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Abstract: Commercially available digital cameras can be mounted on an unmanned aerial vehicle
(UAV) for crop growth monitoring in open-air fields as a low-cost, highly effective observation system.
However, few studies have investigated their potential for nitrogen (N) status monitoring, and the
performance of camera-derived vegetation indices (VIs) under different conditions remains poorly
understood. In this study, five commonly used VIs derived from normal color (RGB) images and two
typical VIs derived from color near-infrared (CIR) images were used to estimate leaf N concentration
(LNC). To explore the potential of digital cameras for monitoring LNC at all crop growth stages,
two new VIs were proposed, namely, the true color vegetation index (TCVI) from RGB images and the
false color vegetation index (FCVI) from CIR images. The relationships between LNC and the different
VIs varied at different stages. The commonly used VIs performed well at some stages, but the newly
proposed TCVI and FCVI had the best performance at all stages. The performances of the VIs with
red (or near-infrared) and green bands as the numerator were limited by saturation at intermediate to
high LNCs (LNC > 3.0%), but the TCVI and FCVI had the ability to mitigate the saturation. The results
of model validations further supported the superiority of the TCVI and FCVI for LNC estimation.
Compared to the other VIs derived using RGB cameras, the relative root mean square errors (RRMSEs)
of the TCVI were improved by 8.6% on average. For the CIR images, the best-performing VI for LNC
was the FCVI (R2 = 0.756, RRMSE = 14.18%). The LNC–TCVI and LNC–FCVI were stable under
different cultivars, N application rates, and planting densities. The results confirmed the applicability
of UAV-based RGB and CIR cameras for crop N status monitoring under different conditions, which
should assist the precision management of N fertilizers in agronomic practices.

Keywords: leaf nitrogen concentration; leaf nitrogen accumulation; unmanned aerial vehicle (UAV);
digital camera; vegetation indices
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1. Introduction

Nitrogen (N) is a component of many important compounds in plants, and thus plays an important
role in plant growth [1,2]. Plant growth dominantly depends on the N supply [3]. A deficiency in N
would reduce crop photosynthesis, whereas higher rates of N fertilization do not necessarily improve
crop yield and can lead to serious water pollution [4–6]. Furthermore, leaf N concentration (LNC) is
related to the photosynthetic capacity of leaves, and thus allows N fertilizer applications and grain
quality to be modeled [7,8]. Therefore, timely quantification of LNC is a prerequisite for fertilization
guidance and environmental quality [9,10].

Unmanned aerial vehicle (UAV) platforms have become a promising approach in precision
agricultural assessments because they enable the non-destructive measurement of crop growth status,
with a very high spatio-temporal resolution [11,12]. Due to their advantages of low cost, light weight,
convenient operation, and simple data processing, digital cameras have been commonly deployed
on UAVs in crop phenotype research [13]. Compared to other sensors, digital cameras can operate
successfully in a range of working environments. Given that adequate image exposure can be set
based on the weather conditions, data can be collected under both sunny and cloudy conditions [13].
Therefore, color images can be instantly acquired for researchers and farmers to monitor crop growth
status [14].

A consumer-grade RGB camera is an “off-the-shelf” device, with red, green, and blue channels.
Because each pixel value in color images can be calculated from the digital number (DN) values of
specific bands, color indices can be extracted to accentuate a particular vegetation greenness and
identify the vegetation features [14,15]. Hunt et al., [16] used the normalized green–red difference
index (NGRDI) from RGB images to estimate the biomass of corn, alfalfa, and soybean, and found
a linear correlation between the NGRDI and biomass. Kawashima and Nakatani [17] used a video
camera to analyze the color of wheat leaves for estimating chlorophyll content. Woebbecke et al. [18]
investigated the capability of several color indices to distinguish vegetation from the background,
and found that the excess green vegetation index (ExG) could provide a near-binary intensity image
outlining a plant region of interest. Moreover, color indices from RGB cameras containing a large
amount of information regarding crop status can be used to estimate the vegetation fraction, plant
height, biomass, and yield [19–21]. However, many vegetation indices (VIs) proposed for crop status
monitoring contain the near infrared (NIR) bands [22–24]. Therefore, RGB cameras with a Bayer-pattern
array of filters have been modified by replacing either the blue or red channel with a NIR channel to
obtain color near-infrared (CIR) images [25]. Based on a newly-developed digital CIR camera system,
Hunt et al., [25] found a strong correlation between the green normalized difference vegetation index
(GNDVI) and leaf area index (LAI) in winter wheat. This CIR camera system has also been used
to assess winter crop biomass [26]. Four VIs, the normalized difference vegetation index (NDVI),
enhanced NDVI (ENDVI), GNDVI, and ExG, derived from UAV-based RGB and CIR images, have been
shown to be reliable to assess experimental plots [27].

