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Abstract: In order to remove speckle noise from original synthetic aperture radar (SAR) images
effectively and efficiently, this paper proposes a hybrid dilated residual attention network (HDRANet)
with residual learning for SAR despeckling. Firstly, HDRANet employs the hybrid dilated convolution
(HDC) in lightweight network architecture to enlarge the receptive field and aggregate global
information. Then, a simple yet effective attention module, convolutional block attention module
(CBAM), is integrated into the proposed model to constitute a residual HDC attention block through
skip connection, which further enhances representation power and performance of the model.
Extensive experimental results on the synthetic and real SAR images demonstrate the superior
performance of HDRANet over the state-of-the-art methods in terms of quantitative metrics and
visual quality.

Keywords: SAR image; speckle; hybrid dilated convolution; attention mechanism; convolution
neural network

1. Introduction

The synthetic aperture radar (SAR) as an active imaging system mounted on a moving platform,
which can sequentially transmit the electromagnetic waves and receive the backscattered echoes from
ground targets. Different from optical or infrared systems, SAR breaks environmental restrictions,
can steadily provide high-resolution images of the scene targets in various weather and light conditions.
However, due to its coherent imaging properties, SAR images are contaminated by speckle noise [1].
The existence of speckle noise seriously reduces the quality of SAR image, which not only brings
difficulties to the subsequent image interpretations, but also limits the applications of SAR systems.
Therefore, it is very important to develop an appropriate speckle suppression method for SAR image.

Various despeckling methods have been proposed since 1980s, which mainly include spatial
domain filters, transform domain despeckling methods, Markovian model-based methods, variation
methods, and nonlocal means algorithms. The spatial domain filter performs noise suppression by
filtering a SAR image via a fixed-size sliding window. Among them, Lee filters [2], Kuan filters [3],
Frost filters [4], and Gamma MAP filters [5] are commonly used. However, these algorithms are
assumed to be executed on a homogeneous region, so they often fail to preserve the edge and texture
in real SAR image. In the transform domain, the wavelet-based method can effectively separate signal
and noise according to the different characteristics of image and speckle noise in the wavelet domain.
Despite this, it also has some defects that cannot be ignored. The main disadvantage of this method
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is that the wavelet transform [6] has a good reflection of the zero-dimensional singularity, in other
words, it reflects the location and features of the point target in the image, but it is difficult to express
the higher-dimensional features. Therefore, some edge and texture features will be blurred after the
wavelet transform processing.

The Markov random field (MRF) can provide quantitative description of the image prior
information by modeling the contextual information, and it has also been widely used in the SAR
despeckling task [7]. For example, Gleich [8] utilized three Markovian models with non-quadratic
regularization to obtain SAR image properties. Mahdianpari et al. [9] proposed an adaptive despeckling
method, which models the contextual information for texture and speckle components via a Gaussian
Markov random field (GMRF). The weakness of these MRF-based despeckling methods lies in the
complex prior constraints. Furthermore, the total variation (TV) based method [10,11] is also an
important branch of speckle suppression. This kind of method uses the energy function, which
combines the regularization term and data fidelity term to achieve the balance between denoising
smoothing and edge preservation. Although the TV method can significantly reduce the noise
interference and maintain the image edge, it inevitably produces the step effect, which greatly reduces
the quality of the SAR image.

Nonlocal means [12], on the other hand, has emerged as a powerful idea to solve the above
problems, and a series of denoising methods based on nonlocal means have been proposed. The nonlocal
means algorithm uses the similarity between image blocks for weighted filtering in the whole image.
The higher the similarity is, the greater the contribution to the filtering results. This idea was first
applied to suppress additive white Gaussian noise (AWGN) and achieved an excellent denoising effect.
Then, the similarity measure of the algorithm was adjusted to adapt to SAR images. Such as the
probabilistic patch-based (PPB) filtering method [13] and block-matching 3D (BM3D) algorithm [14],
demonstrating the outstanding despeckling performance. Although the nonlocal means method has
achieved great success in speckle noise suppression, its noise reduction effect depends largely on the
selection of algorithm parameters. Moreover, the execution efficiency of large-scale images still needs
to be further improved.

