
remote sensing  

Article

Assessment of Landslide Susceptibility Using
Statistical- and Artificial Intelligence-Based FR–RF
Integrated Model and Multiresolution DEMs

Alireza Arabameri 1,* , Biswajeet Pradhan 2,3 , Khalil Rezaei 4 and Chang-Wook Lee 5,*
1 Department of Geomorphology, Tarbiat Modares University, Tehran 36581-17994, Iran
2 Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and

IT, University of Technology Sydney, Ultimo, NSW 2007, Australia; Biswajeet.Pradhan@uts.edu.au
3 Department of Energy and Mineral Resources Engineering, Choongmu-gwan, Sejong University,

209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea
4 Faculty of Earth Sciences, Kharazmi University, Tehran 14911-15719, Iran; kh.rezaei@gmail.com
5 Division of Science Education, Kangwon National University, 1 Kangwondaehak-gil,

Chuncheon-si 24341, Korea
* Correspondence: Alireza.ameri91@yahoo.com (A.A.); cwlee@kangwon.ac.kr (C.-W.L.)

Received: 19 March 2019; Accepted: 24 April 2019; Published: 26 April 2019
����������
�������

Abstract: Landslide is one of the most important geomorphological hazards that cause significant
ecological and economic losses and results in billions of dollars in financial losses and thousands of
casualties per year. The occurrence of landslide in northern Iran (Alborz Mountain Belt) is often due
to the geological and climatic conditions and tectonic and human activities. To reduce or control the
damage caused by landslides, landslide susceptibility mapping (LSM) and landslide risk assessment
are necessary. In this study, the efficiency and integration of frequency ratio (FR) and random forest
(RF) in statistical- and artificial intelligence-based models and different digital elevation models
(DEMs) with various spatial resolutions were assessed in the field of LSM. The experiment was
performed in Sangtarashan watershed, Mazandran Province, Iran. The study area, which extends to
1072.28 km2, is severely affected by landslides, which cause severe economic and ecological losses.
An inventory of 129 landslides that occurred in the study area was prepared using various resources,
such as historical landslide records, the interpretation of aerial photos and Google Earth images,
and extensive field surveys. The inventory was split into training and test sets, which include 70
and 30% of the landslide locations, respectively. Subsequently, 15 topographic, hydrologic, geologic,
and environmental landslide conditioning factors were selected as predictor variables of landslide
occurrence on the basis of literature review, field works and multicollinearity analysis. Phased array
type L-band synthetic aperture radar (PALSAR), ASTER (Advanced Spaceborne Thermal Emission
and Reflection Radiometer), and SRTM (Shuttle Radar Topography Mission) DEMs were used to
extract topographic and hydrologic attributes. The RF model showed that land use/land cover (16.95),
normalised difference vegetation index (16.44), distance to road (15.32) and elevation (13.6) were
the most important controlling variables. Assessment of model performance by calculating the
area under the receiving operating characteristic curve parameter showed that FR–RF integrated
model (0.917) achieved higher predictive accuracy than the individual FR (0.865) and RF (0.840)
models. Comparison of PALSAR, ASTER, and SRTM DEMs with 12.5, 30 and 90 m spatial resolution,
respectively, with the FR–RF integrated model showed that the prediction accuracy of FR–RF–PALSAR
(0.917) was higher than FR–RF–ASTER (0.865) and FR–RF–SRTM (0.863). The results of this study
could be used by local planners and decision makers for planning development projects and landslide
hazard mitigation measures.
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1. Introduction

Mass movements are influenced by natural and human factors [1]. These hazards, which occur
in many parts of the world, cause considerable damage to people’s lives and property every year.
For example, the average annual economic loss is approximately $1.5 billion in the United States,
$2 billion in Japan and $2 million in Italy [2]. These hazards annually cause approximately 500 billion
rial worth of damage in Iran, and this amount does not include the destruction of nonrenewable
natural resources [3]. The climatic, topographic and environmental conditions prevailing in Iran,
especially in northern provinces, have made landslide one of the most important natural hazards [4].
In geomorphology, landslide is defined as a gravitational motion of the mass of rocks, rubble,
and earth materials [5,6], which can be disastrous and cause the destruction of human settlements and
infrastructure, such as roads, bridges, and dams, making it the third cause of disasters worldwide [7].
Landslide is one of the greatest disturbances in the development programs in mountainous areas [8].
In comparison with other natural hazards, such as volcanic eruptions or flooding, landslide has caused
more economic losses and casualties [9]. Therefore, knowing where landslides are more likely to occur is
important for planners and policymakers to use the natural environment and its resources and economic
and infrastructural facilities optimally and prevent damage and casualties [10,11]. The rapid population
growth, the expansion of human settlements in mountainous areas, the difficulty of predicting the
occurrence of landslide and the multiple factors controlling this phenomenon indicate the need for
landslide susceptibility assessment (LSA) [12]. Landslide susceptibility (LS) is the probability of a
landslide occurring in a region on the basis of the local state of the earth [13]. Identifying sensitive
areas with potential hazard is possible by using landslide susceptibility mapping (LSM), and landslides
can be prevented and/or its damage can be reduced by providing appropriate management. LSM is the
prediction of the spatial occurrence of landslide on the basis of geomorphological and geo-environmental
conditioning factors [14,15].