Previous studies have indicated that it is feasible to estimate crop growth status using RGB and
CIR images, but few studies have investigated their usability for N status monitoring [12,28]. Firstly,
the capability of digital cameras to monitor wheat LNC at different growth stages remains poorly
understood. Since the composition of canopy components (e.g., leaves, tassels) and background
materials (e.g., soil) varied sharply during whole growth stages of winter wheat [29], the performance
of digital cameras on estimating LNC is necessary to be tested across different growth stages. Secondly,
it is crucial to investigate the saturation problem of VIs, with varying LNC values. Because the
application of N fertilizer has increased recently in China, it is important to effectively monitor LNC
under middle to high application levels. Thirdly, the capability of digital cameras for LNC estimation
under different conditions is unclear. The relationships among VIs and LNC in cereal crops have been
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investigated in terms of the mechanisms involved based on hyperspectral remote sensing. Many studies
have proposed effective VIs that can be adjusted to variations in growth stage [30] and geographic
location [31], and that can reduce the effects of the soil background [32]. Therefore, there is also a need
to assess the capability of digital cameras for estimating wheat LNC under different conditions.

The overall objective of this study was to evaluate whether digital cameras mounted on UAVs
could be applied to monitor LNC in winter wheat. Five typical VIs derived from RGB images and two
widely used VIs derived from CIR images were selected to estimate LNC. Additionally, we developed
the true color vegetation index (TCVI) and the false color vegetation index (FCVI) from RGB and CIR
images, respectively. Experiments with different wheat varieties, planting densities, and N application
rates were conducted in the field to: (1) quantify the relationship between LNC and the VIs from digital
imagery at different growth stages, (2) evaluate the saturation sensitivity of the VIs under various LNC
levels, and (3) validate the applicability of the LNC estimation models under different treatments.

2. Materials and Methods

2.1. Study Site and Experimental Design

The study site was located in Rugao City, Jiangsu Province, China (120◦45′ E, 32◦16′ N), as shown
in Figure 1. The regional annual precipitation of this area is around 927.53 mm, with an average
annual temperature of 16.59 ◦C. Two field experiments using winter wheat (Triticum aestivum L.) were
designed that included three N application rates, two planting densities (D), and two varieties (V) in
two growing seasons (Table 1). In each experiment, a split design was used with three replications and
there were 36 plots, each with a plot area of 35 m2 (Figure 1). The basal fertilizer included 120 kg/ha
P2O5 and 120 kg/ha K2O and there were three N application rates (0, 150, and 300 kg/ha as urea)
applied at the end of October 2013/2014. Compound fertilizer was applied in early March 2014/2015,
including N applications at the three different rates. The N fertilizers were applied in 50% as basal
fertilizer at the sowing day and in 50% at the jointing stage. All other agronomic management was
undertaken according to local wheat production practices.
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Figure 1. The study site of field experiments with two winter wheat varieties (V1, V2), two planting
densities (D1, D2) and three nitrogen application rates (N0, N1, N2) in Rugao City, Jiangsu Province, China.
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Table 1. Experimental Designs and Sampling Dates.

Experiment Year Wheat Varieties N Application
Rates (kg/ha)

Plot Area
(m2)

Planting Density
(plants/ha)

Sampling
Dates

Exp.1 2013–2014 V1: Yangmai 8
V2: Shengxuan 6

N0: 0
N1: 150
N2: 300

7 × 5 D1: 3.0 × 106

D2: 1.5 × 106
9/15/23 April

6 May

Exp.2 2014–2015 V1: Yangmai 8
V2: Shengxuan 6

N0: 0
N1: 150
N2: 300

7 × 5 D1: 2.4 × 106

D2: 1.5 × 106
8/17/25 April

6 May

2.2. Data Acquisition and Processing

2.2.1. Color Images from Unmanned Aerial Vehicle (UAV)

In this study, an eight-rotor ARF-MikroKopter UAV (Figure 2a) was used as the platform for the
UAV-camera system and its specifications are listed in Table 2. A Canon 5D Mark III (Canon Inc.,
Japan) commercial digital camera (Figure 2b) was mounted on the UAV and took RGB images in
continuous mode. The CIR camera was modified from a Canon SX260HS camera (Canon Inc.) by
changing the original red channel to a near-infrared channel. The main parameters of the two cameras
are described in Table 3. An MC-32 remote control module and a ThinkPad laptop were used to
control the autonomous UAV flight. During each flight, the camera was fixed on a two-axis gimbal,
with the lens positioned vertically downward at 50 m altitude. Considering the lighting conditions,
the exposure time and shutter speed were fixed for each campaign. UAV campaigns were conducted
at noon in clear weather under stable light conditions. The spatial resolution of the RGB and CIR
imagery was 3 cm. The acquisition dates of these images are listed in Table 4.
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Figure 2. The unmanned aerial vehicle (UAV) camera system: (a) ARF-MikroKopter UAV, (b) normal
color (RGB) camera (Canon 5D Mark III) and (c) color near-infrared (CIR) camera (Canon SX260HS).

Table 2. Specifications of ARF-MikroKopter Unmanned Aerial Vehicle (UAV).

Parameter Value

Weight (without batteries) 2050 g
Size 73 (width) × 73 (length) × 36 (height) cm

Battery Wight (4s/5000) 520 g
Maximum payload 2500 g

Flight duration 8~41 min
Temperature range −5 ◦C ~ 35 ◦C
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Table 3. Main Parameters of Normal Color (RGB) and Near Infrared (NIR-G-B) Cameras.