Recently, with the rapid development of deep learning, convolutional neural networks (CNNs)
have shown superior performance in image classification [15–17], target detection [18], semantic
segmentation [19], and other fields [20,21]. Therefore, some denoising methods based on CNN have
been proposed successively, such as RED-Net [22], DnCNN [23], FFDNet [24], and CBDNet [25], which
show excellent effects in both non-blind and blind denoising. Subsequently, CNN is employed for
SAR image despeckling. Considering the multiplicative noise, the SAR-CNN [26] with homomorphic
processing is proposed. Then, in order to promote the despeckling performance, the ID-CNN [27] and
SAR-DRN [28] methods adopted the end-to-end mapping network structure, which further improved
the quality of despeckling image. These CNN-based approaches solve the defects of classical methods
that only use the internal information of the input image, and learn a large number of external image
information. However, these approaches still have the issues of over smoothness and texture distortion.

Lately, the attention module has increasingly become a useful tool for deep neural networks,
a few deep networks integrating with attention mechanism have been proposed to handle a series
of image processing tasks and achieved remarkable results. The success of these methods is mainly
based on the reasonable assumption that human perception system does not immediately attempt to
process a whole image, but only focuses on the more informative parts it needs. This mechanism also
helps to further enhance the representational power of neural network. However, to the best of our
knowledge, no attention mechanism has been applied to CNN to achieve superior results in the SAR
despeckling task.

In this work, in order to solve the above problems existing in the CNN-based method, we proposed
a hybrid dilated residual attention network (HDRANet), which combines the hybrid dilated convolution
and attention module via a residual architecture. To avoid gridding artifacts caused by the use of dilated
convolution, we adopt hybrid dilated convolution (HDC) to enlarge the receptive field, which can



Remote Sens. 2019, 11, 2921 3 of 20

aggregate more global information for image restoration. Moreover, we utilize both spatial attention
and channel attention to further improve the feature extraction capability and performance of our
HDRANet. It is worth noting that the proposed method employs the fully convolutional network
(FCN) architecture to achieve pixel-level despeckling. Different from the patch-based CNN, which
divides the input image into patches and then applies CNN to the process, FCN replaces the fully
connected layers with the convolutional layers, which maintains the output image structure and has
higher accuracy and computational efficiency [29].

The paper is organized as follows. Section 2 briefly reviews the SAR noise model, the CNN based
approaches for image denoising and despeckling as well as attention mechanism. Section 3 describes
the proposed HDRANet method for SAR image despeckling in detail. Section 4 presents the datasets
and evaluation indexes of the method, and then shows the experimental results on both simulated
and real data. Section 5 analyzes the validation of our approach. Finally, Section 6 concludes this
paper concisely.

2. Related Work

2.1. SAR Speckle Noise Model

Speckle noise in a SAR image is correlated with signals, and the fully developed speckle noise can
be regarded as a multiplicative noise [1]. Let Y be the speckle noise image, X be the noise free image,
and N be the speckle noise component. The multiplicative noise model can be defined as follows:

Y = N ·X. (1)

The speckle noise intensity NI in SAR images with multi-look processing follows a Gamma
distribution [30], and its probability density function (PDF) is:

p(NI) =

 LLNI
L−1 exp(−LNI)

Γ(L) NI > 0

0 NI ≤ 0
, (2)

where L is the number of looks in multi-look processing, Γ denotes the Gamma function, and L ≥ 0.
Meanwhile, the PDF of multi-look processed speckle noise amplitude NA is as follows, it is worth
noting that under single-look conditions, NA follows the Rayleigh distribution:

f (NA) =

 2LLN2L−1
A exp(−LN2

A)

Γ(L) NA > 0

0 NA ≤ 0
. (3)

2.2. CNN Based Image Denoising/Despeckling

Image denoising, as a sub-task of image restoration in low-level computer vision, can be considered
as an ill-posed inverse problem, hoping to recover a clean image from a noise-corrupted image while
maintaining the texture details as much as possible. In the past few years, due to the strong nonlinear
end-to-end mapping properties, CNN-based denoising methods have achieved state of the art results.