At present, given the rapid development of computer processing power and geographic
information system (GIS) technology, a large number of quantitative and statistical methods have been
developed and used to assess landslide sensitivity [16]. Generally, studies on the assessment of landslide
hazard can be classified in terms of methodological approach into three categories, namely, quantitative,
qualitative and artificial intelligence approaches. Qualitative methods, such as analytical hierarchy
process (AHP) [17,18], are based on the judgements of one or more experts. Quantitative approaches,
such as frequency ratio (FR) [19–25], logistic regression (LR) [26–29], statistical index (SI) [23], weight of
evidence (WoE) [30], evidential belief function (EBF) [31], information value (IV) [32–34], information
content model (ICM) [35], certainty factors (CF) [36], multivariate regression (MR) [37], multivariate
adaptive regression spline (MARS) [38–40], linear discriminant analysis (LDA) [41], and quadratic
discriminant analysis (QDA) [41] are based on strict mathematical rules, regardless of any personal
judgement. Artificial intelligence techniques, such as kernel logistic regression (KLR) [27], artificial
neural network (ANN) [42–45], support vector machines (SVM) [46–49], boosted regression trees
(BRT) [12,50], neuro-fuzzy system (NFS) [51,52], naive Bayes (NB) [28], decision tree (DT) [11,53–55],
and random forest (RF) [50,56,57], can use mental knowledge or pattern matching techniques to solve
a set of mathematical equations [58].

In this study, statistical and machine learning models and their integration, were compared.
Among statistical models, the FR was selected due to its simplicity of equations, ease of interpretation
of results, and high efficiency [59–61]. Abedini and Tulabi [62] used three models of landslide nominal
risk factor, FR and AHP for LSM in Lorestan Province, Iran; they stated that the FR model had better
prediction accuracy among the three.
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The advantages of the RF method over other machine learning models is that it can apply several
input factors without eliminating any of them and return a small set of categories that maintain high
prediction accuracy [63–65]. The classification accuracy of this model is affected by the number, scale,
type and precision of input data. Processing the use of all suitable factors increases the accuracy of this
model. Moreover, in comparison with other models, RF has higher sufficiency to apply a large number
of datasets [66]. Ref. [67] used three machine learning models, namely, BRT, MARS (multiple adaptive
regression splines), and RF, for spatial modelling of gully erosion in Shahroud Basin, Iran and stated
that FR had better performance. [68] used the integration of the FR bivariate statistical model and RF
data mining model for LSA in the Chehel-chai watershed in Golestan Province. They stated that the
integrated model, with area under the receiving operating characteristic (ROC) curve (AUC) of 0.831,
had a high capability to identify susceptible areas of landslide occurrence.

Sangtarashan watershed in northern Iran is one of the mountainous regions exposed to numerous
landslides. Most of these landslides have had a negative impact on the lives and the economy of people
because they often affect residential areas and infrastructure, such as roads. Therefore, LS modelling in
this area is of great interest.

A literature review of LS modelling indicates that many different methods have been used in this
field worldwide, each having its advantages and disadvantages. The present study aims to increase the
efficiency of LS modelling by integrating artificial intelligence-based RF models and FR statistical-based
RF models. It also aims to evaluate how different resolutions of the digital elevation model (DEM) used
to extract the topographic and hydrologic predictors affect the reliability of the landslide predictive
models. Multiresolution DEMs, namely, phased array type L-band synthetic aperture radar (PALSAR),
SRTM, and ASTER, were utilised for LSM in the study area.

2. Materials and Methods

2.1. Study Area

Sangtarashan watershed is located in Mazandran Province, Iran. The area extends to 1072.28 km2

and lies between longitudes of 53◦ 03′ 52” E and 53◦ 31′ 39” E and latitudes of 36◦ 11′ 48” N and 36◦

30′ 28” N (Figure 1). The elevation averages 704 m, varying from 72 m in the northeast to 1681 m in
the southwest and east of the study area. The mean annual temperature and rainfall are 12.8 ◦C and
900 mm, respectively [69]. The area is characterised by a mountainous landscape with an average
slope gradient of 15.8◦ and a maximum of 67.8◦. The normalised difference vegetation index (NDVI),
which varies from −0.132 to 0.639 with a mean of 0.458, indicates a high vegetation density. Convex
and concave plan curvature occur on 49.43% and 46.06% of the study area, respectively, whereas only
3.14% has flat topography. The site is characterised by seven land use/land cover (LU/LC) classes,
including agricultural lands (0.08%), dense forest (78.9%), low forest (1.5%), agriculture-orchard (7.6%),
agricultural forest (0.02%), dry farming forest (11.5%) and water (0.3%). The dominant lithological units
in the area [70] are marl, calcareous sandstone, sandy limestone and minor conglomerate (Mm, s, l);
hyporite-bearing limestone (K2l1); medium- to thick-bedded limestone (Pel); polymictic conglomerate
and sandstone (Plc); and thick-bedded to massive limestone (K2l2).
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Figure 1. Study area: (a) Location of the study area in Iran; (b) location of the study area in Mazandran
Province; (c) location of training and validation landslides in the study area.

