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Abstract: Ship detection with polarimetric synthetic aperture radar (PolSAR) has received increasing
attention for its wide usage in maritime applications. However, extracting discriminative features
to implement ship detection is still a challenging problem. In this paper, we propose a novel ship
detection method for PolSAR images via task-driven discriminative dictionary learning (TDDDL).
An assumption that ship and clutter information are sparsely coded under two separate dictionaries
is made. Contextual information is considered by imposing superpixel-level joint sparsity constraints.
In order to amplify the discrimination of the ship and clutter, we impose incoherence constraints
between the two sub-dictionaries in the objective of feature coding. The discriminative dictionary is
trained jointly with a linear classifier in task-driven dictionary learning (TDDL) framework. Based on
the learnt dictionary and classifier, we extract discriminative features by sparse coding, and obtain
robust detection results through binary classification. Different from previous methods, our ship
detection cue is obtained through active learning strategies rather than artificially designed rules,
and thus, is more adaptive, effective and robust. Experiments performed on synthetic images and
two RADARSAT-2 images demonstrate that our method outperforms other comparative methods.
In addition, the proposed method yields better shape-preserving ability and lower computation cost.

Keywords: ship detection; task-driven discriminative dictionary learning (TDDDL); contextual
information; incoherence constraints; polarimetric synthetic aperture radar (PolSAR)

1. Introduction

Ship detection with synthetic aperture radar (SAR) images is one of the important applications in
the field of maritime surveillance [1]. Recently, polarimetric synthetic aperture radar (PolSAR) ship
detection has received increasing attention, as polarimetric information has proved to be of great
benefit to improving the detection effect [2–12]. As a simple example, we can achieve satisfactory
results at steep and middle (20◦ to 40◦) incidence angles by using cross-polarization (HV) only [2].
However, co-polarization (HH or VV) may perform better at bigger incidence angles [2]. PolSAR
images combine the advantages of all polarimetric channels, reveal the scattering characteristics
differences of the ship and clutter, and help to improve detection effect.

In the most of the existing PolSAR ship detection methods, a scalar feature index is designed to
discriminate the target and clutter at first, and then constant false alarm rate (CFAR) operation
is conducted. The simplest feature index is the image span, which is the intensity of PolSAR
image and defined as the square of the scattering matrix’s Frobenius norm. With further research,
more complicated features have been proposed, and these features can be roughly classified into
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two types. The first is designed by enhancing the contrast between the interested targets and clutter.
Novak et al. proposed the polarimetric whitening filter (PWF) to produce a speckle-reduced image by
optimally combining all the elements of the scattering matrix [3]. Yang et al. presented the generalized
optimization of polarimetric contrast enhancement (GOPCE) to maximize the signal-to-clutter ratio
(SCR) in the image [4]. These methods work well in high SCR condition. However, when the SCR
decreased, these methods may suffer from severe performance deterioration. The other type is
designed by analyzing polarimetric scattering mechanism and introducing polarimetric para-meters.
Yeremy et al. implemented ship detection by using Cameron decomposition [5], while the symmetric
scattering characterization method (SSCM) was developed by Touzi et al. [6]. Since the methods
applied to single-look scattering matrix are generally more susceptible to the speckle and increase
the probability of false alarms (PFAs) of small ship, multi-look covariance or coherency matrix-based
methods have been explored further. Chen et al. introduced polarization cross entropy (PCE) based on
the eigen-decomposition of polarimetric coherence matrix [7]. Moreover, degree of polarization [8]
was fully investigated for ship detection. It is true that speckle is greatly reduced by spatial ensemble
averaging in these methods. Nevertheless, although the scalar feature implicitly includes the
contributions of all polarimetric channels, an explicit consideration of all the polarimetric channels
should provide more information, which is not fully exploited. These design features are too simple to
provide robust performance in complicated and changeable clutter conditions.

Among various detection algorithms, the constant false alarm rate (CFAR) detectors have been
widely used for their simplicity and adaptive ability [9–11]. With the development of superpixel
algorithms, some superpixel-based attempts have been carried out to achieve ship detection by
combining the superpixel and CFAR detectors [12,13]. It was proved that the superpixel can help to
retain the target outline and suppress speckle noise. However, only simple features of superpixels,
such as entropy information and pixel intensity, were utilized in these methods. Simple features
provide weak discrimination and depend on artificial design. In addition, the detection performance
also depends on largely the accuracy of statistical modeling and parameter estimation in CFAR
operation. The theoretical distributions of artificial features are usually analytically intractable, or the
estimations of the distributions are extremely cumbersome.

With the development of deep learning, researchers have employed deep neural networks to
achieve ship detection in PolSAR images. Zhou et al. [14] modified the faster region-based convolutional
neural network (Faster-RCNN) and applied it to PolSAR ship detection. And Kang et al. [15] proposed
contextual region-based convolutional neural network with multilayer fusion (CRCNN-MF) by
combining contextual information, multi-scaling and region-based convolutional neural network
(RCNN). However, these methods simply process each channel of the PolSAR images separately and
finally fuse the results. And just like other deep neural network methods, the heavy computation
burden, unstable convergence and lots of sensitive parameters are the bottleneck for the application of
these methods above.

In this paper, we propose a novel ship detection method for PolSAR images via task-driven
discriminative dictionary learning (TDDDL). The superpixel is utilized as the basic processing cell.
Ship detection can be viewed as a binary classification problem at superpixel level. Task-driven
dictionary learning (TDDL) methods have achieved a cynosure success in classification field [16,17].
To improve the discrimination between the ship and clutter, we propose to learn category-specific
dictionaries for the ship and clutter. In this way, incoherence between sub-dictionaries is enhanced,
producing more discriminative features. Contextual information is also considered by imposing joint
sparsity prior. The complete dictionary is trained in TDDL framework. The proposed dictionary
learning scheme is called TDDDL due to the strong discriminability of the learnt dictionary.
Experimental results on synthetic images and two real-scene images show that our method outperforms
all the comparative methods.