Different from the key features extracted by the network for high-level vision task, image
denoising requires the texture details of the whole image to be maintained during the process of
network propagation. In addition, gradient vanishing is also considered, so the designed network
structure is relatively simple [31], which limits the performance of the models. To address this issue,
Mao et al. [22] proposed a very deep convolutional encoder–decoder network named RED-Net that
connects the convolutional and deconvolutional layers by symmetric skip connections to tackle the
gradient vanishing problem as well as transmit the image details in a very deep network. Furthermore,
Zhang et al. [23] suggest a DnCNN model, which contained 17 convolutional layers by modifying a
visual geometry group(VGG) [32] network, and achieved an outstanding result on AWGN image by
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combining CNN with residual learning strategy and batch normalization. Subsequently, FFDNet [24]
is proposed for image denoising at different noise levels with a single network, which takes the noise
level map and downsampled sub-images as the input of the network, and shows a satisfying noise
suppression effect on real-world noisy images. Most recently, Guo et al. [25] further proposed a
CBDNet for blind denoising of real photographs, which improved the problem of under-estimation of
noise level by adding a noise estimation subnetwork with asymmetric learning.

In very recent years, the CNN-based approaches have been also applied to a SAR image to remove
speckle noise. Inspired by the DnCNN method, Chierchia et al. [26] first proposed the SAR-CNN
model. According to the multiplicative noise model and homomorphic processing strategy, the loss
function was redefined to make it more suitable for SAR image denoising. To further improve the
denoising performance, the lightweight denoising network was proposed, such as ID-CNN [27] and
SAR-DRN [28]. Among them, ID-CNN uses an end-to-end fashion to learn the mapping between
the input SAR image and despeckled image, getting rid of the extra homomorphic transformation
processing. Besides, an additional TV loss is combined with Euclidean loss to balance the details
preservation and smoothness. SAR-DRN improves the receptive field of convolution kernel by adding
dilated convolution while maintaining the filter size and network depth. The cooperation of skip
connection and residual learning strategy is employed to keep image details between the network layers
and effectively reduce the problem of gradient. Furthermore, Lattari et al. [33] modified the U-Net
structure used for image segmentation to extract features at different levels. The data augmentation
was adopted to further enhance generalization performance. It is worth noting that this method avoids
overfitting problem by generating speckle noise data online.

2.3. Attention Mechanism

Inspired by the fact that attention mechanism can help humans focus on key information selectively
in human perception system, attention has been applied to deep learning to improve network
performance. Subsequent research works have also proved that this mechanism can significantly
enhance the feature expression ability of the model [34–39].

Using attention in cooperation with CNN is a popular approach shared by recent work in the
image processing field. Jaderberg et al. [34] proposed the spatial transformation network (STN), which
extracts the important spatial information of the input image via the use of a grid generator and
sampler. Besides, attention has been also applied to the channel domain. The most famous one is the
squeeze-and-excitation (SE) block [35]. This computational unit improves the representational capacity
of the network by establishing the interdependencies between the convolutional feature channels. In
order to further improve the accuracy of attention mechanism, Wang et al. [36] have designed residual
attention network, which uses an encoder–decoder module to generate three-dimensional attention
maps for convolutional features. It is worth noting that the network combines residual units with
attention, so that it still has excellent performance in a very deep network with multiple attention
modules stacked. Based on the above methods, the convolution block attention module (CBAM) [37]
and bottleneck attention module (BAM) [38] have been proposed. These methods innovatively refine
the convolutional features independently in the channel and spatial axes, which greatly reduces the
overhead of parameters and computation. Recently, Huang et al. [39] proposed a novel criss-cross
attention module, which can obtain global context information only by stacking two criss-cross attention
modules sequentially, and has advanced performance while drastically reducing time and space cost.

Broadly speaking, the common idea of these attention methods is to integrate an attention selection
sub-network into a deep network. They redefine the convolutional features by attention weights to
selectively emphasize effective features and suppress useless features. However, few works have
been proposed to investigate the effect of attention for SAR image despeckling. Compared with the
previous methods, our proposed method employs attention in both spatial and channel dimension,
and achieves a superior result in speckle noise suppression with a smaller network size and lower
computational cost.
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3. Proposed Method

In this section, we present the hybrid dilated residual attention network for SAR image despeckling,
i.e., HDRANet, which combines a hybrid dilated convolutional framework HDC with an effective
attention module CBAM through skip connection. The proposed HDRANet contains two residual
HDC attention blocks and a dilated convolutional layer, as illustrated in Figure 1. With the residual
learning strategy, the proposed HDRANet tries to learn the mapping from the speckled image to the
estimated pure speckle noise, and then subtracts the pure speckle noise from the speckled image to get
the despeckled image. The details of the algorithm are described in the following.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 20 

 

channel dimension, and achieves a superior result in speckle noise suppression with a smaller 
network size and lower computational cost. 

