Boreal Forest Snow Damage Mapping Using Multi-Temporal Sentinel-1 Data
Abstract
:1. Introduction
1.1. Snow-Load Damage in 2017–2018
1.2. Related Studies
1.3. Goal of the Study
- to investigate SAR features that are most useful in the prediction of snow damage;
- to investigate what level of accuracy in snow damage mapping can be reached using Sentinel-1 SAR image time series;
- to study what techniques, including support vector machine (SVM), improved k nearest neighbors (ik-NN), and logistic regression (LR) are most applicable for classification of snow damaged forest areas using Sentinel-1 time series data;
- to test the performance of Sentinel-1 data in estimating the volume of growing stock when using well-known improved k-NN estimation method and regression analysis;
- to discuss the methods to be developed to estimate yield gross damage by combining stem volume estimates from Sentinel-1 data with snow damage area.
2. Data
2.1. Study Site
2.2. Sentinel-1 Data
2.3. Ground Reference Data
- 1
- Stand mean diameter of trees (cm), average over the stand pixels.
- 2
- Stand mean height of trees (dm), weighted average over the stand pixels, the weight being the basal area of the trees.
- 3
- Stand mean age (years), weighted average over the stand pixels, the weight being the basal area of the trees.
- 4
- Dominant tree species, median over the stand pixels pixel level variable was not available but calculated as follows: (a) selection between coniferous and broad-leaved trees was done based on majority of stem volume, (b) if coniferous, selection between Scots pine and Norway spruce was done based on the majority of stem volume (c) if broad-leaved trees, selection between birch and other broad-leaved trees was done based on the majority of stem volume.
- 5
- Basal area of trees (m/ha), average over the stand pixels.
- 6
- Stem volume of all trees (m/ha), average over the stand pixels.
- 7–8
- Stem volume of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karst.), birch (Betula spp.) and other broad leaved trees, mainly aspen (Populus tremula L.) and alder (Alnus spp.) (m/ha), average over the stand pixels.
2.4. Other Data Sets
3. Methods
3.1. Approach
3.2. SAR Metrics Used in the Forest Status Assessment
3.3. Methods for Snow Damage Classification
3.3.1. Support Vector Machine (SVM) Method
3.3.2. ik-NN Method for Snow Damage Classification
3.3.3. Logistic Regression Method
3.4. Methods for Growing Stock Estimation
3.4.1. ik-NN Method for Volume Estimation
3.4.2. Volume Estimation with Regression Analysis
3.5. Feature Selection for Forest Classification and Accuracy Assessment
4. Results
4.1. Mapping Snow-Damaged Forest Areas
4.2. Growing Stock Volume Estimation
5. Discussion
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SAR | synthetic aperture radar |
ESA | European Space Agency |
SVM | support vector machine |
LiDAR | light detection and ranging |
k-NN | k Nearest Neighbours |
ik-NN | improverd k Nearest Neighbours |
RBF | radial basis function |
References
- Suvanto, S.; Henttonen, H.M.; Nöjd, P.; Mäkinen, H. Forest susceptibility to storm damage is affected by similar factors regardless of storm type: Comparison of thunder storms and autumn extra-tropical cyclones in Finland. For. Ecol. Manag. 2016, 381, 17–28. [Google Scholar] [CrossRef]
- Suvi Jylhänlehto, S. Metsäkeskus Kokosi Lumituhot Kartalle—Tykkytuhohakkuita Jopa Miljoona Mottia. Maaseudun Tulevaisuus, 2018. (in Finnish). Available online: https://bit.ly/2Hu6Bx1 (accessed on 12 February 2019).