The main contributions of this paper can be summarized as follows: (1) We propose a
novel dictionary learning algorithm to obtain more discriminative features and boost the detection
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performance. Contextual information and incoherence constraints are all included in the algorithm.
(2) We also describe an optimization procedure for solving sparse recovery problem with TDDDL.
(3) Different from previous methods, the proposed ship detection method based on TDDDL employs
active learning strategies rather than artificially designed rules, and thus, is more adaptive and effective.
In addition, the strong discriminability of the learnt dictionary improves detection performance further.

The remainder of this paper is organized as follows. In Section 2, we propose TDDDL in detail,
including the formulation and optimization. In Section 3, the complete scheme of the proposed ship
detection method is given. We conduct extensive experiments to evaluate the proposed method in
Section 4, and conclude our work and propose future work in Section 5.

2. Task-Driven Discriminative Dictionary Learning (TDDDL)

In this section, we first briefly revisit the task-driven dictionary learning (TDDL) [16]. Then,
we will propose our TDDDL, including its formulation and optimization. We use [Q1; Q2] to denote
the vertical concatenation of two matrices with the same columns, and use [Q1, Q2] to denote the
horizontal concatenation of two matrices with the same rows.

2.1. Review of TDDL

In TDDL [16], signals are represented by their sparse codes, which are then fed into a linear
regression. Consider a pair of training samples (x, y), where x ∈ RM is the sum feature extracted from
PolSAR image, y ∈ RK is a binary vector representation of corresponding label, M and K denote the
dimensions of x and y, respectively. Given some dictionary D ∈ RM×P, where P is the number of
atoms in the dictionary D, x can be represented as a sparse vector α(x, D) ∈ RP, defined as the solution
of an elastic-net problem [17]:

α(x, D) = arg min
α∈Rp

1
2
||x−Dα||22 + λ1||α||1 +

λ2

2
||α||22 (1)

where λ1 and λ2 are the regularization parameters.
For classification task, TDDL uses the sparse vector α(x, D) in a classical expected risk

minimization formulation:

min
D,W

L(D, W, x) = min
D,W

f (D, W, x) +
µ

2
||W||2F (2)

where L(D, W, x) is classification risk, W is the parameter matrix of the classifier, µ is a classifier
regularization parameter to avoid the overfitting of classifier [18], and f (D, W, x) is a convex function
defined as

f (D, W, x) = Ey,x[ls(y, W, α(x, D))]. (3)

In this equation, Ey,x denotes the expectation taken relative to the probability distribution p(x, y),
ls is a convex loss function that measures how well one can predict y by observing α(x, D) given the
parameter matrix W, which can be the square, logistic, or hinge loss from SVM [19].

Stochastic gradient descent (SGD) algorithm is used to update the dictionary D and the parameter
matrix W. The update rules are as follows.{

Dt+1 = Dt − ρt · ∂Lt

∂D
Wt+1 = Wt − ρt · ∂Lt

∂W
(4)

where t is the iteration index and ρ is the step size. The equation for updating W is straightforward
since L(D, W, x) is both smooth and convex with respect to W. We have

∂L
∂W

= (Wα− y)αT + µW (5)
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where T denotes the transposition. According to the chain rule, we have

∂L
∂D

=
∂L
∂α
· ∂α

∂D
. (6)

The main difficulty comes from ∂α/∂D, since the optimization problem in Equation (1) is not
smooth [20]. Mairal et al. [16] use fixed point differentiation to solve the problem [21]. The detailed
derivation of the algorithm can be found in the Appendix of Mairal et al. [16].

2.2. Formulation of TDDDL

The TDDL method provides us with a supervised dictionary learning framework to learn
dictionaries adapted to various tasks instead of being only adapted to data reconstruction [16].
It works well for basic-level classification because the differences between categories are typically
rather significant. The sparse codes of different categories are different and result in discriminative
features for classification. However, when facing harsher classification tasks, where the signal to
clutter ratio (SCR) is much lower and different categories show similar characteristics, the TDDL
method would suffer from severe performance deterioration. The difference can be dominated by
those similar sparse codes and even disappear at the feature encoding stage. Hence, it is desirable to
find a dictionary that could encode the features of different categories with their own code-words.
Such a dictionary would obviously boost the differences of the feature representations, and improve
the consequent ship detection.

To this end, we propose learning a discriminative dictionary by using category-specific dictionary
structure and imposing incoherence constraints between the sub-dictionaries. Since neighboring pixels
often share the same label with high probability, contextual information is also considered via joint
sparsity prior. The complete dictionary is trained jointly with a linear classifier in TDDL framework.
We call the proposed dictionary learning scheme TDDDL, due to the strong discriminability of the
learnt dictionary.

We denote training samples within the neighborhood as X = [x1, x2, · · · , xi, · · · , xN ] ∈ RM×N .
The number of categories is represented as k, the category-specific dictionary corresponding to lth
category as Dl ∈ RM×Pl , where Pl is the number of atoms in the sub-dictioanry Dl . The complete
dictionary is D = [D1, D2, · · · , Dl , · · · , Dk] ∈ RM×P, with P = P1 + P2 + · · ·+ Pk. The samples X can
be represented by the sparse code A(x, D) ∈ RP×N by solving the following Lasso problem:

A(x, D) = arg min
Z∈RP×N

||X−DZ||2F + λ||Z||1,2 (7)

where λ is the regularization parameter, ||Z||1,2 = ∑P
i=1 ||Zi||2 is the l1,2-norm of Z, and Zi ∈ R1×N

is the ith row of Z. Since neighboring pixels often share the same label with high probability,
joint sparsity is imposed to enforce the sparse codes to have a row sparsity pattern. The neighboring
pixels are selected by superpixel segmentation, which will be described in detail in Section 3.
Many sparse recovery techniques are able to solve Equation (7), such as the sparse reconstruction
by separable approximation [22], alternating direction method of multipliers [23], and fast iterative
shrinkage-thresholding algorithm [24].