3. Proposed Method 

In this section, we present the hybrid dilated residual attention network for SAR image 
despeckling, i.e., HDRANet, which combines a hybrid dilated convolutional framework HDC with 
an effective attention module CBAM through skip connection. The proposed HDRANet contains 
two residual HDC attention blocks and a dilated convolutional layer, as illustrated in Figure 1. With 
the residual learning strategy, the proposed HDRANet tries to learn the mapping from the speckled 
image to the estimated pure speckle noise, and then subtracts the pure speckle noise from the 
speckled image to get the despeckled image. The details of the algorithm are described in the 
following. 

 
Figure 1. The architecture of the proposed hybrid dilated residual attention network (HDRANet). 

3.1. Hybrid Dilated Convolution 

The context information can effectively facilitate the restoration of degraded regions in image 
denoising. In the CNN model, more contextual information is usually captured by enlarging the 
receptive field, which is mainly realized via increasing the filter size or stacking convolutional 
layers. However, these operations will undoubtedly raise the number of parameters and complexity 
of the model. Recently, the dilated convolution has become popular, as it can effectively enlarge the 
receptive field while maintaining the filter size and network depth unchanged compared with 
conventional convolutions. 

Figure 2 shows the receptive field size of dilated convolution by different dilate rate. Suppose 
the kernel size of convolution filters is 3 × 3, in standard convolution, the receptive field size of i-th 
layer is + × +(2 1) (2 1)i i , while in dilated convolution, the receptive field grows exponentially in 

+ +×1 1(2 -1) (2 -1)i i  without parameter increase, where = −1,..., 1,i n n . 
However, when a feature map has higher-frequency content than the sampling rate of the 

dilated convolution, the use of dilated convolution can cause gridding artifacts [40]. Such gridding 
artifacts may cause the inconsistency of local information and the uncorrelation of information 
across large distances. To solve this issue, the hybrid dilated convolution (HDC) was proposed in 
[41]. 

Figure 1. The architecture of the proposed hybrid dilated residual attention network (HDRANet).

3.1. Hybrid Dilated Convolution

The context information can effectively facilitate the restoration of degraded regions in image
denoising. In the CNN model, more contextual information is usually captured by enlarging the
receptive field, which is mainly realized via increasing the filter size or stacking convolutional
layers. However, these operations will undoubtedly raise the number of parameters and complexity
of the model. Recently, the dilated convolution has become popular, as it can effectively enlarge
the receptive field while maintaining the filter size and network depth unchanged compared with
conventional convolutions.

Figure 2 shows the receptive field size of dilated convolution by different dilate rate. Suppose
the kernel size of convolution filters is 3 × 3, in standard convolution, the receptive field size of i-th
layer is (2i + 1) × (2i + 1), while in dilated convolution, the receptive field grows exponentially in
(2i+1

− 1) × (2i+1
− 1) without parameter increase, where i = 1, . . . , n− 1, n.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 20 
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However, when a feature map has higher-frequency content than the sampling rate of the dilated
convolution, the use of dilated convolution can cause gridding artifacts [40]. Such gridding artifacts
may cause the inconsistency of local information and the uncorrelation of information across large
distances. To solve this issue, the hybrid dilated convolution (HDC) was proposed in [41].

Assume N convolutional layers with kernel size K × K that dilation rates as [r1, . . . , ri, . . . , rn],
the HDC aims to let the final size of receptive field fully cover a square region without any holes or
missing edges. The maximum distance between two nonzero values Mi is defined as

Mi = max[Mi+1 − 2ri, Mi+1 − 2(Mi+1 − ri), ri], (4)

where the design goal is to let M2 ≤ K with Mn = rn. In the proposed HDRANet model, for kernel size
3 × 3, r = [1, 3, 5] pattern works as M2 = 3, as shown in Figure 3. Clearly, the dilate convolution with
different dilate rate extracts features at different scale, which can acquire different levels of context
information from local to global. The advantage of HDC is that it can effectively expand the receptive
field of CNN to integrate global information of image without causing gridding artifacts. Besides,
HDC can be naturally used in CNN without adding extra modules.
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3.2. Convolutional Block Attention Module

Recent studies show the effectiveness and significance of attention in enhancing performance
of CNN [34–39]. Attention tells where to focus and improves the representation of interests, which
further improves the expression ability of key features extracted by CNN. Among numerous attention
modules, CBAM [37], a lightweight and general module that can be easily integrated into any CNN
architecture with negligible overheads, showed efficacy in computer vision problems. Hence, CBAM
is introduced into our network to boost the representation power of the features.