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Vastaranta, M.; Korpela, I.; Uotila, A.; Hovi, A.; Holopainen, M. Area-Based Snow Damage Classification of Forest Canopies Using—Temporal LIDAR Data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 3812, 169–173. [Google Scholar] [CrossRef]
- Honkavaara, E.; Litkey, P.; Nurminen, K. Automatic Storm Damage Detection in Forests Using High? Altitude Photogrammetric Imagery. Remote Sens. 2013, 5, 1405–1424. [Google Scholar] [CrossRef]
- Nelson, M.; Healey, S.; Moser, W.K.; Hansen, M. Combining satellite imagery with forest inventory data to assess damage severity following a major blowdown event in northern Minnesota, USA. Int. J. Remote Sens. 2009, 30, 5089–5108. [Google Scholar] [CrossRef]
- Einzmann, K.; Immitzer, M.; Böck, S.; Bauer, O.; Schmitt, A.; Atzberger, C. Windthrow Detection in European Forests with Very High-Resolution Optical Data. Forests 2017, 8, 21. [Google Scholar] [CrossRef]
- Joshi, N.; Mitchard, E.T.; Woo, N.; Torres, J.; Moll-Rocek, J.; Ehammer, A.; Collins, M.; Jepsen, M.R.; Fensholt, R. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data. Environ. Res. Lett. 2015, 10, 034014. [Google Scholar] [CrossRef]
- Thiele, A.; Boldt, M.; Hinz, S. Automated detection of storm damage in forest areas by analyzing TerraSAR-X data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1672–1675. [Google Scholar] [CrossRef]
- Rosa, R.A.S.; Fernandes, D.; Nogueira, J.B.; Wimmer, C. Automatic change detection in multitemporal X- and P-band SAR images using Gram-Schmidt process. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2797–2800. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Väänänen, A.; Mutanen, T.; Häme, T. Mapping forest disturbance using long time series of Sentinel-1 data: Case studies over boreal and tropical forests. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3906–3909. [Google Scholar] [CrossRef]
- Santoro, M.; Pantze, A.; Fransson, J.E.S.; Dahlgren, J.; Persson, A. Nation-Wide Clear-Cut Mapping in Sweden Using ALOS PALSAR Strip Images. Remote Sens. 2012, 4, 1693–1715. [Google Scholar] [CrossRef]
- Rignot, E.J.M.; van Zyl, J.J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906. [Google Scholar] [CrossRef]
- Quegan, S.; Toan, T.L.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Ranson, K.J.; Kovacs, K.; Sun, G.; Kharuk, V.I. Disturbance recognition in the boreal forest using radar and Landsat-7. Can. J. Remote Sens. 2003, 29, 271–285. [Google Scholar] [CrossRef]
- Tanase, M.; Kennedy, R.; Aponte, C. Radar Burn Ratio for fire severity estimation at canopy level: An example for temperate forests. Remote Sens. Environ. 2015, 170, 14–31. [Google Scholar] [CrossRef]
- Pantze, A.; Santoro, M.; Fransson, J.E.S. Change detection of boreal forest using bi-temporal ALOS PALSAR backscatter data. Remote Sens. Environ. 2014, 155, 120–128. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Astola, H.; Praks, J.; Häme, T.; Hallikainen, M.T. Land cover and soil type mapping from spaceborne PolSAR data at L-Band With probabilistic neural network. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5256–5270. [Google Scholar] [CrossRef]
- Fransson, J.E.S.; Pantze, A.; Eriksson, L.E.B.; Soja, M.J.; Santoro, M. Mapping of wind-thrown forests using satellite SAR images. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 1242–1245. [Google Scholar] [CrossRef]
- Eriksson, L.E.B.; Fransson, J.E.S.; Soja, M.J.; Santoro, M. Backscatter signatures of wind-thrown forest in satellite SAR images. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6435–6438. [Google Scholar] [CrossRef]
- Tanase, M.A.; Aponte, C.; Mermoz, S.; Bouvet, A.; Toan, T.L.; Heurich, M. Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sens. Environ. 2018, 209, 700–711. [Google Scholar] [CrossRef]
- Rüetschi, M.; Small, D.; Waser, L.T. Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data. Remote Sens. 2019, 11, 115. [Google Scholar] [CrossRef]
- Mákisara, K.; Katila, M.; Peräsaari, J.; Tomppo, E. The Multi-source National Forest Inventory of Finland—Methods and results 2013. Nat. Resour. Bioecon. Stud. 2016, 10, 215. [Google Scholar]
- Tomppo, E.; Halme, M. Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: A genetic algorithm approach. Remote Sens. Environ. 2004, 92, 1–20. [Google Scholar] [CrossRef]
- Tomppo, E.; Haakana, M.K.M.P.J. Multi-Source National Forest Inventory—Methods and Applications. Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Tomppo, E.; Olsson, H.; Ståhl, G.; Nilsson, M.; Hagner, O.; Katila, M. Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sens. Environ. 2008, 112, 1982–1999. [Google Scholar] [CrossRef]
- National Land Survey of Finland. Elevation Model 10 m. In Maps and Spatial Data; National Land Survey of Finland: Helsinki, Finland, 2018. [Google Scholar]
- Tomppo, E.O.; Gagliano, C.; Natale, F.D.; Katila, M.; McRoberts, R.E. Predicting categorical forest variables using an improved k-Nearest Neighbour estimator and Landsat imagery. Remote Sens. Environ. 2009, 113, 500–517. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- McRoberts, R.E. Post-classification approaches to estimating change in forest area using remotely sensed auxiliary data. Remote Sens. Environ. 2014, 151, 149–156. [Google Scholar] [CrossRef]