Parameter
Value

RGB Camera CIR Camera

Blue Channel Visible blue light Visible blue light
Green Channel Visible green light Visible green light
Red Channel Visible red light
NIR Channel 670–770 nm

Geometric Resolution 5760 × 3840 pixel 4000 × 3000 pixel
Focal Length 24 mm 4 mm

Table 4. Acquisition Dates of Unmanned Aerial Vehicle (UAV)-Based Digital Camera Images.

Date Growth Stage RGB Imagery CIR Imagery

Exp. 1 (2014)

9 April Booting 8 4

15 April Heading 8 4

23 April Anthesis 8 4

6 May Filling 8 4

Exp. 2 (2015)

8 April Booting 4 4

17 April Heading 4 4

25 April Anthesis 4 4

6 May Filling 4 4

Before image pre-processing, the original digital images were screened. We selected images with
a heading overlap rate of ~70% and a side overlap rate of ~30%, and excluded images with excessive
repetition. The selected images were then pre-processed, including a lens distortion correction, image
mosaicking, image registration, and ortho-rectification. First, lens distortion was corrected based on
the Brown Model and the correction coefficients were calculated by an Agisoft Lens. Second, image
mosaicking was conducted in Photoscan (Airsoft LLC, Russia). Third, image registration was referred
to ground control points (GCPs) in the experimental area (see Figure 1). The GCPs were painted
on a road surface as black annuluses, with inner and outer diameters of 10 and 50 cm, respectively.
The geographic coordinates of the GCPs were determined using a real time kinematic (RTK) GPS
system, with an error less than 2 cm in the horizontal direction and less than 3 cm in the vertical
direction. Finally, ortho-rectification was automatically performed using Photoscan. Figure 3 shows
the processed images from RGB and CIR cameras at the four growth stages.
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Figure 3. The digital images from normal color (RGB) (a–d) camera and color near-infrared (CIR)
(e–h) at the booting (a,e), heading (b,f), anthesis (c,g) and filling (d,h) stages. Red-green-blue and near
infrared (NIR)-red-green channels are presented as RGB for RGB and CIR cameras.
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2.2.2. Determination of Leaf N Concentration (LNC)

Common measures of crop LNC are either area-based (LNCarea, g/m2) or mass-based (LNCmass, %).
LNCarea is the N mass per unit leaf area and LNCmass is the ratio of N mass to leaf dry mass. These
two measures can be converted between each other through the leaf mass per area (LMA), i.e.,
LNCarea = LNCmass × LMA [33]. Therefore, LNCarea should be determined based on both LNCmass

and LMA measures, while LNCmass can be measured directly in the laboratory. Given its strong
connection with photosynthetic capacity [34] and its widespread use in fertilization management [35,36],
LNCmass has received more attention and has been estimated from remotely sensed data more often
than its counterpart LNCarea [37–40]. The term LNC hereafter refers to LNCmass.

Ground destructive samplings were taken at critical growth stages of winter wheat (Table 1) on
the same dates as the UAV campaigns. Thirty hills of wheat plants were randomly cut above the
ground surface of each plot and separated into leaves, stems, and panicles. All leaves were oven-dried
at 105 ◦C for 30 min and then at 80 ◦C until a constant weight. We then grounded and stored all
samples in plastic bags for chemical analysis. The LNC was determined based on the micro-Keldjahl
method [41] with SEAL AutoAnalyzer 3 HR (SEAL Analytical, Ltd., German).

2.2.3. Derivation of Vegetation Indices (VIs)

The main VIs derived from digital camera images are summarized in Table 5. For RGB cameras,
five widely used color indices were chosen in this study: the NGRDI [42], Kawashima index (IKaw) [17],
red green ratio index (RGRI) [43], visible atmospherically resistance index (VARI) [42], and ExG [18].
For the CIR camera, we used the GNDVI [44] and enhanced normalized difference vegetation index
(ENDVI), because GNDVI is related to chlorophyll concentration, while the ENDVI was recommended
by the company that manufactured the modified cameras (www.maxmax.com) and also can monitor
vegetation vigor [27]. The VIs could be categorized into two groups according to the number of
channels used. Some were constructed by two channels, such as NGRDI, IKaw, RGRI, and GNDVI.
The others (i.e., VARI, ExG, and ENDVI) were established using three channels.

Table 5. Formulas and References of Possible Vegetation Indices (VIs).

Camera VI Name Formula

RGB NGRDI Normalized green red difference index (G−R)/(G+R)
IKaw Kawashima index (R−B)/(R+B)
RGRI Red green ratio index R/G
VARI Visible atmospherically resistance index (G−R)/(G+R−B)
ExG Excess green vegetation index (2G−R−B)/(G+R+B)

TCVI 1 True Color Vegetation Index 1.4*(2R−2B)/(2R−G−2B+255*0.4)
CIR GNDVI Green normalized difference vegetation index (NIR−G)/(NIR+G)

ENDVI Enhanced normalized difference vegetation index (NIR+G−2B)/(NIR+G+2B)
FCVI 2 False Color Vegetation Index 1.5*(2NIR+B−2G)/(2G+2B−2NIR+255*0.5)

1 TCVI is the True Color Vegetation Index derived from RGB images. 2 FCVI is the False Color Vegetation Index
from CIR images. They are newly conducted in this paper.