2.2. Data Collection (Landslide Inventory Map and Landslide Conditioning Factors [LCFs])

The first step in LS modelling is preparing a landslide inventory. This stage is considered the
most important because the accuracy of the landslide inventory used to calibrate the models affects
the reliability of LSA [71–73]. Thus, the higher the accuracy and quality of the landslide inventory,
the better the predictive performance of the susceptibility maps will be [71].

The following are used to produce detailed and reliable landslide inventory map and interpret
high-resolution images from Google Earth: (i) Historical landslide records [74]; (ii) interpretation
of aerial photos with scales of 1:20,000 and 1:40,000 and high-resolution images available from
Google Earth images; and (iii) extensive field surveys in three periods (i.e., 07/12/2016, 06/13/2017 and
03/02/2018). Finally, 129 landslides were identified in the study area from 2013 to 2018. The landslides
in the study area are characterised by two modes, that is, slump-tensile and creep-tensile ruptures,
which eventually lead to landslide instability. Of these landslides, 70% (90 landslide locations) were
selected for training and 30% (39 landslide locations) for validation of the models [12].

Of the 129 landslides identified in the study area, 56 (43.41%) were translational slides, 38 (29.45%)
were rotational slides, 5 (3.87%) were soil creep, 23 (17.82%) were shallow translational slide, and 7
(5.42%) were complex slide. These detections covered a total area of 13,324,421 m2. Analysis of
landslide size showed that the smallest was 135.63 m2 and the largest was 976,423 m2, with a mean size
of 108,215 m2. The models developed by [75,76] were used to classify all landslides using landslide
points located in the centre of the landslide scar.

On the basis of an extensive literature review [11,40,55,77] and of the physical characteristics of the
site, 15 LCFs were used to model the LS in the study area. These LCFs include elevation, slope degree,
slope aspect, convergence index, SL, plan curvature, profile curvature, drainage density, distance
to stream, distance to road, distance to fault, lithology, rainfall, LU/LC, and NDVI (Figure 2a–o).
The variables were submitted to a multicollinearity test that excluded strong relationships among them.
The terrain attributes were extracted from PALSAR DEM with 12.5 m spatial resolution (http://www.
eorc.jaxa.jp/ALOS/en/aw3d30), DEM-SRTM with 30 m spatial resolution (http://dwtkns.com/srtm30m/),
and DEM-ASTER with 90 m spatial resolution (http://dwtkns.com/aster90m/). The slope, aspect,
plan curvature, profile curvature, and LS are respectively calculated as follows:

http://www.eorc.jaxa.jp/ALOS/en/aw3d30
http://www.eorc.jaxa.jp/ALOS/en/aw3d30
http://dwtkns.com/srtm30m/
http://dwtkns.com/aster90m/
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Aspect = arctan
(H

G

)
(2)

Plan Curvature = −
q2
× r− 2× p× q× s + p2

× t(√
1 + P2 + q2

)3 (3)

Profile Curvature = −
q2
× r + 2× p× q× r× s + q2

× t(
P2 + q2

)
×

(√
1 + P2 + q2

)3 (4)

LS =
( AS

22.13

)0.6
×

(
Sinβ

0.0896

)1.3

(5)

where As is specific upstream contributing area, and β is the slope gradient. The values of H, G, p, q, r, s
and t are obtained as follows:

G =
df
dx

=
Z3 + Z6 + Z9−Z1−Z4−Z7

6× P
(6)

H =
df
dy

=
Z1 + Z2 + Z3−Z4−Z8−Z9

6× P
(7)

p =
Z3 + Z6 + Z9−Z1−Z4−Z7

6× ∆s
(8)

q =
Z1 + Z2 + Z3−Z7−Z8−Z9

6× ∆s
(9)

r =
Z1 + Z3 + Z4 + Z6 + Z7 + Z9− 2× (Z2 + Z5 + Z8)

3× ∆2
s

(10)

s =
−Z1 + Z3 + Z7−Z9

4× ∆2
s

(11)

t =
z1 + z2 + z3 + z7 + z8 + z9− 2× (z4 + z5 + z6)

3× ∆2
s

(12)

where z1–z9 are altitude values in 3 × 3 cellular networks and ∆s denotes the cell size.
The stream network was extracted from the PALSAR DEM using ArcGIS10.5 software to calculate

the distance to stream and drainage density. After extracting the stream network, distance to stream
and drainage density were calculated using the Euclidean distance and line density tools. To produce
the grid of distance to roads, these factors were digitized from 1:50,000 scale topographic maps
obtained from the Geographic Organisation of the Armed Forces (2008) and Google Earth satellite
images. Next, the distance to road was calculated using the Euclidean distance tool. The same tool
was used to extract the grid of distance to faults on the basis of the structural map provided by the
Soil Conservation Section of Agricultural and Natural Resources Research Centre of Isfahan Province.
The lithological map of the study area, which includes 12 units (Table 1), was prepared on the basis
of a 1:100,000 scale geological map [70]. A Landsat 8 image (path 163/ row 35) (7 September 2017),
which was archived by USGS with 30 m and 15 m spatial resolution for visual and panchromatic
bands, respectively (https://earthexplorer.usgs.gov/), was used to prepare the LU/LC map in ENVI4.8
software. The supervised (maximum likelihood) algorithm was used for this purpose. A set of 375
ground control points were used to validate the LU/LC map with kappa coefficient.

https://earthexplorer.usgs.gov/
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Table 1. Lithology of the study area [70].