- Chirici, G.; Mura, M.; McInerney, D.; Py, N.; Tomppo, E.O.; Waser, L.T.; Travaglini, D.; McRoberts, R.E. A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data. Remote Sens. Environ. 2016, 176, 282–294. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Rojo-Alvarez, J.L.; Martinez-Ramon, M. Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1822–1835. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Kuo, B.; Ho, H.; Li, C.; Hung, C.; Taur, J. A Kernel-Based Feature Selection Method for SVM With RBF Kernel for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 317–326. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer Inc.: New York, NY, USA, 1995. [Google Scholar]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1994, 58, 267–288. [Google Scholar] [CrossRef]
- Kim, H.J.; Tomppo, E. Model-based prediction error uncertainty estimation for k-nn method. Remote Sens. Environ. 2006, 104, 257–263. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Tomppo, E.O.; Finley, A.O.; Heikkinen, J. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. Remote Sens. Environ. 2007, 111, 466–480. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Häme, T.; Praks, J. Polarimetric ALOS PALSAR Time Series in Mapping Biomass of Boreal Forests. Remote Sens. 2017, 9, 999. [Google Scholar] [CrossRef]
- Santoro, M.; Eriksson, L.; Askne, J.; Schmullius, C. Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter. Int. J. Remote Sens. 2006, 27, 3425–3454. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Ahola, H.; Hame, T. Stand-Level Stem Volume of Boreal Forests From Spaceborne SAR Imagery at L-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 35–44. [Google Scholar] [CrossRef]
- Kurvonen, L.; Pulliainen, J.; Hallikainen, M. Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images. IEEE Trans. Geosci. Remote Sens. 1999, 37, 198–205. [Google Scholar] [CrossRef]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A review of radar remote sensing for biomass estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef]
- Næsset, E. Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia. Scand. J. For. Res. 2007, 22, 433–442. [Google Scholar] [CrossRef]
- Buonaccorsi, J.P. Prediction in the Presence of Measurement Error: General Discussion and an Example Predicting Defoliation. Biometrics 1995, 51, 562–1569. [Google Scholar] [CrossRef]
- Olesk, A.; Praks, J.; Antropov, O.; Zalite, K.; Arumae, T.; Voormansik, K. Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data. Remote Sens. 2016, 8, 700. [Google Scholar] [CrossRef]
Image | Date | Mode | Polarization |
---|---|---|---|
1 | 12 November 2017 | IW | VV, VH |
2 | 24 November 2017 | IW | VV, VH |
3 | 6 December 2017 | IW | VV, VH |
4 | 18 December 2017 | IW | VV, VH |
5 | 30 December 2017 | IW | VV, VH |
6 | 11 January 2018 | IW | VV, VH |
7 | 23 January 2018 | IW | VV, VH |
8 | 4 February 2018 | IW | VV, VH |
9 | 16 February 2018 | IW | VV, VH |
10 | 28 February 2018 | IW | VV, VH |
11 | 12 March 2018 | IW | VV, VH |
12 | 24 March 2018 | IW | VV, VH |
Method | Overall Accuracy | User Accuracy | Producer Accuracy | ||
---|---|---|---|---|---|
Damage | Non-Damage | Damage | Non-Damage | ||
SVM | 0.91 | 0.90 | 0.91 | 0.72 | 0.97 |
ik-NN | 0.75 | 0.72 | 0.78 | 0.80 | 0.69 |
Logistic regression | 0.71 | 0.69 | 0.73 | 0.76 | 0.67 |
Method | Overall Accuracy | User Accuracy | Producer Accuracy | ||
---|---|---|---|---|---|
Damage | Non-Damage | Damage | Non-Damage | ||
ik-NN with stands | |||||
area ≥ 1 ha | 0.79 | 0.77 | 0.82 | 0.86 | 0.71 |
Tree Species | Estimate (m/ha) | Mean Deviation (m/ha) | RMSE (%) |
---|---|---|---|
ik-NN, 12 features | |||
All species | 100.7 | 0.25 | 36.3 |
Pine | 61.1 | 1.26 | 36.8 |
Spruce | 20.1 | −0.70 | 101.2 |
Birch sp | 17.6 | −0.22 | 59.5 |
Other br. leaved | 1.9 | −0.09 | 166.9 |
Regression analysis, 12 features | |||
All species | 101.9 | 1.43 | 37.0 |
Pine | 59.3 | −0.58 | 40.1 |
Spruce | 30.3 | 9.56 | 70.7 |
Birch sp | 19.2 | 1.37 | 55.9 |
Other br. leaved | 5.7 | 3.76 | 60.1 |
ik-NN, all 78 features | |||
All species | 100.4 | −0.01 | 34.1 |
Pine | 61.3 | 1.46 | 34.7 |
Spruce | 19.9 | −0.82 | 97.0 |
Birch sp | 17.3 | −0.47 | 59.8 |
Other br. leaved | 1.8 | −0.18 | 171.6 |
Regression analysis, all 78 features | |||
All species | 101.3 | 0.88 | 32.7 |
Pine | 59.5 | −0.43 | 36.4 |
Spruce | 27.4 | 6.69 | 69.0 |
Birch sp | 19.1 | 1.32 | 54.9 |
Other br. leaved | 5.5 | 3.51 | 61.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomppo, E.; Antropov, O.; Praks, J. Boreal Forest Snow Damage Mapping Using Multi-Temporal Sentinel-1 Data. Remote Sens. 2019, 11, 384. https://doi.org/10.3390/rs11040384
Tomppo E, Antropov O, Praks J. Boreal Forest Snow Damage Mapping Using Multi-Temporal Sentinel-1 Data. Remote Sensing. 2019; 11(4):384. https://doi.org/10.3390/rs11040384
Chicago/Turabian StyleTomppo, Erkki, Oleg Antropov, and Jaan Praks. 2019. "Boreal Forest Snow Damage Mapping Using Multi-Temporal Sentinel-1 Data" Remote Sensing 11, no. 4: 384. https://doi.org/10.3390/rs11040384