Color vegetation index (CVI) derived from digital imagery is often calculated as ratios of DN
values. However, the previous VIs listed in Table 5 were proposed without considering background
material, such as soil in the field. Previous studies have suggested that the influence of the soil
background can be reduced by adjusting the VIs with a term representing soil brightness [22,28]. Based
on the ratio form and an equivalent soil adjustment, the commonly used CVIs from digital cameras
can be expressed as:

CVI =
(1 + L)(a1R + a2G + a3B)
(a4R + a5G + a6B + 255 ∗ L)

(1)

www.maxmax.com
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where G and B are the DN values of the green and blue channels, respectively; R represents the red
component of RGB imagery or the near-infrared component of CIR imagery; ai is the coefficient of each
channel; and L is a soil background adjustment parameter.

To explore the capability of digital cameras for estimating LNC in wheat, we constructed new CVI
from both RGB and CIR images. They were determined by optimizing the values of ai and L based on
the cost function J defined as:

J = 1−

∑n
i=1 (LNCm,i − LNCp,i)

2∑n
i=1 (LNCm,i − LNCm,i)2

(2)

where LNCm is the measured LNC. LNCp was predicted by the best fitted function of CVI and LNCp is
the average value of LNCp. According to the imaging principle of a Bayer filter, we set the value of ai
as an element of {−2, −1, 0, 1, 2}. Based on the setting rules of a soil background adjustment parameter
in [22], L ranges from 0 to 1, with intervals of 0.1. The value of L varies by the amount or cover of green
vegetation: in very high vegetation regions, L = 0; and in areas with no green vegetation, L = 1. Given
that the maximum value of the DN was 255, L was multiplied by 255 in the denominator. All data from
Exp. 2 were used in Equation (2). All possible combinations of variables (i.e., ai and L) were traversed,
and the corresponding values of J were compared. The values of ai and L in Equation (1) that yield the
best J were the optimal variables. Consequently, the TCVI from RGB images and the FCVI from CIR
images were determined as follows:

TCVI =
(1 + 0.4) ∗ (2R− 2B)

(2R−G− 2B + 255 ∗ 0.4)
(3)

FCVI =
(1 + 0.5) ∗ (2NIR + B− 2G)

(2G + 2B− 2NIR + 255 ∗ 0.5)
(4)

2.3. Data Analysis and Evaluation

The channel information from digital cameras that constituted the VIs was first analyzed based on
the data from Exp. 2. We analyzed how the DN values of different channels changed with the changes
of LNC in wheat. To compare and evaluate the performances of different VIs for estimating LNC,
the quantitative relationship between the VIs and LNC was analyzed at different growth stages. For all
growth stages of winter wheat, the LNC–VI models from both RGB and CIR images were calibrated
and validated with a 10-fold cross-validation procedure using the data from Exp. 2. The whole dataset
was randomly divided into three equal-sized sub-datasets with two sub-datasets used as the calibration
(training) dataset and the rest as the validation (testing) dataset. The process was repeated 10 times [45].
For the CIR cameras, the estimation models were also validated independently with the data from Exp.
1. The performance of the different VIs and models were evaluated using the determination coefficient
(R2) and the relative root mean square error (RRMSE).

R2 = 1−

∑n
i=1 (Oi − Pi)

2∑n
i=1 (Oi −Oi)2

(5)

RRMSE =

√
1
n

∑n

i−1
(Oi − Pi)

2
×

1

Oi
× 100% (6)

where n is the number of samples; Oi is the observed LNC value; and Pi is the estimated value.
The saturation sensitivity of the VI versus LNC was evaluated using the index of noise equivalent
(NE4LNC) [46,47].

NE∆LNC =
RMSE{VIvs.LNC}

d(VI)/d(LNC)
(7)
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where RMSE{VIvs.LNC} is the root mean square error (RMSE) of the best fit function and the actual
LNC value, and d(VI)/d(LNC) is the first derivative of VI with respect to LNC. A higher NE4LNC
indicates a lower sensitivity to LNC. The accuracies of the optimal estimation models from RGB and
CIR images were compared under different treatments (i.e., different varieties, N application rates,
and planting densities) using RRMSE.

3. Results

3.1. Changes of Digital Number (DN) Values in Different Channels

Figure 4 shows the changes of DN values in different channels with the variation in LNC for
images from the RGB and CIR cameras. The DN values of all channels from the RGB camera decreased
when the LNC increased to 3.0%, and then became flatter as the LNC continually increased (Figure 4a).
Conversely, the DN values of the near infrared channel from the CIR camera increased as the LNC
increased (Figure 4b). The variations of the DN values in the blue and green channels from both
cameras were similar, but the values were different. For the RGB camera, the values of the green
channel were higher than those of the blue channel. For the CIR camera, the DN values of the green
and blue channels were similar.

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 17 

 

{ . }

( ) / ( )
 

RMSE VIvs LNC
NE LNC

d VI d LNC
 (7) 

where RMSE{VIvs.LNC} is the root mean square error (RMSE) of the best fit function and the actual 

LNC value, and d(VI)/d(LNC) is the first derivative of VI with respect to LNC. A higher NE△LNC 

indicates a lower sensitivity to LNC. The accuracies of the optimal estimation models from RGB and 

CIR images were compared under different treatments (i.e., different varieties, N application rates, 

and planting densities) using RRMSE. 