Code Description Formation Age

Qm Swamp and shale - Quaternary
Plc Polymictic conglomerate and sandstone - Pliocene

Mm, s, l Marl, calcareous sandstone, sandy limestone
and minor conglomerate - Miocene

PeEm Marl and gypsiferous marl locally
gypsiferous mudstone - Paleocene–Eocene

K2l2 Thick-bedded to massive limestone - Late Cretaceous
K2l1 Hyporite-bearing limestone - Late Cretaceous

DCkh

Yellowish, thin to thick-bedded, fossiliferous
argillaceous limestone, dark grey limestone,
greenish marl and shale, locally
including gypsum

- Devonian

Pel Medium to thick-bedded limestone - Paleocene–Eocene

Jk Conglomerate, sandstone and shale with plant
remains and coal seams Kashafrud Middle Jurassic

Jl Light grey, thin-bedded to massive limestone Lar Jurassic–Cretaceous
TRJs Dark grey shale and sandstone Shemshad Triassic–Jurassic

Ktzl Thick-bedded to massive, white to pinkish
orbitolina bearing limestone Tizkuh Early Cretaceous

The annual rainfall data recorded at the Talaroum, Afrachal, Soleiman-tangeh, Vasetan,
Rigcheshmeh-nakam, Sarkat-tajan and Afrachal weather stations during a 30-year period (i.e.,
1986–2016) were interpolated via kriging in ArcGIS10.5 [69] to prepare a rainfall map of the study
area. Landsat 8 was used in ArcGIS10.5 software to calculate the NDVI from bands 4 (red band) and 5
(infrared band). The NDVI map was calculated as follows:

NDVI = (IR − R)⁄(IR + R) (13)

where IR and R represent the infrared and red electromagnetic spectra, respectively. Table 2 shows
the source and resolution of parameters used for classification, along with their classes, methods and
references. Finally, all layers were unified similarly with DEM spatial resolution and the UTM Zone39N
geographic coordinate system.

2.3. Methodology

The method used in this study (Figure 3) consists of five main steps as follows: (1) Detection
of landslide locations by optical remote sensing analysis of Google Earth images and extensive field
surveys and random subdivision of the landslide archive into training and validation sets; (2) selection
and extraction of 15 LCFs using various data sources, including PALSAR DEM, geological map
(1:100,000 scale), topographic map (1:50,000 scale) and Landsat 8 image; (3) application of FR model
and establishment of the spatial relationship between LCFs and location of landslides; (4) application
of RF model and determination of the importance of LCFs; (5) LSM using two approaches, namely,
(i) individual statistical FR and artificial intelligence-based RF models and (ii) FR–RF integrated models;
(6) validation of LSMs by calculating AUC parameter; and (7) comparison of FR–RF integrated models
prepared using topographic variables extracted from DEMs with different resolutions.
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Table 2. Overview of factors used for landslide susceptibility mapping (LSM).

Factor Source Resolution Classes Method Reference

Elevation PALSAR, ASTER and
SRTM DEMs 12.5, 30 and 90 m (1) <338 m; (2) 338–536 m; (3) 536–721 m; (4)

721–909 m; (5) 909–1136 m; (6) >1136 m Natural break [4]

Slope PALSAR, ASTER and
SRTM DEMs 12.5, 30 and 90 m (1) <7.1◦; (2) 7.1◦–13◦; (3) 13◦–18.8◦; (4)

18.8◦–25.2◦; (5) 25.2◦–32.6◦; (6) >32.6◦ Natural break [78]

Aspect PALSAR, ASTER and
SRTM DEMs 12.5, 30 and 90 m

(1) Flat (−1◦); (2) North (337.5◦–360◦,
0◦–22.5◦); (3) Northeast (22.5◦–67.5◦); (4)
East (67.5◦–112.5◦; (5) Southeast
(112.5◦–157.5◦); (6) South (157.5◦–202.5◦);
(7) Southwest (202.5◦–247.5◦); (8) West
(247.4◦–292.5◦); (9) Northwest
(292.5◦–337.5◦)

Equal interval [12]

Convergence index PALSAR, ASTER and
SRTM DEMs 12.5, 30 and 90 m (1) <−29.41); (2) −29.41 to −9.01; (3) −9.01

to 7.45; (4) 7.45–27.84; (5) >27.84 Natural break [4]