CBAM refine convolutional features by sequentially applying channel and spatial attention
modules, as illustrated in Figure 4. Given an input image, the channel attention module concentrates
on ‘what’ is meaningful, while the spatial attention module concentrates on ‘where’ is informative,
which is a supplement to the channel attention module [37]. In the channel attention module,
both average-pooling and max-pooling are performed in the spatial dimension squeezing process, and
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the average-pooled features and max-pooled features are then forwarded to a multi-layer perceptron
(MLP) with one hidden layer whose size is reduced by dividing a reduction ratio to produce the
channel attention map. For the spatial attention module, the average and max pooling are applied
in the channel axis and concatenate them to generate a spatial attention map by using one 7 × 7
convolution. The channel attention map and spatial attention map are sequentially multiplied to the
input feature map for adaptive feature refinement.
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3.3. Residual Learning

To address the performance degradation problem that is the accuracy begins to degrade with the
network depth increasing, He et al. [42] proposed residual learning by assuming that the residual
mapping is much easier to be learned than the original mapping. With the strategy of residual learning,
the CNN model even with extremely deep depth can be easily trained and improved performance,
which has been achieved in many computer vision tasks.

There are multiple implementations for residual learning. Using a skip connection is a common
approach to implement residual learning, which is originally proposed in ResNet [42]. In another
implementation, transforming the label data into the difference between the input data and clean data,
which has been used in DnCNN [23] for image denoising.

Inspired by those implementations, the proposed HDRANet adopts the residual learning by
using a combination of skip connection and transforming label data. The residual HDC attention
block employs skip connection to connect the first layer refined by CBAM to the last layer. The skip
connection, which passes the feature information of a certain layer to its rear layer, can not only
maintain the image details but also alleviate the gradient vanishing problem.

Given Nu training image pairs
{
xi, yi

}Nu
i=1, where xi and yi denote the clean image and the speckled

image respectively. Owing to residual learning formulation employed, residual images as labels are
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the difference between the input speckled image and the clean image. Therefore, the loss function
using the mean squared error (MSE) is defined as follows:

loss(Θ) =
1

2Nu

Nu∑
i=1

‖R(yi, Θ) − (yi − xi)‖

2

, (5)

where Θ represents the trainable parameters in HDRANet.

4. Experiment Results

4.1. Experimental Setting

4.1.1. Training Data

In the experiment, we took the UC Merced land-use dataset [43] as training dataset for simulating
SAR image despeckling. This dataset contained 21 different scene classes and each class had 100 images
with a size of 256 × 256. To train the proposed HDRANet, we chose 50 images from per class in total
1050 images and set a patch size as 64 × 64 and crop 177450 patches with stride equal to 15. In addition,
we injected speckle in amplitude format on those optical images, where three different noise levels
with the number of looks L = 1, 2, 4 were set to add speckle noise respectively.

4.1.2. Parameter Setting and Network Training

We used the Adam [44] solver to optimize the proposed HDRANet with momentum β1 = 0.9,
momentum β2 = 0.999, ε = 10−8, and decay = 0. We trained our model 50 epochs with a mini-batch size
of 128. The learning rate was initially set as 0.001 and decreased after every 10 epochs by multiplying
0.2. The HDRANet was implemented using Pytorch framework in Ubuntu 16.04.1 with NVIDIA
GeForce GTX-1080 Ti (12G) GPU. It took about 3 hours to train HDRANet. The network parameters
are listed in Table 1.

Table 1. The network parameters.