3. Results 

3.1. Changes of Digital Number (DN) Values in Different Channels 

Figure 4 shows the changes of DN values in different channels with the variation in LNC for 

images from the RGB and CIR cameras. The DN values of all channels from the RGB camera 

decreased when the LNC increased to 3.0%, and then became flatter as the LNC continually increased 

(Figure 4a). Conversely, the DN values of the near infrared channel from the CIR camera increased 

as the LNC increased (Figure 4b). The variations of the DN values in the blue and green channels 

from both cameras were similar, but the values were different. For the RGB camera, the values of the 

green channel were higher than those of the blue channel. For the CIR camera, the DN values of the 

green and blue channels were similar. 

 

Figure 4. Changes of digital number values in different channels of (a) normal color (RGB) images 

and (b) color near-infrared (CIR) images with leaf N concentration (LNC) in winter wheat. 

3.2. Leaf N Concentration (LNC) Estimation Model Constraction and Validation 

3.2.1. Quantitative Relationships between Leaf N Concentration (LNC) and Vegetation Indices (VIs) 

at Different Growth Stages 

Figure 5 shows the relationship between LNC and the VIs determined from both RGB and CIR 

images at different growth stages of winter wheat. For the VIs derived from RGB images, the results 

were quite different (Figure 5a–f). When the LNC increased, the NGRDI, VARI, and ExG increased, 

while the IKaw, RGRI, and TCVI decreased. The exponential relationship between the ExG and LNC 

was weak at all four stages (Figure 5e). The relationship between the NGRDI and LNC (Figure 5a) 

was similar to that between the VARI and LNC, but the fitting curves of the VARI and LNC at the 

booting and heading stages were stronger than those of the NGRDI and LNC (Figure 5d). Unlike the 

other VIs, the relationship between the TCVI and LNC was almost identical at all four stages (Figure 

5f). For the VIs derived from CIR images, the GNDVI, ENDVI, and FCVI all increased as the LNC 

increased (Figure 5g–i). The results for the GNDVI and FCVI at each growth stage were similar 

(Figure 5g,i). The sample points for the relationship between the ENDVI and LNC were distributed 

Figure 4. Changes of digital number values in different channels of (a) normal color (RGB) images and
(b) color near-infrared (CIR) images with leaf N concentration (LNC) in winter wheat.

3.2. Leaf N Concentration (LNC) Estimation Model Constraction and Validation

3.2.1. Quantitative Relationships between Leaf N Concentration (LNC) and Vegetation Indices (VIs) at
Different Growth Stages

Figure 5 shows the relationship between LNC and the VIs determined from both RGB and CIR
images at different growth stages of winter wheat. For the VIs derived from RGB images, the results
were quite different (Figure 5a–f). When the LNC increased, the NGRDI, VARI, and ExG increased,
while the IKaw, RGRI, and TCVI decreased. The exponential relationship between the ExG and LNC
was weak at all four stages (Figure 5e). The relationship between the NGRDI and LNC (Figure 5a)
was similar to that between the VARI and LNC, but the fitting curves of the VARI and LNC at the
booting and heading stages were stronger than those of the NGRDI and LNC (Figure 5d). Unlike
the other VIs, the relationship between the TCVI and LNC was almost identical at all four stages
(Figure 5f). For the VIs derived from CIR images, the GNDVI, ENDVI, and FCVI all increased as the
LNC increased (Figure 5g–i). The results for the GNDVI and FCVI at each growth stage were similar
(Figure 5g,i). The sample points for the relationship between the ENDVI and LNC were distributed
along the fitting curves at the booting, anthesis, and filling stages, but at the heading stage the results
were scattered (Figure 5h). At intermediate to high LNC levels, the NGRDI, RGRI, VARI, and GNDVI
were not sensitive to changes in LNC > 3.0%, especially at the heading stage.
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Figure 5. Leaf N concentration (LNC) (%) plotted against different vegetation indices (VIs) at different
growth stages of winter wheat. (a) normalized green-red difference index (NGRDI), (b) Kawashima
index (IKaw), (c) red green ratio index (RGRI), (d) visible atmospherically resistance index (VARI),
(e) excess green vegetation index (ExG), (f) true color vegetation index (TCVI), (g) green normalized
difference vegetation index (GNDVI), (h) enhanced normalized difference vegetation index (ENDVI),
(i) false color vegetation index (FCVI). Statistics are given in Table 6.
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Table 6. Relationship between leaf N concentration (LNC) and vegetation indices (VIs) at different growth stages of winter wheat. x and y are VI and LNC, respectively.
R2 is the determination coefficient. Relative root mean square error (RRMSE) (%) is the relative root mean square error. The bold values mean the most accurate result
of normal color (RGB) and color near-infrared (CIR) cameras for each term.