SL PALSAR, ASTER and
SRTM DEMs 12.5, 30 and 90 m (1) <22.06 m; (2) 22.06–50.3 m; (3) 50.3–77.9

m; (4) 77.9–103.4 m; (5) >103.4 m Natural break [79]

Plan curvature PALSAR, ASTER and
SRTM DEMs 12.5, 30 and 90 m (1) Concave (<0); (2) Flat (0);

(3) Convex (>0) Natural break [45]

Profile curvature PALSAR, ASTER and
SRTM DEMs 12.5, 30 and 90 m (1) <−1.13; (2) −1.13 to −0.35; (3) −0.35 to

0.28; (4) 0.28–1.12; (5) >1.12 Natural break [80]

Drainage density PALSAR, ASTER and
SRTM DEMs 12.5, 30 and 90 m (1) <0.38 km/km2; (2) 0.38–0.74 km/km2; (3)

0.74–1.12 k m/km2; (4) >1.12 km/km2 Natural break [60]

Distance to stream PALSAR, ASTER and
SRTM DEMs 12.5, 30 and 90 m (1) < 227 m; (2) 227–483 m; (3) 483–745 m;

(4) 745–1035 m; (5) >1035 m Natural break [81]

Distance to road Topographic map 1:50,000 (1) <1,204 m; (2) 1204–2564 m; (3) 2564–4041
m; (4) 4041–5712 m; (5) >5712 m Natural break [45]

Distance to fault Geological map 1:100,000 (1) <649 m; (2) 649–1492 m; )3) 1492–2575
m; (4) 2575–3924 m; (5) >3924 m Natural break [82]

Lithology Geology map 1:100,000
(1) DCkh; (2) Jk; (3) Jl; (4) K2l1; (5) K2l2; (6)
Ktzl; (7) Mm, s, l; (8) PeEm; (9) Pel; (10) Plc;
(11) Qm; (12) TRJs

Lithological units -

Rainfall Raining data -
(1) <798.3 mm; (2) 798.3–911 mm; (3)
911–1041.3 mm; (4) 1041–1196 mm; (5)
>1196 m m

Natural break [45]

LU/LC Landsat-8 image 30 m
(1) Agriculture; (2) Dense forest; (3) Low
forest; (4) Agri-orchard; (5) Agri-forest; (6);
Dry farming forest; (7) Water

Supervisedclassification -

NDVI Landsat-8 image 30 m (1) <0.3; (2) 0.3–0.43; (3) >0.43 Natural break [12]

2.4. Models

2.4.1. FR

The FR approach defines a quantitative relationship between landslide occurrence and spatial
variability of a set of predictor variables [83]. This method is based on the calculation, for each class of
the predictor variables, of the ratio of landslide area within that class to the total landslide area divided
by the ratio of the area of that class to the total investigated area. FR is calculated as follows [84]:

FR =

(
A
B

)(
C
D

) =
E
F

(14)

where A is the number of landslide pixels in each class of the predictors, B is the total number of
landslide pixels in the study area, C is the total number of pixels in each class of the predictors, D is the
total number of pixels in the study area, E is the percentage of landslide occurrence in each class of the
factors, and F is the relative percentage of the area of each subclass of the total area. The FR values of
the controlling factors are gathered together in the GIS environment to obtain index of susceptibility to
landslide occurrence [85]:

LSI =
∑

(FR)i (i = 1, 2, . . . ., n) (15)

where LSI is the landslide susceptibility index, FR is the frequency ratio of factors and n represents the
total input factors.
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2.4.2. RF

Data mining emerged in the late 1980s, and considerable progress was made in this subject in
the 1990s [86]. RF was introduced by [87]. It is a method for the classification and regression of data
that combines trees with branches and random data to form an RF. Hence, this method is a collection
of regression random trees [88]. Further details about the RF method can be found in [87,89–91].
RF analyses have been performed in R 3.3.1 software, using the ‘Randomforest’ package [92].

2.4.3. Ensemble of FR and RF (FR–RF)

Given the shortcomings and limitations of each of the statistical and machine learning models,
scientists have proposed and developed integrated methods to overcome their disadvantages and
increase their efficiency [93]. In this study, two types of bivariate and machine learning methods,
namely, FR and RF, and their ensemble were applied to produce LSM. The FR–RF integrated method
eliminates the disadvantages of bivariate methods, such as the failure to calculate the importance of the
parameters and disadvantages of machine learning methods, such as the non-calculation of the spatial
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relationship between the position of the landslides and the parameters that affect them. The main
disadvantage of this methodology is the instability of the RF model. A small change in input data
leads to a massive change in the tree structure and the output of the model.

2.5. Validation of models

In this experiment, the validation strategy was based on a random partition of the landslide
inventory into a calibration set, which includes 70% of landslide locations, and a validation set,
which includes 30% of landslide locations [39]. The AUC was used to measure the predictive
performance of the models [93–97]. The AUC values, which are in the range of 0–1, was used to classify
the accuracy of the landslide predictive models as follows: 0.9–1: excellent accuracy; 0.8–0.9: very good
accuracy; 0.7–0.8: good accuracy; 0.6–0.7: moderate accuracy; and 0.5–0.6: poor accuracy [98].