Name Parameters

1-Dcovn+Relu 3 × 3 × 64, dilate = 1, padding = 1, stride = 1
3-Dcovn+Relu 3 × 3 × 64, dilate = 3, padding = 3, stride = 1
5-Dcovn+Relu 3 × 3 × 64, dilate = 5, padding = 5, stride = 1

CBAM Channel attention, the reduction ratio of MLP: r = 16
Spatial attention, the filter size of convolution: 7 × 7 × 1

1-Dcovn 3 × 3 × 1, dilate = 1, padding = 1, stride = 1

4.2. Quantitative Evaluations

In the synthetic image experiments, we used the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) as metrics to evaluate the despeckling performances. The PSNR is defined as follows:

PSNR( f , g) = 10log10

(
2552

MSE( f , g)

)
, (6)

MSE( f , g) =
1

HW

H∑
i=1

W∑
j=1

‖ f (i, j) − g(i, j)‖2, (7)

where f and g represent the original image and the despeckled image, respectively. H is the height of
the image and W is the weight of the image. f (i, j) and g(i, j) are the pixel value at the position of the
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original image and the despeckled image respectively. The higher PSNR values, the better speckle
noise reduction performances. The SSIM is given as follows:

SSIM( f , g) =

(
2µ fµg + c1

)(
2cov f g + c2

)(
µ f

2 + µg2 + c1
)(
σ f

2 + σg2 + c2
) . (8)

Here, µ f and µg present the mean of f and g, respectively. cov f g is the covariance of f , g. σ f
2 is the

variance of f and σg
2 is the variance of g. c1 and c2 are two variables to stabilize the division. The value

of SSIM is between [0,1], and the value closer to 1 indicates better speckle noise reduction performances.
The equivalent number of look (ENL) is one of the widely used quantitative evaluation index for the
real SAR image despeckling, which evaluates the smoothness of a homogeneous regions in the image
after despeckling. The ENL is defined by:

ENL =
µ2

σ2 , (9)

where µ and σ are the image mean and variance. The larger ENL demonstrate that the homogeneous
region is smoother and the speckle noise removal performances are more excellent.

4.3. Results on Synthetic Images

As shown in Figure 5, we selected six gray images as test images for synthetic image experiments.
To verify the despeckling effectiveness of the proposed HDRANet, three different speckle noise level
of L = 1, 2, and 4 were set up for the six synthetic images. To evaluate the speckle noise reduction
performances on synthetic images, we compared our HDRANet with several representative despeckling
methods, including one spatial domain filter method (Lee [2]), two nonlocal means methods (PPB [13]
and SAR-BM3D [14]) and one CNN-based method (SAR-DRN [28]). In comparison methods, all the
parameters were set as suggested in their corresponding papers.
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As shown in Tables 2–4, the proposed HDRANet model obtained almost the best PSNR and
SSIM results in the three noise levels. When L = 1, 2, and 4, the proposed method outperformed
Lee, PPB, SAR-BM3D, and SAR-DRN by about 4.78 dB/3.95 dB/3.2 dB, 3.91 dB/3.33 dB/2.29 dB,
2.22 dB/1.53 dB/0.74 dB, and 0.74 dB/0.77 dB/0.38 dB for the average PSNR of six test images,
respectively. As highlighted in Tables 2–4 (the best performance is marked in bold), the proposed
HDRANet outperformed other algorithms above also in terms of average SSIM, providing more
accurate preservation of the image structural information. Clearly, HDRANet achieved the best
performance over other despeckling methods in terms of the quantitative assessments.

Table 2. Quantitative results on synthetic images (L = 1). The best performance is marked in bold.

Image Index Noisy Lee PPB SAR-BM3D SAR-DRN HDRANet

Airplane PSNR 11.17 17.23 19.57 21.32 23.21 23.36
SSIM 0.151 0.312 0.550 0.679 0.702 0.701

Ship PSNR 12.33 20.51 21.71 23.36 22.68 24.31
SSIM 0.161 0.389 0.536 0.637 0.654 0.655

Couple PSNR 12.72 20.92 21.34 23.04 23.69 25.18
SSIM 0.177 0.412 0.512 0.638 0.666 0.674

Bridge PSNR 13.27 20.15 19.80 21.42 22.64 22.83
SSIM 0.261 0.500 0.400 0.553 0.586 0.586

Flowers
PSNR 15.12 22.23 21.44 23.35 25.02 25.14
SSIM 0.303 0.593 0.609 0.725 0.754 0.754

Foreman
PSNR 11.45 17.25 19.70 21.19 25.32 26.16
SSIM 0.101 0.312 0.644 0.747 0.784 0.780

Average PSNR 12.68 19.72 20.59 22.28 23.76 24.50
SSIM 0.192 0.420 0.542 0.663 0.691 0.692

Table 3. Quantitative results on synthetic images (L = 2). The best performance is marked in bold.