Growth Stage

RGB Camera CIR Camera

Normalized
Green-Red
Difference

Index (NGRDI)

IKaw
Red Green
Ratio Index

(RGRI)
VARI

Excess
Green

Vegetation
Index (ExG)

True Color
Vegetation

Index (TCVI)

Green
Normalized
Difference
Vegetation

Index (GNDVI)

Enhanced
Normalized
Difference
Vegetation

Index (ENDVI)

False Color
Vegetation

Index
(FCVI)

Booting Function y = 1.19e8x y = 4.42e−4.68x y = 141e−4.84x y = 1.28e4.57x y = 1.81e2.58x y = 4.73e−0.89x y = 0.99e4.3x y = 1.36e5.6x y = 1.5e1.56x

R2 0.752 0.880 0.743 0.818 0.032 0.854 0.853 0.664 0.866
RRMSE 11.7 8.3 11.9 10.1 22.5 9.1 9.1 13.8 9.5

Heading Function y = 1.31e6.56x y = 5.6e−4.79x y = 64.7e−3.95x y = 1.35e4.18x y = 0.79e5.01x y = 5.62e−1.21x y = 0.52e6.25x y = 0.87e6.42x y = 1.15e1.81x

R2 0.792 0.918 0.782 0.841 0.284 0.911 0.706 0.313 0.822
RRMSE 12.9 8.6 13.1 11.2 23.8 8.9 14.1 22.9 11.5

Anthesis Function y = 1.21e9.26x y = 6.19e−5.95x y = 237e−5.31x y = 1.25e5.73x y = 0.4e9.17x y = 5.11e−1.04x y = 0.71e4.63x y = 0.95e7.67x y = 1.1e1.79x

R2 0.875 0.825 0.868 0.892 0.458 0.855 0.889 0.811 0.911
RRMSE 10.6 11.8 10.8 10.0 21.8 11.5 9.7 12.9 9.0

Filling Function y = 1.79e8.34x y = 9.21e−6.11x y = 143e−4.37x y = 1.78e5.71x y = 0.66e6.98x y = 5.56e−1.08x y = 0.65e5.34x y = 1.13e7.02x y = 0.87e2.45x

R2 0.771 0.746 0.769 0.779 0.426 0.813 0.821 0.648 0.849
RRMSE 18.5 18.6 18.4 18.1 27.5 16.3 15.2 20.0 15.1

All Function y = 1.74e5.21x y = 4.61e−3.52x y = 34.4e−3x y = 1.76e3.27x y = 1.1e4.27x y = 5.09e−1.02x y = 0.77e4.77x y = 1.34e5.08x y = 1.15e1.85x

R2 0.631 0.659 0.634 0.651 0.252 0.852 0.744 0.507 0.792
RRMSE 18.7 17.7 18.6 18.1 26.4 12.1 15.8 21.7 14.0
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To quantitatively analyze the ability of the VIs to estimate LNC at different growth stages, the R2

and RRMSE values at each growth stage and over all four stages are listed in Table 6. Generally,
the results at the filling stage were much worse than at the other three stages, with an RRMSE higher
than 15%. In the first three stages, the RRMSE values of most VIs were around 10%. However,
the performances of the ExG and ENDVI were much poorer than those of the other VIs, especially at
the heading and filling stages. The results for the TCVI and FCVI were not remarkably better than the
other VIs at each growth stage, but they were obviously better for all four stages combined. For the
RGB camera, the IKaw performed best at the booting and heading stages, and the VARI had the highest
R2 and lowest RRMSE values at the anthesis stage. Although the TCVI results were not the most
accurate in the first three stages, they were superior to those of the other VIs derived from RGB images
at the filling stage. For the CIR camera, the performance of the ENDVI was much poorer than that of
the GNDVI and FCVI. The FCVI performed best at each stage, although the RRMSE of 9.5% at the
booting stage was slightly higher than the value of 9.1% for the GNDVI. Compared to the VIs from
RGB images, the FCVI results were less accurate than those of the IKaw at the first two stages, but
were the most accurate at the anthesis and filling stages. For all four stages combined, the performance
of the TCVI was remarkable, with an R2 value of 0.852 and RRMSE of 12.1%, followed by the FCVI
with an R2 value of 0.792 and RRMSE of 14.0%.

3.2.2. Validation of the Leaf N Concentration (LNC) Models for Wheat

The validation statistics for the LNC models constructed from the different VIs are presented in
Table 7. According to the results of the 10-fold cross-validation, the estimation models constructed
from the TCVI had the highest accuracy. Compared to the other VIs from the RGB camera, the RRMSEs
were improved by 6.32% to 15.76% for LNC based on the TCVI. For CIR images, the statistical values
of the FCVI were the best for LNC, followed by the GNDVI. The independent validation indicated that
the FCVI was capable of producing accurate LNC estimations at all stages.

Table 7. Validation statistics for the leaf N concentration (LNC) estimation models from different
vegetation indices (VIs). The bold values mean the most accurate result of normal color (RGB) and
color near-infrared (CIR) cameras for each term.

Camera VI
Cross-Validation Independent Validation

R2 RRMSE (%) R2 RRMSE (%)

RGB Normalized Green Red Difference
Vegetation Index (NGRDI) 0.591 18.24

IKaw 0.618 17.79
Red green ratio index (RGRI) 0.608 18.66

VARI 0.603 18.37
Excess green vegetation index (ExG) 0.150 27.23
True color vegetation index (TCVI) 0.848 11.47