Obviously, the effect of sparse coding in Equation (7) largely depends on the quality of dictionary D.
And the quality of dictionary D depends on the defined loss function. In TDDL [16], Mairal at al. suggested
defining the loss function by classification error, which fully utilized the label information. To improve
the dictionary quality further, we impose incoherence constraints between the two sub-dictionaries of
the ship and clutter. Denote the label information corresponding to X as Y = [y1, y2, · · · , yi, · · · , yN ] ∈
Rk×N . Given the training data (X, Y), the loss function can be formulated as follows:

min
D,W

L(D, W, X) = min
D,W

1
2
||Y−WA||2F +

µ

2
||W||2F +

η

2

k

∑
l=1

1
2Pl(P− Pl)

||DT
l D−l ||2F (8)
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where µ and η are the regularization parameters, W ∈ Rk×P is the parameters of the linear
classifier, A ∈ RP×N is given by Equation (7), D−l is denoted as the sub-dictionaries by removing
Dl from D. In Equation (8), the term ||Y−WA||2F describes the classification error, the term
||W||2F is to avoid overfitting of the classifier, and the term ||DT

l D−l ||2F as incoherence is to enforce
category-specific sub-dictionaries incoherency. The coefficient 1/2Pl(P− Pl) is to reduce the influence
of the sub-dictionary size and to make the learnt dictionary more stable for classification, which was
introduced by Gao et al. [25].

2.3. Optimization Procedure

For convenience, the loss function L(D, W, X) in Equation (8) can be further represented by two
parts, L1 and L2, which are defined as follows:

L1 =
1
2
||Y−WA||2F +

µ

2
||W||2F (9)

L2 =
η

2

k

∑
l=1

1
2Pl(P− Pl)

||DT
l D−l ||2F (10)

Following the derivations in [16], we can show that L(D, W, X) is differentiable on D×W. It is
simple to obtain the gradient with respect to W, i.e.,

∂L
∂W

= (WA− Y)AT + µW. (11)

Applying the chain rule, we can compute the gradient with respect to the dictionary D:

∂L
∂D

=
∂L1

∂A
∂A
∂D

+
∂L2

∂D
. (12)

Obviously, the derivative ∂L1/∂A can be computed in the same way as ∂L/∂W. The key point
is to compute the derivative ∂A/∂D, since there is no explicit expression of D for the sparse codes A.
Applying the fixed point differentiation [21] to Equation (7), Sun et al. derived the explicit expression
of ∂A/∂D, which is illustrated in Appendix VII in [26]. Here, we give the vectorization form of the
derivative of Ã with respect to Dmn:

vec

(
∂Ã

T

∂Dmn

)
=
(

D̃
T

D̃⊗ IN + λΓ
)−1
× vec

(
Ã

T ∂D̃
T

D̃
∂Dmn

+
∂XTD̃
Dmn

)
(13)

where Ã = AΛ ∈ RPΛ×N is denoted as the active rows of A, D̃ = DΛ ∈ RM×PΛ is denoted as the active
atoms of D, and Λ is the active set such that

Λ = {i : ||Ai||2 6= 0, i ∈ {1, . . . , P}} (14)

where Ai denotes the ith row of A. And Γ is defined as

Γ = Γ1 ⊕ · · · ⊕ ΓPΛ (15)

where ⊕ is the direct sum of matrices, Γi = (IN/||Ãi||2)− (Ã
T
i Ãi/||Ãi||32), i = 1, . . . , PΛ. Combining

Equations (13) and (14), the explicit form of ∂L1/∂A can be easily commputed.
As the other part of ∂L2/∂D, the derivative ∂L2/∂D can be rewritten as the following expression

∂L2

∂D
=

[
∂L2

∂D1
, . . . ,

∂L2

∂Dl
, . . . ,

∂L2

∂Dk

]
. (16)
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Therefore, we have

∂L2

∂D
= η

[
D−1DT

−1D1

P1(P− P1)
, . . . ,

D−lDT
−lDl

Pl(P− Pl)
, . . . ,

D−kDT
−kDk

Pk(P− Pk)

]
. (17)

Now, we conclude the derivation results as follows:

∂L
∂D

= −DβAT + (X−DA)βT + ηE (18)

where β ∈ RP×N is defined as
βΛc = 0 (19)

vec
(
βT

Λ

)
=
(

D̃
T

D̃⊗ IN + λΓ
)−T
× vec

((
WÃ− Ỹ

)T
W̃
)

(20)

and E ∈ RM×P is defined as

E =

[
D−1DT

−1D1

P1(P− P1)
, . . . ,

D−lDT
−lDl

Pl(P− Pl)
, . . . ,

D−kDT
−kDk

Pk(P− Pk)

]
. (21)

We summarize the overall optimization for TDDDL in Algorithm 1.
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Algorithm 1 Stochastic gradient descent algorithm for TDDDL 

 Input: 

  

The training samples: 𝐗𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 ∈ ℝ
𝑴×𝑵𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 , the corresponding labels: 𝐘𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 ∈

ℝ𝒌×𝑵𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈. 

Initial dictionary 𝐃 ∈ ℝ𝑴×𝑷 and classifier 𝐖 ∈ ℝ𝒌×𝑷. 

Regularization parameter 𝝀, 𝝁, 𝜼 ∈ ℝ. 

Number of iterations T, parameter 𝒕𝟎, learning rate parameter 𝝆. 

 Repeat: 

 1: for  0t  to T do 

 2:  Draw samples (𝐗, 𝐘) from training set. 

   Compute sparse code A according to Equation (7). 

 3:  Compute the active set 𝚲 according to Equation (14). 

 4:  Compute the matrix 𝛃 and E according to Equations (19), (20) and (21). 