3. Results

3.1. Multicollinearity Test

In LSM, analysing the collinearity among the selected predictors is important as existence of
collinearity reduces the performance of the predictive models. Tolerance (TOL) and variance inflation
factor (VIF) are commonly used indicators for collinearity between independent variables and were
thus used in this study. TOL values less than 0.1 and VIF greater than 10 show collinearity among the
predictors [99]. In this study, the values of VIF and TOL were calculated by extracting the values of the
parameters in landslide and non-landslide points and analysing them in SPSS16 software. The results
of collinearity analysis (Table 3) indicated that among 17 LCFs, which were initially selected, stream
power index (SPI), and topography wetness index (TWI) were highly correlated with TOL (0.063
and 0.074) and VIF (15.94 and 13.47) values exceeding the thresholds. Therefore, SPI and TWI were
excluded, and LS modelling in the study area was based on the following variables, which were
unaffected by collinearity problems: Elevation, slope degree, slope aspect, convergence index, SL,
plan curvature, profile curvature, drainage density, distance to stream, distance to road, distance to
fault, lithology, rainfall, LU/LC, and NDVI.

Table 3. Multicollinearity analysis among independent variables.

Model

Unstandardised
Coefficients

Standardised
Coefficients

t Sig.
Collinearity Statistics

B Std. Error Beta Tolerance
(TOL)

Variance Inflation
Factor (VIF)

(Constant) 1.163 0.483 2.408 0.017
Slope −0.010 0.009 −0.157 −1.070 0.286 0.154 6.510

Stream power index (SPI) 0.034 0.057 0.125 0.590 0.556 0.074 13.476
Topographic wetness index

(TWI) −0.059 0.052 −0.262 −1.143 0.255 0.063 15.948

LS 0.001 0.001 0.062 1.039 0.300 0.939 1.064
NDVI −1.063 0.349 −0.220 −3.048 0.003 0.632 1.582
Plan 0.057 0.060 0.082 0.944 0.346 0.442 2.264

Rainfall 0.000 0.000 −0.091 −1.001 0.318 0.401 2.494
Convergence −0.005 0.002 −0.178 −2.315 0.022 0.558 1.791

Elevation 0.000 0.000 −0.185 −1.611 0.109 0.251 3.980
Dis. to fault −8.000 × 10−5 0.000 −0.201 −3.201 0.002 0.836 1.197
Dis. to road −9.013 × 10−6 0.000 −0.036 −0.514 0.608 0.691 1.447

Dis. to stream 0.000 0.000 0.129 1.557 0.121 0.479 2.087
Aspect −1.151 × 10−5 0.000 −0.002 −0.040 0.968 0.955 1.047

Lithology 0.024 0.045 0.042 0.547 0.585 0.565 1.769
LU/LC 0.059 0.020 0.243 2.985 0.003 0.499 2.003
Profile −0.0011 0.051 −0.015 −0.215 0.830 0.689 1.452

Drainage 0.217 0.107 0.176 2.020 0.045 0.437 2.286

3.2. Application of FR Model

The spatial relationship between the landslides that occurred in the study area and the LCFs are
shown in Table 4. The results showed an inverse relationship between elevation and FR.
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Table 4. Spatial relationship between conditioning factors and landslide locations with frequency
ratio (FR).

Factor Classes
Pixels in Domain Landslides

FRNo. % No. %

Elevation (m)

<338 137,911 11.5753 33 37.0787 3.2032
338–536 234,710 19.7000 22 24.7191 1.2548
536–721 259,859 21.8108 21 23.5955 1.0818
721–909 263,398 22.1079 8 8.9888 0.4066

909–1136 190,367 15.9781 4 4.4944 0.2813
>1136 105,177 8.8279 1 1.1236 0.1273

Slope (◦)

<7.1 182,669 15.3320 13 14.6067 0.9527
7.1–13 291,575 24.4729 32 35.9551 1.4692

13–18.8 278,341 23.3621 23 25.8427 1.1062
18.8–25.2 219,564 18.4287 11 12.3596 0.6707
25.2–32.6 153,604 12.8925 5 5.6180 0.4358

>32.6 65,669 5.5118 5 5.6180 1.0193

Aspect

F 132,288 9.8337 6 6.1856 0.6290
N 255,671 19.0054 10 10.3093 0.5424

NE 92,803 6.8986 8 8.2474 1.1955
E 103,340 7.6818 14 14.4330 1.8788

SE 123,821 9.2043 9 9.2784 1.0080
SE 125,536 9.3318 12 12.3711 1.3257
SW 106,245 7.8978 12 12.3711 1.5664
W 115,393 8.5778 10 10.3093 1.2019

NW 136,325 10.1338 8 8.2474 0.8139

Convergence
(100/m)

<−29.41 85,228 7.1535 9 10.1124 1.4136
−29.41 to −9.01 254,471 21.3586 14 15.7303 0.7365
−9.01 to 7.45 471,169 39.5469 45 50.5618 1.2785