Image Index Noisy Lee PPB SAR-BM3D SAR-DRN HDRANet

Airplane PSNR 13.53 20.33 21.67 23.87 24.61 24.96
SSIM 0.216 0.413 0.638 0.747 0.758 0.760

Ship PSNR 14.69 23.01 23.97 25.53 24.63 27.17
SSIM 0.233 0.486 0.613 0.698 0.708 0.709

Couple PSNR 15.21 23.36 23.65 25.67 26.01 26.19
SSIM 0.258 0.521 0.606 0.725 0.740 0.738

Bridge PSNR 15.79 22.20 21.60 23.32 24.06 23.91
SSIM 0.379 0.591 0.509 0.656 0.671 0.675

Flowers
PSNR 17.69 24.34 24.03 25.47 26.28 26.88
SSIM 0.418 0.691 0.717 0.797 0.812 0.815

Foreman
PSNR 14.02 20.48 22.56 24.41 27.24 28.30
SSIM 0.158 0.436 0.730 0.812 0.824 0.826

Average PSNR 15.16 22.29 22.91 24.71 25.47 26.24
SSIM 0.277 0.523 0.636 0.739 0.752 0.754
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Table 4. Quantitative results on synthetic images (L = 4). The best performance is marked in bold.

Image Index Noisy Lee PPB SAR-BM3D SAR-DRN HDRANet

Airplane PSNR 15.90 22.84 24.09 25.92 26.50 26.51
SSIM 0.286 0.505 0.718 0.800 0.809 0.809

Ship PSNR 17.30 25.05 26.23 27.67 28.36 28.57
SSIM 0.320 0.581 0.682 0.753 0.762 0.760

Couple PSNR 17.86 25.41 25.99 27.80 27.37 27.91
SSIM 0.353 0.618 0.696 0.784 0.793 0.795

Bridge PSNR 18.48 23.82 23.50 25.13 24.43 25.81
SSIM 0.509 0.666 0.618 0.748 0.747 0.755

Flowers
PSNR 20.40 25.99 26.30 27.39 27.52 27.49
SSIM 0.535 0.763 0.795 0.847 0.854 0.855

Foreman
PSNR 16.65 23.52 25.98 27.47 29.38 29.52
SSIM 0.233 0.551 0.807 0.855 0.857 0.855

Average PSNR 17.77 24.44 25.35 26.90 27.26 27.64
SSIM 0.373 0.614 0.719 0.798 0.804 0.805

Figures 6–8 correspondingly represent the despeckled images for the airplane, flowers, and bridge
image degraded by the noise level L = 1, 2, 4, respectively. Obviously, the results of Lee still suffered from
the residual noise. PPB worked well in speckle reduction, but simultaneously generated numerous
unexpected texture distortions, especially around the edges of images. SAR-BM3D performed
better than PPB, which effectively reduced speckle and created fewer texture distortions. However,
SAR-BM3D tended to produce over-smooth edges and textures, as it mainly focused on some complex
geometric features. SAR-DRN removed the speckle well and preserved local details. It could be clearly
seen that HDRANet could remove the speckle satisfactorily and preserve sharp edges and fine details,
showing the best speckle-reduction and local detail preservation ability. Compared with the other
algorithms above, the proposed HDRANet method showed much more advantageous performance in
both quantitative and visual assessments, especially for strong speckle noise.
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Figure 8. Despeckling results of different methods for image “Bridge” with noise level L = 4. (a) Original
image. (b) Speckled image. (c) Lee. (d) PPB. (e) SAR-BM3D. (f) SAR-DRN. (g) HDRANet.
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4.4. Results on Real SAR Images

In this part, three real SAR images, which were all four-look data were chosen to evaluate
the proposed method. Figure 9a is a Ku-band 1-m resolution SAR image over a horse track near
Albuquerque, NM, Figure 9b shows a 10-m resolution TerraSAR-X image of scenes from the west
of Volgograd, Russia, and Figure 9c shows a 1-m resolution TerraSAR-X image of the landscapes in
Noerdlingen, Germany [45]. For the real SAR images, we also compared HDRANet with the four
methods mentioned above.
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Figure 9. Real SAR images. (a) Horsetrack (600 × 396). (b) Volgograd (400 × 400). (c) Noerdlingen
(400 × 300).