 5:  
Choose the learning rate  
𝝆𝒕 ← 𝒎𝒊𝒏(𝝆, 𝝆𝒕𝟎/𝒕)  

normally, set 𝒕𝟎 = 𝑻/𝟏𝟎. 

 6:  

Update the dictionary D and classifier W 

𝐖 ←𝐖−𝝆𝐭((𝐖𝐀 − 𝐘)𝐀
𝐓 + 𝝁𝐖) 

𝐃 ← 𝐃− 𝝆𝐭(−𝐃𝛃𝐀
𝐓 + (𝐗 − 𝐃𝐀)𝛃𝐓 + 𝜼𝐄) 

and normalize each column of D with respect to L2-norm. 

 7: end for 

 Output: D and W 

3. The Proposed Ship Detection Method 

Ship detection can be viewed as a binary classification problem. Conventional methods 

generally complete ship detection in an unsupervised way. Supervised methods, typically deep 

neural network methods, provide us a new vision for ship detection. Thus, we propose a novel ship 

detection method via TDDDL. Figure 1 shows the main framework of the proposed ship detection 

method. Given a PolSAR image, superpixel segmentation is performed following the filter operation 

with boxcar filter. The superpixel is employed as the basic processing cell. Based on the superpixel 

segmentation result, we train a task-driven discriminative dictionary and a linear classifier jointly via 

TDDDL. Then, we encode the superpixels with the learnt dictionary. Finally, we achieve ship 

detection with binary classification.  

3. The Proposed Ship Detection Method

Ship detection can be viewed as a binary classification problem. Conventional methods generally
complete ship detection in an unsupervised way. Supervised methods, typically deep neural network
methods, provide us a new vision for ship detection. Thus, we propose a novel ship detection method
via TDDDL. Figure 1 shows the main framework of the proposed ship detection method. Given a
PolSAR image, superpixel segmentation is performed following the filter operation with boxcar
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filter. The superpixel is employed as the basic processing cell. Based on the superpixel segmentation
result, we train a task-driven discriminative dictionary and a linear classifier jointly via TDDDL.
Then, we encode the superpixels with the learnt dictionary. Finally, we achieve ship detection with
binary classification.Remote Sens. 2019, 11, 769 7 of 19 
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Figure 1. The flowchart of the proposed ship detection method. The blue box is the input, the red
boxes are the key processing modules, and the green boxes are the outputs.

For the sake of completeness and readability of this article, we briefly introduce the PolSAR
image data here. Considering a reciprocal target illuminated by a monostatic SAR, the polarimetric
information can be described by a complex scattering vector

k =
[

SHH
√

2SHV SVV

]T
(22)

where SHH , SHV and SVV denote the complex scattering coefficients. The scattering vector can be
multi-look processed for the purpose of speckle reduction, which can be expressed as

T =
1
n

n

∑
i=1

kikH
i (23)

where H denotes the conjugate transpose operation, and n is the number of looks. The resulting matrix
T is called the n-look covariance matrix. We further represent the covariance matrix T as a real vector
p ∈ R9×1 i.e.,

p = [T11, T22, T33, Re(T12), Im(T12), Re(T13), Im(T13), Re(T23), Im(T23)]
T (24)

which is called pixel element in PolSAR images.

3.1. Superpixel Segmentation

Pixel-based methods utilize single pixel information only, but not the characteristics of local
regions. With the improved resolution of PolSAR images, the ship target regions show detailed
structure and texture. We can speculate that considering the cues of the region one pixel belongs to will
benefit the decision of this pixel, since they may reveal the regional structural or textural difference
between the target and clutter. Recent research has also shown that the superpixel can help to retain
the target outline and suppress the speckle noise in target detection task [27,28]. On the other hand,
since neighboring pixels often share the same label with high probability, joint sparsity prior can be
adapted exactly at the superpixel-level.

Superpixel segmentation methods in optical images cannot be applied roughly in PolSAR images
due to the influence of strong speckle noise. In this article, we use the simple iterative clustering
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method with boundary constraints (SLIC-BC), which was proposed by Lin et al. [29]. SLIC-BC is an
adaption of SLIC [30] with two modifications: (1) A new distance measure is proposed, providing
control over boundary adherence, homogeneity and compactness of the superpixels simultaneously.
(2) A new strategy to update the positions and intensities of superpixel seeds is proposed. Only reliable
pixels within one superpixel can be used to update the superpixel seed. We give a brief introduction
about SLIC-BC, and more implementation details can be found in Lin et al. [29].

The distance measurement in SLIC-BC consists of three parts: boundary term, homogeneity term
and compactness term, which is defined as

d(x, l) = wbdb(x, l) + whdh(x, l) + α× wcdc(x, l) (25)

where d(x, l) denotes the distance between pixel x and the lth superpixel, db(x, l), dh(x, l) and
dc(x, l) denote the boundary term, homogeneity term and compactness term of the measurement,
respectively. The parameters wb, wh and wc denote the weight coefficients, which are defined as
wb = (dh(x,l)+dc(x,l))

(2(db(x,l)+dh(x,l)+dc(x,l))) , wh = (db(x,l)+dc(x,l))
(2(db(x,l)+dh(x,l)+dc(x,l))) , and wc = (db(x,l)+dh(x,l))

(2(db(x,l)+dh(x,l)+dc(x,l))). And α

is a parameter to flexibly control the compactness of the resulting superpixels. The boundary term
db(x, l) is defined with the probability of a pixel lying on object boundary

db(x, l) = exp
(

∑xi
|g(xi)− g(x)|
|Cwin(x)|

)
, xi ∈ Cwin(x) (26)

where Cwin(x) is the collection of pixels in a win× win window with pixel x as its center, |Cwin(x)|
denotes the number of pixels in Cwin(x), and g(xi) denotes the gradient at pixel xi. The homogeneity
term dh(x, l) is defined with Wishart distance

dh(x, l) = exp
(

ln(|Cl |) + Tr
(

Cl
−1Zx

))
(27)

where Tr(·) denotes the trace of a matrix, Zx and Cl is the covariance matrix of pixel x and lth superpixel
seed, respectively. And the compactness term is defined with the Euclidean distance

dc(x, l) = exp
(√

(rx − rl)
2 + (cx − cl)

2
)

(28)

where (rx, cx) and (rl , cl) denote the coordinates of pixel x and the lth superpixel seed in the xy
plane, respectively.

