985–2015). Forests 2017, 8, 216. [Google Scholar] [CrossRef]
- Jeon, S.B.; Olofsson, P.; Woodcock, C.E. Land use change in New England: A reversal of the forest transition. J. Land Use Sci. 2012, 9, 105–130. [Google Scholar] [CrossRef]
- Olofsson, P.; Torchinava, P.; Woodcock, C.E.; Baccini, A.; Houghton, R.A.; Ozdogan, M.; Zhao, F.; Yang, X. Implications of land use change on the national terrestrial carbon budget of Georgia. Carbon Balance Manag. 2010, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, P.; Kuemmerle, T.; Griffiths, P.; Knorn, J.; Baccini, A.; Gancz, V.; Blujdea, V.; Houghton, R.A.; Abrudan, I.V.; Woodcock, C.E. Carbon implications of forest restitution in post-socialist Romania. Environ. Res. Lett. 2011, 6, 045202. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Woodcock, C.E.; Song, C.; Huang, X.; Lu, J.; Kaufmann, R.K. Monitoring land-use change in the Pearl River Delta using Landsat TM. Int. J. Remote Sens. 2002, 23, 1985–2004. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Lehmann, E.A.; Caccetta, P.; Lowell, K.; Mitchell, A.; Zhou, Z.-S.; Held, A.; Milne, T.; Tapley, I. SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system. Remote Sens. Environ. 2015, 156, 335–348. [Google Scholar] [CrossRef]
- Shimada, M.; Ohtaki, T. Generating Large-Scale High-Quality SAR Mosaic Datasets: Application to PALSAR Data for Global Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 637–656. [Google Scholar] [CrossRef]
Region Name | Farms Total Size (ha) 1 | Farms (n) | Farms Mean Size (ha) | Farms Min Size (ha) | Farms Max Size (ha) | Administrative Departments | Forest Type |
---|---|---|---|---|---|---|---|
Bajo Magdalena (1) | 7354 | 421 | 17.5 | 2 | 217 | Atlántico, Bolívar | Dry forest |
Cesar River Valley (2) | 46,587 | 692 | 67.1 | 3.7 | 2582 | Cesar, La Guajira | Dry forest |
Boyacá-Santander (3) | 6593 | 462 | 14.3 | 2 | 250 | Boyacá, Santander | Mountain forest |
Coffee Ecoregion (4) | 29,521 | 667 | 44.2 | 2 | 1055 | Quindío, Caldas, Risaralda, Tolima, Valle del Cesar | Mountain forest |
Meta foothills (5) | 23,747 | 373 | 64.8 | 3.9 | 1581 | Meta | Foothill forest |
Class | Mapped Area (ha) | Adjusted Area (ha) | Margin of Error (ha; 95% Confidence Interval) | |
---|---|---|---|---|
Bajo Magdalena | F | 4528 | 3086 | 302 |
DF | 336 | 373 | 92 | |
NF | 249,627 | 251,032 | 297 | |
Cesar River Valley | F | 143,618 | 144,737 | 12,433 |
DF | 1999 | 3899 | 2663 | |
NF | 808,361 | 805,342 | 12,266 | |
Boyacá-Santander | F | 94,469 | 94,499 | 4074 |
DF | 800 | 592 | 50 | |
NF | 359,417 | 359,594 | 4075 | |
Coffee Ecoregion | F | 231,785 | 224,534 | 13,761 |
DF | 250 | 210 | 13 | |
NF | 633,802 | 641,093 | 13,761 | |
Meta Foothills | F | 113,404 | 99,275 | 6605 |
DF | 484 | 377 | 29 | |
NF | 501,645 | 515,879 | 6605 |
Region | Stable Forest (ha) | Deforestation (ha) | Stable No Forest (ha) |
---|---|---|---|
Bajo Magdalena | 80.6 | 1.6 | 5727 |
Cesar river Valley | 4430.8 | 75 | 34,118.6 |
Boyacá-Santander | 1565.8 | 3.7 | 3655.8 |
Coffee ecoregion | 4931.8 | 15.2 | 21,834 |
Meta foothills | 6057.6 | 0 | 17,677.9 |
Region | Class | F | DF | NF | Total | Wi | User Accuracy | Producer Accuracy | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|
Bajo Magdalena | F | 34 | 1 | 15 | 50 | 0.0178 | 0.68 | 1 | 0.99 |
DF | 1 | 42 | 7 | 50 | 0.0013 | 0.84 | 0.76 | ||
NF | 0 | 0 | 296 | 296 | 0.9809 | 1 | 0.99 | ||
Total | 35 | 43 | 318 | 396 | |||||
Boyacá-Santander | F | 67 | 0 | 5 | 72 | 0.208 | 0.93 | 0.93 | 0.97 |
DF | 2 | 37 | 11 | 50 | 0.002 | 0.74 | 1 | ||
NF | 5 | 0 | 269 | 274 | 0.79 | 0.98 | 0.98 | ||
Total | 74 | 37 | 285 | 396 | |||||
Meta foothills | F | 52 | 0 | 12 | 64 | 0.184 | 0.93 | 0.93 | 0.95 |
DF | 2 | 39 | 9 | 50 | 0.001 | 1 | 1 | ||
NF | 4 | 0 | 278 | 282 | 0.815 | 0.96 | 0.96 | ||
Total | 58 | 39 | 299 | 396 | |||||
Coffee ecoregion | F | 74 | 0 | 19 | 93 | 0.268 | 0.8 | 0.82 | 0.92 |
DF | 4 | 42 | 4 | 50 | 0.000 | 0.84 | 1 | ||
NF | 16 | 0 | 237 | 253 | 0.732 | 0.94 | 0.93 | ||
Total | 94 | 42 | 260 | 396 | |||||
Cesar river valley | F | 42 | 1 | 11 | 54 | 0.151 | 0.78 | 0.77 | 0.93 |
DF | 1 | 31 | 18 | 50 | 0.002 | 0.32 | 0.68 | ||
NF | 12 | 0 | 282 | 294 | 0.847 | 0.96 | 0.96 | ||
Total | 55 | 32 | 311 | 398 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedraza, C.; Clerici, N.; Forero, C.F.; Melo, A.; Navarrete, D.; Lizcano, D.; Zuluaga, A.F.; Delgado, J.; Galindo, G. Zero Deforestation Agreement Assessment at Farm Level in Colombia Using ALOS PALSAR. Remote Sens. 2018, 10, 1464. https://doi.org/10.3390/rs10091464
Pedraza C, Clerici N, Forero CF, Melo A, Navarrete D, Lizcano D, Zuluaga AF, Delgado J, Galindo G. Zero Deforestation Agreement Assessment at Farm Level in Colombia Using ALOS PALSAR. Remote Sensing. 2018; 10(9):1464. https://doi.org/10.3390/rs10091464
Chicago/Turabian StylePedraza, Carlos, Nicola Clerici, Cristian Fabián Forero, América Melo, Diego Navarrete, Diego Lizcano, Andrés Felipe Zuluaga, Juliana Delgado, and Gustavo Galindo. 2018. "Zero Deforestation Agreement Assessment at Farm Level in Colombia Using ALOS PALSAR" Remote Sensing 10, no. 9: 1464. https://doi.org/10.3390/rs10091464