7.45–27.84 290,876 24.4142 18 20.2247 0.8284
>27.84 89,675 7.5267 3 3.3708 0.4478

SL (100/m)

<22.06 108,816 18.2882 12 13.4831 0.7373
22.06–50.3 96,539 16.2249 9 10.1124 0.6233
50.3–77.9 107,115 18.0023 8 8.9888 0.4993

77.9–103.4 105,363 17.7079 44 49.4382 2.7919
103.4–128.2 106,179 17.8450 16 17.9775 1.0074

>128.2 70,994 11.9316 0 0.0000 0.0000

Plan curvature
(100/m)

Concave 564,975 47.4202 41 46.0674 0.9715
Flat 37,478 3.1457 0 0.0000 0.0000

Convex 588,969 49.4341 48 53.9326 1.0910

Profile curvature
(100/m)

<−1.13 68,989 5.7905 7 7.8652 1.3583
−1.13 to −0.35 250,549 21.0294 16 17.9775 0.8549
−0.35 to 0.28 502,333 42.1625 42 47.1910 1.1193

0.28–1.12 292,982 24.5910 20 22.4719 0.9138
>1.12 76,569 6.4267 4 4.4944 0.6993

Drainage density
(km/km2)

<0.38 330,170 27.7123 5 5.6180 0.2027
0.38–0.74 365,514 30.6788 18 20.2247 0.6592
0.74–1.12 320,115 26.8683 37 41.5730 1.5473

>1.12 175,623 14.7406 29 32.5843 2.2105

Distance to
stream (m)

<227 340,196 28.5538 45 50.5618 1.7708
227–483 304,400 25.5493 22 24.7191 0.9675
483–745 260,354 21.8524 15 16.8539 0.7713

745–1035 196,123 16.4613 4 4.4944 0.2730
>1035 90,349 7.5833 3 3.3708 0.4445

Distance to road (m)

<1204 320,797.2 26.9256 50 56.1798 2.0865
1204–2564 276,105.2 23.1744 12 13.4831 0.5818
2564–4041 238,790.2 20.0425 12 13.4831 0.6727
4041–5712 199,267.2 16.7252 6 6.7416 0.4031

>5712 1,564,62.2 13.1324 9 10.1124 0.7700
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Table 4. Cont.

Factor Classes
Pixels in Domain Landslides

FRNo. % No. %

Distance to fault (m)

<649 494,487 41.5039 34 38.2022 0.9204
649–1492 329,948 27.6936 32 35.9551 1.2983

1492–2575 196,680 16.5080 19 21.3483 1.2932
2575–3924 107,320 9.0077 3 3.3708 0.3742

>3924 62,987 5.2867 1 1.1236 0.2125

Lithology

DCkh 112 0.0094 0 0.0000 0.0000
Jk 15,756 1.3225 1 1.1236 0.8496
Jl 14,742 1.2373 1 1.1236 0.9081

K2l1 135,059 11.3359 3 3.3708 0.2974
K2l2 45,114 3.7866 0 0.0000 0.0000
Ktzl 1253 0.1052 0 0.0000 0.0000

Mm, s, l 803,209 67.4160 61 68.5393 1.0167
PeEm 9010 0.7562 0 0.0000 0.0000

Pel 71,877 6.0329 2 2.2472 0.3725
Plc 56,750 4.7632 15 16.8539 3.5384
Qm 34,118 2.8636 6 6.7416 2.3542
TRJs 4422 0.3712 0 0.0000 0.0000

Rainfall (mm)

<798.3 448,287 37.6262 45 50.5618 1.3438
798.3911 305,254 25.6210 12 13.4831 0.5263

911–1041.3 195,091 16.3746 9 10.1124 0.6176
1041–1196 98,934 8.3039 2 2.2472 0.2706

>1196 143,855 12.0742 21 23.5955 1.9542

LU/LC

Agriculture 976 0.0819 0 0.0000 0.0000
Dense forest 941,148 78.9937 39 43.8202 0.5547
Low forest 17,995 1.5104 0 0.0000 0.0000

Agri-orchard 90,665 7.6098 38 42.6966 5.6107
Agri-forest 183 0.0154 0 0.0000 0.0000

Dry farming
forest 136,585 11.4640 12 13.4831 1.1761

Water 3870 0.3248 0 0.0000 0.0000

NDVI
<0.3 116,202 9.7532 26 29.2135 2.9953

0.3–0.43 177,729 14.9174 29 32.5843 2.1843
>0.43 897,490 75.3294 34 38.2022 0.5071