In the updating strategy in SLIC-BC, Wishart distribution is used to measure the reliability
of pixels

p(Zx|Cl) =
nnd|Zx|n−dexp

{
−nTr

(
Cl
−1Zx

)}
R(n, d)|Cl |n

. (29)

Only reliable pixels are used to update the position and intensities of the superpixel seeds.
The position and intensities of the superpixel seeds are updated by

Cl,i =
∑x∈Φl,i−1

Zx

|Φl,i−1|
, Φl,i−1 = {x|L(x) = l, p(Zx|Cl) > ν} (30)

where i is the number of iterations, L(x) returns the superpixel label of pixel x, and ν is the
reliability threshold.

Since we require target-contained superpixels with less background pixels, a relatively small
superpixel size is preferred. In practice, the desired superpixel size is a key parameter determining
the average size of superpixels. In this paper, we set the desired superpixel size to be half the ship
target size.



Remote Sens. 2019, 11, 769 9 of 20

3.2. Learning Dictioanry with TDDDL

After obtaining the superpixel result, we train a dictionary and a linear classifier via TDDDL.
In the training data, we denote the ship superpixel as Xs = [xs

1, xs
2, . . . , xs

Ts
] ∈ R9×Tc , and the clutter

superpixel as Xc = [xc
1, xc

2, . . . , xc
Tc
] ∈ R9×Tc , where Ts and Tc are the corresponding superpixel size,

respectively. The dictionary D = [Ds, Dc] ∈ R9×P consists of two sub-dictionaries, where Ds ∈ R9×Ps

and Dc ∈ R9×Pc are the sub-dictionary corresponding to the ship and clutter. We initialize the
dictionary D by learning category-specific dictionary in an unsupervised way. Concretely, we compute
the category-specific sub-dictionary by solving

min
Ds ,A
||Xs −DsA||2F + λ||A||1,2s.t. ||Ds

j ||2F = 1, ∀j, 1 ≤ j ≤ Ps (31)

and
min
Dc ,A
||Xc −DcA||2F + λ||A||1,2s.t. ||Dc

j ||2F = 1, ∀j, 1 ≤ j ≤ Pc (32)

where Ds
j and Dc

j are the jth column of Ds and Dc, respectively. The initial classifier parameter matrix
W is determined based on the label information Y and the initial dictionary D. We have

min
W
||[Ys, Yc]−W[As, Ac]||22 +

µ

2
||W||2F (33)

where Ys = [1, 1, . . . , 1] ∈ R1×Ts and Yc = [−1, − 1, . . . , − 1] ∈ R1×Tc denote the label of the ship
superpixels and clutter superpixels, and [As, Ac] is the solution of Equation (7) by substituting [Xs, Xc]

for X. With the initialization results of D and W above, we complete dictionary learning via Algorithm
1 and obtain the learnt dictionary D and classifier W.

3.3. Encoding with Learnt Dictionary

With the learnt dictionary D, we encode an unlabeled superpixel Xu = [xu
1 , xu

2 , . . . , xu
Tu
] ∈ R9×Tu

by solving the following problem:

arg min
Au

||Xu −DAu||2F + λ||Au||1,2. (34)

The resulting feature Au is the sparse code of the sample Xu on the learnt dictionary D. In fact, it is
constructed in virtual dictionary domain, while conventional features are constructed in the original
image domain. Usually the features on the image domain do not achieve good enough results for
harsh detection tasks, because the ship and clutter in the image domain are not sufficiently different.
However, the difference can be amplified in transform domain. On the other hand, the features in
most previous methods are designed artificially, while the feature in the proposed method is designed
with active learning strategy, and thus, is more adaptive. The learnt feature in the proposed method
includes more information about the data and can reveal the polarimetric structure difference between
the ship and the clutter. In addition, the proposed method performs feature extraction and threshold
determination jointly. It has been proven that feature and threshold joint learning is significantly
better than their respective learning [26,31]. Therefore, we can conclude that the feature learnt in the
proposed method theoretically offers significant advantages compared to previous methods.

3.4. Binary Classification

Once the feature Au is obtained, we identify the label of each pixel of Xu based on the
following rule

indentity(xu
i ) = sign(Wαu

i ) (35)

where xu
i denotes the ith pixel element of superpixel Xu, αu

i denotes ith column of Au, and the function
sign(·) returns the sign of a real number. Since pixels within a superpixel have similar characteristics
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such as intensity, texture and polarimetric structure, we identify the label of superpixel Xu based on
the pixel label

indentity(Xu) = sign

(
Tu

∑
i=1

sign(Wαu
i )

)
(36)

Finally, we obtain the binary ship detection result.

4. Experiments and Discussions

C-band RADARSAT-2 polarimetric SLC SAR images acquired over Tanggu port area and Dalian
port area are used for experiments. The parameters of the images are tabulated in Table 1. The intensity
images of single polarimetric channels, Pauli vector color-coded images and geographic locations are
shown in Figures 2 and 3. The areas R1 and R3 in Figures 2e and 3e are used for testing, with training
areas selected from R2 and R4, respectively.

Table 1. The parameters of the PolSAR images.