CIR Green normalized difference
vegetation index (GNDVI) 0.720 16.13 0.523 23.66

Enhanced normalized difference
vegetation index (ENDVI) 0.492 20.62 0.207 37.99

False color vegetation index (FCVI) 0.756 14.18 0.627 13.61

3.3. Saturation Sensitivity of Vegetation Indices (VIs) at Different Leaf N Concentrations (LNCs)

As shown in Figure 6, the saturation of the selected VIs was tested under the LNC range of 0 to
5%. The NE4LNC of ExG increased sharply as the LNC increased. The ExG was the VI with the fastest
and largest increase, followed by the ENDVI. When LNC < 3%, the NE4LNC of the IKAW, RGRI,
and VARI were similar. However, when LNC > 3%, the NE4LNC of the IKAW increased more slowly
than that of the RGRI and VARI. Compared to the other VIs, the NE4LNC of the TCVI and FCVI were
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much lower, with that of the TCVI being the smallest. The NE4LNC of the TCVI was still the lowest of
all the VIs at high LNCs.
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3.4. Applicability of the Leaf N Concentration (LNC) Models under Different Treatments

According to the results in Table 6, the optimal LNC estimation models for the whole season
from RGB and CIR images were constructed by the TCVI and FCVI, respectively. Table 8 shows a
comparison of the optimal estimation models from RGB and CIR images under the different treatments.
Generally, the RRMSE values of LNC estimations under the various treatments were lower than 15%.

Table 8. Relative root mean square error (RRMSE, %) values for leaf N concentration (LNC) estimations
based on normal color (RGB) and color near-infrared (CIR) cameras under different treatments.

Treatment RGB Imagery CIR Imagery

Variety Yangmai 8 13.95 14.69
Shengxuan 6 9.88 13.34

N rates (kg/ha)
0 13.01 16.41

150 11.23 12.61
300 11.64 13.35

Planting Density (plants/ha) 3.0 × 106 9.01 14.17
1.5 × 106 14.49 13.87

For the different wheat varieties, the RRMSE values of LNC estimations from RGB images were
lower than those from CIR images, with the lowest RRMSE of 9.88% for Shengxuan 6. Under the
different N application rates, the LNC models from RGB images performed better than those from
CIR images. For both RGB and CIR images, the RRMSE values for N application rates of 150 kg/ha
were lower than for the other N application rates. As planting density decreased, the accuracy of LNC
estimation from RGB images decreased, while for CIR images it increased. The best results for the
lowest planting density were obtained from CIR images, and the lowest RRMSE values for the highest
planting density were obtained from RGB images.
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4. Discussion

4.1. Performance of the Vegetation Indices (VIs) Derived from Digital Imagery in Estimating Wheat Leaf N
Concentration (LNC)

The estimation of VIs is the most common and simplest way to extract information on crop growth
status from digital images [27]. Different VIs calculated from different wavelengths highlight various
vegetation properties [48–50]. Due to the different band combinations and different formulas used,
the accuracy of N status estimation varies between the different VIs.

In this study, seven commonly used VIs (i.e., NGRDI, IKAW, RGRI, VARI, ExG, GNDVI, and
ENDVI) and two new VIs (i.e., TCVI and FCVI) derived from both RGB and CIR images for estimating
LNC were analyzed in wheat. As shown in Table 9, the numerator of the VIs from RGB images consisted
of two channels, except ExG. Among them, the numerator of IKaw and TCVI contained the red and
blue bands, while the red-green VIs (i.e., NGRDI, RGRI, and VARI) used the red and green bands as
the numerator. The results in Figures 5 and 6 indicated that the ability to mitigate the saturation of
the red-green VIs under high LNC levels was weakest for IKaw and TCVI. This might be because
the red and blue bands are the chlorophyll and carotenoid absorption bands [51]. Given that crops
respond to N status mainly by a change in chlorophyll concentration in the leaves [52], VIs using ratios
or normalized differences of values acquired in the red and blue bands were significantly related to the
N status of crops [53–55]. The GNDVI, which is calculated from the normalized difference between
values of the green and NIR bands, was also limited by the saturation under intermediate to high LNC
levels (Figures 5g and 6). Unlike the GNDVI, the proposed FCVI acquired information in the blue
band, which reduced the saturation. Although the ENDVI also used all three bands, its performance
in estimating LNC was relatively poor. Therefore, we cannot conclude that a VI incorporating more
bands is able to produce more reliable LNC results. The accuracy is dependent on both the band
configuration and VI formulation.

Table 9. Coefficients for Different Vegetation Indices (VIs).

VI
Coefficients for Different Channels Channels

L
a1 a2 a3 a4 a5 a6 R G B

Normal
color (RGB)

Normalized green red difference
vegetation index (NGRDI) −1 1 0 1 1 0 DNred DNgreen 0

IKaw 1 0 −1 1 0 1 DNred DNblue 0
Red green ratio index (RGRI) 1 0 0 0 1 0 DNred DNgreen 0

VARI −1 1 0 1 1 −1 DNred DNgreen DNblue 0
Excess green vegetation index (ExG) −1 2 −1 1 1 1 DNred DNgreen DNblue 0
True color vegetation index (TCVI) 2 0 −2 2 −1 −2 DNred DNgreen DNblue 0.4

Color
near-infrared

(CIR)

Green normalized difference vegetation
index (GNDVI) 1 −1 0 1 1 0 DNnir DNgreen 0

Enhanced normalized difference
vegetation index (ENDVI) 1 1 −2 1 1 2 DNnir DNgreen DNblue 0