From Figures 10–12, it was obvious that the results of Lee and SAR-BM3D still contained a
lot of residual speckle noise, while the results of PPB, SAR-DRN, and the proposed HDRANet
performed well in speckle suppression. PPB revealed good speckle-reduction ability, but it resulted in
an over-smoothing phenomenon. In homogeneous regions, the proposed HDRANet outperformed
SAR-DRN in speckle reduction. Visually, HDRANet also obtained the best performance in both speckle
removal and sharp edges and fine details preservation, which was superior to the other four methods.
For the real SAR images, the corresponding noise-free images were not available. In order to provide
some measure of objective for comparison of results, we used ENL and the corresponding edge images
of the despeckled and images by using a Canny edge detector to measure the speckle-reduction and
edge-preserving ability, respectively. Two homogeneous areas, namely, region A and B were selected
in each original SAR image (Figure 9a–c). The selected regions composed of 28 pixels × 31 pixels and
31 pixels × 34 pixels for the horsetrack, 21 pixels × 23 pixels and 22 pixels × 38 pixels for Volgograd,
and 28 pixels × 25 pixels and 35 pixels × 34 pixels for Noerdlingen.

From Table 5 and Figures 13–15(the best performance is marked in bold), it could be clearly
seen that HDRANet had a much better speckle-reduction and edge-preserving ability than the other
methods, which was accordant with the visual observation.

Table 5. Equivalent number of look (ENL) results for three real SAR images. The best performance is
marked in bold.

Image Area Noisy Lee PPB SAR-BM3D SAR-DRN HDRANet

Horsetrack
A 18.86 95.48 1163.52 408.50 1396.85 1415.08
B 15.69 95.33 940.78 338.51 807.16 944.62

Volgograd A 24.58 80.61 336.19 197.16 389.74 508.59
B 19.38 121.26 1276.60 751.99 1500.98 1659.79

Noerdlingen A 18.52 107.32 2143.67 505.04 1735.32 2193.07
B 12.21 37.09 75.49 43.86 60.66 76.50
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5. Ablation Study

In this section, we empirically showed that our design choice was valid. For this ablation study,
we used the Set12 dataset [23] as the test dataset. We first verified the effectiveness of convolutional
block attention module (CBAM) and then analyzed the reason why we chose two residual HDC
attention block. We explained the details of each experiment below.
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5.1. Convolutional Block Attention Module

As described in Section III, the proposed method HDRANet employs CBAM, which can increase
the representation power of CNN by focusing on important features and suppressing unnecessary
ones. To verify the effectiveness of CBAM, we implemented two sets of experiments in the same
environment with the speckle noise level of L = 4. As that shown in Figure 16, the model with CBAM
was up from about 0.1 dB in the average PSNR of the test dataset compared with the model without
CBAM. Therefore, CBAM could enhance the despeckling performance of CNN networks and help to
construct a final despeckled image.
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5.2. Residual HDC Attention Block

Figure 17 shows the performance of the different blocks on the test dataset, with the average
PSNR results evaluated at the end of each training epoch. As can be observed in the figure, curves
show that the two blocks obtained the best performance after 10 epochs. For the reason, we considered
that the one-block model had insufficient representational capacity because of the shallow architecture,
while the three-block and four-block models were complex resulting to overfitting. To get the superior
performance while maintaining network lightweight, we used two residual HDC attention blocks in
the proposed model.
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6. Conclusions

In this paper, we proposed a hybrid dilated residual attention network to remove the speckle noise
in SAR, which applies a residual learning strategy to separate speckle noise from noisy observation. The
proposed HDRANet integrates hybrid dilated convolution (HDC) and the convolutional block attention
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module (CBAM) with a residual structure. HDC effectively enlarges the receptive field of the network
to aggregate global information, while CBAM enhances representation power and performance of the
network. In both synthetic and real SAR image despeckling experiments, the proposed method achieved
superior despeckling performance over the state-of-the-art methods in terms of both quantitative
and qualitative assessments. In the future work, we planned to extend our model to the generative
adversarial network architecture and use adversarial training to further improve the despeckling
performance. Furthermore, we will consider addressing the SAR image blind despeckling, which aims
to remove unknown noise-level speckle noise from SAR image.
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