Location Date
Area (Pixels)

Slant Range ×
Azimuth

Resolution (m)
Slant Range ×

Azimuth

Pixel Spacing (m)
Slant Range ×

Azimuth
Incidence Angle(◦)

Tanggu port 23/06/2011 940× 1810 5.2× 7.6 4.7× 5.3 30
Dalian port 17/04/2012 1500× 870 5.2× 7.6 4.7× 5.3 21

Remote Sens. 2019, 11, 769 10 of 19 

C-band RADARSAT-2 polarimetric SLC SAR images acquired over Tanggu port area and Dalian

port area are used for experiments. The parameters of the images are tabulated in Table 1. The 

intensity images of single polarimetric channels, Pauli vector color-coded images and geographic 

locations are shown in Figure 2 and Figure 3. The areas R1 and R3 in Figure 2(e) and Figure 3(e) are 

used for testing, with training areas selected from R2 and R4, respectively.  

Table 1. The parameters of the PolSAR images. 

Location Date 
Area (pixels) slant 
𝐫𝐚𝐧𝐠𝐞 × 𝐚𝐳𝐢𝐦𝐮𝐭𝐡 

Resolution (m) slant 
𝐫𝐚𝐧𝐠𝐞 × 𝐚𝐳𝐢𝐦𝐮𝐭𝐡 

Pixel Spacing (m) 

slant 𝐫𝐚𝐧𝐠𝐞 ×
𝐚𝐳𝐢𝐦𝐮𝐭𝐡 

Incidence 

Angle(°) 

Tanggu 

port 
23/06/2011 940 × 1810 5.2 × 7.6 4.7 × 5.3 30 

Dalian 

port 
17/04/2012 1500 × 870 5.2 × 7.6 4.7 × 5.3 21 

The ground truth of the testing areas R1 and R3 are shown with Pauli vector color-coded in 

Figure 4. The strong (group S) and weak (group W) targets are marked with green rectangles and 

yellow circles, respectively. The ground truth definition is based on the previous work by Song et al. 

[31] and He et al. [32]. We know that it is easy to detect strong targets and difficult to detect weak

targets. And in real-scene SAR images, strong and weak targets often appear together. In order to

demonstrate the performance comparison, especially the weak target detection performance

comparison, we separate the targets into strong (group S) and weak (group W) targets according to

the relative magnitude of the target average intensity and its surrounding clutter average intensity.

If the target average intensity is higher than its surrounding clutter average intensity, the target is

grouped as the strong target; otherwise, the target is grouped as the weak target. The surrounding

clutter pixels are chosen in a window with the target as its center and the window size is set as twice

the average target size. Meanwhile, adjacent target pixels in the window are excluded as outliers for

clutter estimation based on ground truth.

 In the following, we first describe the parameter setting of the proposed method, and then give 

the performance evaluation on synthetic data. Finally, the performance evaluation on real-scene data 

is also presented. We compare the proposed method with the iterative censoring CFAR (IC-CFAR) 

detector [10], Variational Bayesian Inference (VBI) [31], Superpixel-level local information 

measurement (SLIM) detector [32], and contextual region-based convolutional neural network with 

multilayer fusion (CRCNN-MF) [15]. 

(a) (b) 

(c) (d) 

Figure 2. Cont.



Remote Sens. 2019, 11, 769 11 of 20

Remote Sens. 2019, 11, 769 11 of 19 

 

 
(e) 

 
(f) 

Figure 2. RADARSAT-2 PolSAR image over Tanggu port area. (a-d) Intensity images of HH, HV, VH 

and VV channels. (e) Pauli vector color-coded image, using |HH − VV|, |HV|, and |HH + VV| as 

red, green, and blue, respectively. The areas R1 and R2 are used for training and testing, respectively. 
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Figure 3. RADARSAT-2 PolSAR image over Dalian port area. (a-d) Intensity images of HH, HV, VH and VV 

channels. (e) Pauli vector color-coded image, using |HH − VV|, |HV|, and |HH + VV| as red, green, and blue, 
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Figure 2. RADARSAT-2 PolSAR image over Tanggu port area. (a–d) Intensity images of HH, HV,
VH and VV channels. (e) Pauli vector color-coded image, using |HH − VV|, |HV|, and |HH + VV|
as red, green, and blue, respectively. The areas R1 and R2 are used for training and testing, respectively.
(f) The geographic location of Tanggu port area.
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Figure 3. RADARSAT-2 PolSAR image over Dalian port area. (a–d) Intensity images of HH, HV,
VH and VV channels. (e) Pauli vector color-coded image, using |HH − VV|, |HV|, and |HH + VV|
as red, green, and blue, respectively. The areas R3 and R4 are used for training and testing, respectively.
(f) The geographic location of Dalian port area.
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The ground truth of the testing areas R1 and R3 are shown with Pauli vector color-coded in
Figure 4. The strong (group S) and weak (group W) targets are marked with green rectangles and yellow
circles, respectively. The ground truth definition is based on the previous work by Song et al. [31] and
He et al. [32]. We know that it is easy to detect strong targets and difficult to detect weak targets. And in
real-scene SAR images, strong and weak targets often appear together. In order to demonstrate the
performance comparison, especially the weak target detection performance comparison, we separate
the targets into strong (group S) and weak (group W) targets according to the relative magnitude
of the target average intensity and its surrounding clutter average intensity. If the target average
intensity is higher than its surrounding clutter average intensity, the target is grouped as the strong
target; otherwise, the target is grouped as the weak target. The surrounding clutter pixels are chosen
in a window with the target as its center and the window size is set as twice the average target size.
Meanwhile, adjacent target pixels in the window are excluded as outliers for clutter estimation based
on ground truth.
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Figure 4. RADARSAT-2 PolSAR images for testing. Pauli vector color-coded images over (a) R2 and
(b) R4 areas. In each image, the strong (group S) and weak (group W) targets are marked with green
rectangles and yellow circles, respectively.

In the following, we first describe the parameter setting of the proposed method, and then give
the performance evaluation on synthetic data. Finally, the performance evaluation on real-scene data
is also presented. We compare the proposed method with the iterative censoring CFAR (IC-CFAR)
detector [10], Variational Bayesian Inference (VBI) [31], Superpixel-level local information measurement
(SLIM) detector [32], and contextual region-based convolutional neural network with multilayer fusion
(CRCNN-MF) [15].