False color vegetation index (FCVI) 1 −2 1 −2 2 2 DNnir DNgreen DNblue 0.5

4.2. Accuracy and Universality of Leaf N Concentration (LNC) Estimation Models in Wheat

In this study, the LNC estimation models constructed with the TCVI and FCVI were sensitive
under varying LNCs (from 0 to 5%) and had a better accuracy under the different treatments. Moreover,
they were generalizable from the booting to filling stages of wheat. As the growth stage progressed,
dramatic changes in the composition of canopy components and background materials can occur.
These changes pose a critical challenge for the timely monitoring of crop N status. For the late stages
(booting to filling) in the reproductive period, a single LNC–TCVI or LNC–FCVI model could be
fitted, with a high efficiency and low error (Figure 5 and Table 6). Although ExG is mainly used to
extract vegetation from different backgrounds and has been widely cited [12,42,56], its performance for
estimating N status was very poor, which was consistent with previous results [12]. Previous studies
have suggested that adjusting VIs with a term representing soil brightness could reduce the effect of
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the soil background [22,28]. Given that a soil background adjustment parameter (L) was added to the
TCVI and FCVI, they had the potential to reduce the significant effect of soil background during the
early stages of the vegetative period.

Due to the limited experiment, we only made an independent validation for the LNC–VI models
from CIR images based on Exp. 1, and the LNC–VI models from both RGB images were calibrated and
validated with a 10-fold cross-validation procedure using the data from Exp. 2. Since the FCVI and
TCVI were developed based on the relationships between CVI and LNC from Exp.2, there is a need to
validate their performance with independent measurements under different conditions (i.e., varied
crop types, different site conditions and other cameras). Although the coefficients of FCVI and TCVI
had been modified, the accuracy of LNC–TCVI or LNC–FCVI models was not always the highest (see
Table 6). For example, the IKaw performed best at the booting and heading stages, and the VARI had
the highest R2 and lowest RRMSE values at the anthesis stage. However, these relationships may
vary with crop type, site condition, and growth stage as influenced by the variation in physiological
processes. Therefore, the universality of the LNC estimation models needs to be further verified during
the early growth stages and under various conditions.

4.3. Capability of Commercial Digital Cameras for Wheat Leaf N Concentration (LNC) Estimation

The development of simple but efficient methods to monitor crop growth across a wide range
of LNCs is urgently needed for precision agriculture in China. This is because the application of
N fertilizer has increased in recent years in an attempt to boost production. Therefore, the timely
monitoring of crop N status under intermediate to high N application levels is essential to maximize
yield. In addition, easy-to-operate and low-cost equipment is required to help the owners of large
farms or smallholders with fertilization management. Due to the low price and convenient operation
of digital cameras, they have potential application prospects. In this study, UAV campaigns were
conducted at noon in clear weather under stable lighting conditions. However, radiation correction
should be considered in the future work, especially when experiencing changeable light intensity
(e.g., for rice monitoring in summer).

To explore the capability of commercial digital cameras to estimate LNC in wheat, we constructed
new VIs (i.e., TCVI and FCVI) from both RGB and CIR images. Because the TCVI and FCVI were based
on large amounts of field experimental data under different conditions, they performed reliably in
indicating the LNC in wheat. It is suggested that commercial digital cameras have the capability to
derive optimum VIs for LNC monitoring in winter wheat. In addition, the performance of RGB images
was generally better than that of CIR images (see Table 8). This study supported the widespread
agreement that digital cameras are powerful tools for assessing crop growth status and further proved
the applicability of UAV-based RGB and CIR cameras for the monitoring of crop N status.

5. Conclusions

The applicability of digital cameras mounted on UAVs for monitoring the LNC of winter wheat
was evaluated in this study. Seven commonly used VIs (i.e., NGRDI, IKaw, RGRI, VARI, ExG, GNDVI,
and ENDVI) and two proposed VIs (i.e., TCVI and FCVI) were used to estimate LNC at different
growth stages of winter wheat. The performances of NGRDI, RGRI, VARI, and GNDVI were limited
by saturation at intermediate to high LNCs (i.e., LNC > 3.0%). The accuracy of LNC estimation using
ExG was the poorest among the VIs tested, while the optimal models were constructed by the TCVI
and FCVI for all stages. The models were then cross-validated with datasets from different cultivars,
N application rates, and planting densities. Compared to the other VIs derived from the RGB camera,
the RRMSE values of the TCVI were improved by 6.32% to 15.76% for LNC. For the CIR camera,
the statistical values of the FCVI were the best for determining LNC (R2 = 0.756, RRMSE = 14.18%).
The independent validation also indicated that the FCVI was capable of accurately estimating LNC
at all growth stages. In summary, commercial digital cameras mounted on an UAV are feasible for
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monitoring wheat LNC at the farm-scale, especially under the high N fertilizer applications and
different treatments typically used in fields in modern China.

In practical terms, commercial digital cameras are low-cost and easy to operate for researchers
and farmers. Although the equipment is applicable, the LNC–VI relationship may vary with crop
type, site condition, and growth stage, and may be influenced by variations in physiological processes.
Therefore, additional calibrations are needed for different conditions before extending this method to
other crops. For example, the use of UAV-based digital cameras for crop N status monitoring should
be further investigated during the early stages of the vegetative period. Moreover, fluctuating ambient
lighting conditions are an issue that should be addressed in future studies.
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