4.1. Parameter Setting

The parameters of the comparative methods are set up according to the original papers.
For instance, all the hyperparameters involved in the VBI method are set in noninformative manner to
reduce their impact on the estimation of posterior distributions. Thus, both hyperparameters β1β1β1

and β2 in VBI are set to be 10−6. For the IC-CFAR method, the confidence level of a pixel being target
is set as 0.02 [10]. Thus, an index matrix can be obtained to label whether each pixel of the image is a
potential target pixel or not. More parameter setting details can be found in [9,15,31,32].

The parameters in the proposed method include the parameters of superpixel segmentation and
the parameters of TDDDL. The parameter α in superpixel segmentation largely depends on our needs.
When α is large, spatial proximity is more important and the resulting superpixels are more compact.
When α is small, the resulting superpixels adhere more tightly to image boundaries, but have less
regular shape. For PolSAR images, α can be in the range [0.5, 20]. In this paper, we prefer superpixels
with more boundary adherence. Thus, smaller α should be employed. Figure 5 shows the superpixel
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segmentation results with different α. We can find that boundary adherence is not guaranteed when
α = 3.0, and the boundary is too complicated when α = 0.7. Empiracalliy, the range [0.8, 1.5] is
prefered. In this paper, we set the parameter α to be 1.0.

Remote Sens. 2019, 11, 769 12 of 19 

 

 
(a) 

 
(b) 

Figure 4. RADARSAT-2 PolSAR images for testing. Pauli vector color-coded images over (a) R2 and (b) R4 areas. 

In each image, the strong (group S) and weak (group W) targets are marked with green rectangles and yellow 

circles, respectively. 

4.1. Parameter Setting 

The parameters of the comparative methods are set up according to the original papers. For 

instance, all the hyperparameters involved in the VBI method are set in noninformative manner to 

reduce their impact on the estimation of posterior distributions. Thus, both hyperparameters 𝛽1𝛽1𝛽1 

and 𝛽2 in VBI are set to be 10-6. For the IC-CFAR method, the confidence level of a pixel being target 

is set as 0.02 [10]. Thus, an index matrix can be obtained to label whether each pixel of the image is a 

potential target pixel or not. More parameter setting details can be found in [9,15,31,32]. 

The parameters in the proposed method include the parameters of superpixel segmentation and 

the parameters of TDDDL. The parameter 𝛼 in superpixel segmentation largely depends on our 

needs. When 𝛼 is large, spatial proximity is more important and the resulting superpixels are more 

compact. When 𝛼 is small, the resulting superpixels adhere more tightly to image boundaries, but 

have less regular shape. For PolSAR images, 𝛼 can be in the range [0.5, 20]. In this paper, we prefer 

superpixels with more boundary adherence. Thus, smaller 𝛼 should be employed. Figure 5 shows 

the superpixel segmentation results with different 𝛼. We can find that boundary adherence is not 

guaranteed when 𝛼 = 3.0, and the boundary is too complicated when 𝛼 = 0.7. Empiracalliy, the 

range [0.8, 1.5] is prefered. In this paper, we set the parameter 𝛼 to be 1.0.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Superpixel segmentation results with different α. (a) α = 3.0. (b) α = 1.5. (c) α = 1.0.
(d) α = 0.7. As α decreases, the resulting superpixels adhere more tightly to image boundaries. But an
insufficient α produces overly complicated superpixel boundaries, where even the connectivity of
superpixels cannot be guaranteed. For instance, region 1 and region 2 in sub-figure (d) belong to the
same superpixel.

For the parameters in TDDDL, we use a few simple heuristics to reduce the search space, which are
used in many dictionary learning methods [16,33,34]. The regularization parameter µ is fixed to be
10−3 [34]. And we try parameters λ = 0.35 + 0.05j, with j ∈ {−3,−2, . . . , 2, 3}. The candidate
parameters of η are {0, 0.05, . . . , 0.25, 0.3}. The detection performance versus the regularization
parameter λ and η is demonstrated in Figure 6. Based on these figures, we obtain optimal parameters
in TDDDL. Here we list the parameters used in the proposed method in Table 2.
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Figure 6. The area under the receiver operation characteristic (ROC) curve (AUC) versus the
regularization parameters λ and η: (a) the detection probability versus λ, where we set λ to be 0.2,
0.225, 0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475, and 0.5; and (b) the detection probability
versus η, where we set η to be 0, 0.025 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3.
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Table 2. The parameters used in the proposed method.

Parameter α λ µ η

Values 1.0 0.35 10−3 0.1

4.2. Performance Evaluation on Synthetic Data

First, we evaluate the performance of the test methods quantitatively using synthetic data. In the
synthetic data, sea clutter is modeled by K distribution with SCR ranging from 0 dB to 12 dB. Figure 7
shows the span images of the synthetic data and the corresponding ground truth image where white
pixels denote target pixels. In order to evaluate the ship detection results of the test methods in a
quantitative way, the actual detection possibility Pd and figure of merit FoM are defined as follows:

Pd =
ndt

ntarget
, FoM =

ndt
ntarget + ndc

(37)

where ntarget denotes the total number of true target pixels, ndt and ndc are the number of correctly
detected target pixels and that of clutter pixels detected as target pixels, respectively. Higher detection
probability and figure of merit implies better detection methods. Figure 8 presents the detection
performances of the five test methods under different SCR conditions. We can find that all the test
methods show satisfactory performances in detection probability at relatively high SCR conditions,
while the proposed method and SLIM achieve higher detection probability at low SCR conditions.
Obviously, the figure of merit of the proposed method is higher than those of the comparative methods,
which implies that the proposed method produces less false alarms. Therefore, we can conclude that
the proposed method outperforms the comparative methods on synthetic data.
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4.3. Performance Evaluation on Real-Scene Data

Two RADARSAT-2 images acquired over Tanggu port and Dalian port are used for real-scene
validation. The ship number of different groups is tabulated in Table 3. Table 4 and Figures 9–13
report the ship detection results of the proposed method and the comparative methods. In Table 4,
Ndt = NS

dt + NW
dt denote the total number of detected ships, where NS

dt and NW
dt denote the number

of detected ships belonging to group S and group W, respectively. The number of false alarms is
denoted as Ndc. In Figures 9–13, the false alarms and missed targets are marked with red circles
and white rectangles, respectively. In Figure 9a over Tanggu port area, we can see that the proposed
method can detect all the ship targets, including 35 strong targets and 11 weak targets, with only 1 false
alarm. In Figure 9b over Dalian port area, the proposed method can detect all 35 strong targets and
4 weak targets, with no false alarms. All comparative methods can detect almost all the strong targets.
The performance gaps lie in false alarms and weak target detection. For Tanggu port area, the IC-CFAR
detector detect 2 weak targets with 11 false alarms, and CRCNN-MF detect 5 weak targets with 9 false
alarms. The VBI and SLIM perform better than the IC-CFAR detector and CRCNN-MF in the image of
Tanggu port area. The VBI detect 6 weak targets with 5 false alarms, and SLIM detect 10 weak targets
with 4 false alarms. For Dalian port area, the proposed method, VBI and CRCNN-MF outperform
the IC-CFAR detector and SLIM, producing fewer false alarms. In summary, the proposed method
achieves the highest detection accuracy and lowest false alarm rate. Therefore, we can conclude that
the proposed method is superior to the comparative methods.

Table 3. Ground truth of ships.

Location Group Number

Tanggu port group S 35
group W 11

Dalian port group S 35
group W 4

Table 4. Performance comparison of the test methods.

Method Proposed IC-CFAR VBI SLIM CRCNN-MF

Tanggu port

NS
dt 35 35 35 35 35

NW
dt 11 2 6 10 5

Ndt 46 37 40 45 40
Ndc 1 >11 5 4 9

Dalian port

NS
dt 35 34 35 35 35

NW
dt 4 4 4 4 4

Ndt 39 38 39 39 39
Ndc 0 3 0 2 0

NS
dt and NW

dt denote the number of detected ships belonging to group S and group W, respectively. NW
dt denotes the

total number of detected ship, and Ndc denotes the number of false alarms.

Besides detection accuracy and false alarms, the shape preserving of detection results is another
issue. First, we require that the detected targets are complete. Moreover, the detected targets should
not be redundant. In the detection results, we mark the broken detected targets with blue rectangles.
By comparing the results in Figures 9–13, we can see that the proposed method, SLIM and CRCNN-MF
produce much less broken detected targets than the other two methods. However, the sea clutter pixels
around the ships influenced by ship tend to be detected by SLIM and CRCNN-MF, and the detected
targets produced by SLIM and CRCNN-MF are fatter than those produced by the proposed method,
IC-CFAR detector and VBI. The proposed method mainly captures the dominant scatters on ships and
maintains the best shape preserving ability.
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Figure 9. Ship detection results of the proposed method. (a) Tanggu port. (b) Dalian port. The false
alarms are marked with red circles. No missed targets or broken detected targets.
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and broken detected targets are marked with red circles, white rectangles and blue rectangles, respectively.
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Figure 13. Ship detection results of CRCNN-MF. (a) Tanggu port. (b) Dalian port. The false alarms
and missed targets are marked with red circles and white rectangles, respectively. No broken
detected targets.

4.4. Computational Cost

The proposed approach and the comparative methods are written in MATLAB code. All the
experiments are performed though MATLAB 2017b in 64-bit Windows system with a hardware
environment of Intel Core i7 8700 processor and 16-GB RAM. The time consumption of different
methods is listed in Table 5. We can see that the proposed method maintains comparable testing time
with the CRCMM-MF, while the training time of the proposed method is greatly reduced. The VBI is
much slower than the other methods. The main reason for this may depend on the special structure of
algorithm, where the updates of the latent variables’ expectations are highly coupled. The IC-CFAR
detector is the fastest method. The efficiency of the IC-CFAR detector is mainly due to the initial detector
applied to the entire cross-polarization image without sliding window. In the SLIM, the sliding window
is applied on the superpixel level for a fast processing. And the multiscale superpixel segmentation
and local information computation are time consuming. Thus, its computation complexity is moderate.
In summary, the proposed method maintains low computation complexity, while it has satisfactory
detection probability and figure of merit, as well as low false alarms and good shape preserving ability.
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Table 5. Time consumption of different methods.

Location Method Training Time/Testing Time

Tanggu port

The proposed method 67.2 s/6.4 s
IC-CFAR -/4.9 s

VBI -/478.1 s
SLIM -/48.6 s

CRCNN-MF 3080.5 s/5.3 s

Dalian port

The proposed method 71.6 s/8.5 s
IC-CFAR -/5.4 s

VBI -/515.3 s
SLIM -/60.1 s

CRCNN-MF 3141.5 s/7.8 s

5. Conclusions

In this paper, we proposed a novel ship detection method for PolSAR images via TDDDL.
The method is performed at superpixel level to retain target outlines and suppress speckle noise.
We extract discriminative features between the ship and clutter by sparse encoding with learnt
task-driven discriminative dictionary. A linear classifier is obtained in the training processing. With the
learnt features and classifier, we achieve ship detection. Different from previous methods, our ship
detection cue is obtained through active learning strategies rather than artificially designed rules,
and thus, is more adaptive and effective. The effectiveness and superiority of the proposed method
is demonstrated by experimental results performed on two RADARSAT-2 images. In the future,
we would like to deeply analyze the polarimetric information hidden behind TDDDL and apply the
proposed method to general target detection task for PolSAR images, such as vehicle detection and
bridge detection.
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