The highest value of FR (i.e., 3.2032) was found in the lowest elevation class (<338 m), whereas
the lowest value (i.e., 0.1273) was calculated in the highest elevation class (>1136 m). Although a
positive relationship between the altitude and FR could be expected for several reasons (e.g., increase
of precipitation with elevation), in the study area, low elevation areas exhibited conditions that were
more favourable to landslide occurrence due to the presence of deeper soils and higher human pressure
at the base of the mountainous areas; this result is consistent with the those of Pourghasemi and Rossi
(2016). The highest value of FR (1.4692) was found where the slope angle is low to moderate (7.1◦–13◦).
This result, which is consistent with findings of [72,100], could be related to human activities, such as
road construction and LU changes, which are frequently at the base of mountains and may favour
slope instability conditions. East (FR = 1.8788) and south-west (FR = 1.5664) slope aspect classes
showed a strong correlation with landslide occurrence in the area due to the higher moisture conditions.
FR values of convergence index classes (1.4136 and 1.2785) showed higher landslide frequency on
classes <−29.41 and −9.01 to 7.45. The FR analysis of the LS factor showed that classes of 77.9–103.4
m with FR = 2.7919 and 103.4–128.2 m with FR = 1.007 had a strong relationship with landslide
occurrence in the study area. The analysis of the plan curvature classes showed that the regions with
convex and concave topography had a significant effect on landslide occurrence with FR = 1.0910 and
0.9715, respectively. This result was due to the divergence of the flow of water in these slopes and the
expansion and contraction of the soil of the convex slopes that had provided conditions favourable for
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erosion and landslides. These results agree with the findings of [101]. The analysis of profile curvature
showed that classes of <−1.13 (FR = 1.3583) and −0.35 to 0.28 (FR = 1.1193) were related to landslides
in the study area.

A positive relationship was found between drainage density factor and FR, which showed the
highest value (FR = 2.2105) where density of streams was the highest (i.e., >1.12 km−1). As expected,
the lowest distance to stream class (<227 m) had a strong relationship with the triggering of landslides,
whereas landslides were less frequent as the distance to streams increased. River erosion and saturation
at the foot of slopes had a negative effect on the stability and increased the probability of landslide
occurrence [102]. The FR analysis of distance to roads showed that areas close to roads had higher
susceptibility to landslides. The results of lithology showed that Plc units had a strong relation with
landslides and if water penetrates into them, then landslide is more likely to occur. The results of
the rainfall parameter showed that the areas that receive the highest amount of rainfall (>1196 mm)
with the highest value of FR (1.9542) had the highest potential for landslide occurrence. On the basis
of the LU/LC results, a class of agriculture-orchard with FR = 5.6107 had a strong correlation with
landslides. These results indicated that human activities could cause the instability of domains and
increase landslide occurrence. On the basis of the NDVI factor, the sensitivity of the areas to landslide
decreased with the increase in the value of the indicator, indicating the importance of vegetation in
reducing mass movements. After determining the weights of the classes of parameters using the FR
method, an LSM map was produced using Equation (5) in ArcGIS 10.5 with the weighted sum tool.

LSMFR = (WFRElevation) + (WFRSlope degree) + (WFRSlope aspect)
+ (WFRConvergence index) + (WFRLS)
+ (WFRPlan curvature) + (WFRProfile curvature)
+ (WFRDrinage density) + (WFRDistance to stream)

+ (WFRDistance to road) + (WFRDistance to fault)
+ (WFRLothology) + (WFRRainfall) + (WFRLU/LC)

+ (WFRNDVI)

(16)

The resulting LSM obtained using the FR model varied from 6.25 to 17.92. For the classification of
the map, four techniques, including equal interval, quantile, natural break and geomatical interval
were analysed (Figure 4). Natural break technique was selected due to its high accuracy. Natural break
was also used by [103]) as the best classification method for numerical variables. The resulting map
was divided into five classes as follows (Figure 5a): Very low (6.25–11.45), low (11.45–14.01), moderate
(14.01–17.14), high (17.14–21.77), and very high (21.77–30.39). The results (Figure 4c) showed that 27.11,
33.92, 22.60, 10.24 and 6.11% of the study area were in very low to very high LS classes, respectively.
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3.3. Application of RF Model

The out-of-bag value of the RF model was 21.6%, and the accuracy of the model was 78.4%.
According to the results of the confusion matrix shown in Table 5, out of the 64 non-landslide locations
observed, 54 (84.37%) were predicted as non-landslide and 10 (15.62%) as landslide, and out of the 61
observed landslide locations, 17 (27.86%) were predicted as non-landslide and 44 (72.13%) as landslide.
The analysis of the importance of LCFs (Figure 6) showed the following ranking: LU/LC (16.95),
NDVI (16.44), distance to roads (15.32), elevation (13.6), rainfall (8.98), lithology (8.71), distance to
fault (6.19), drainage density (4.87), distance to stream (1.24), slope (0.34), SL (0.29), convergence index
(−1.93), aspect (−2.27), plan curvature (−2.49) and profile curvature (−2.63).

Table 5. Confusion matrix from random forest (RF) model (0 = non-landslide or negative, 1 = landslide
or positive).

Observed
Predicted

0 1

0 54 10
1 17 44
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Figure 6. Determining the importance of LCFs using RF.

The LSM created using the RF model (Figure 5b) was classified according to the natural break
method into five classes (very low, low, moderate, high and very high). Approximately 29.23% of the
study area is located in low susceptibility class, whereas 8.15% is located in very high susceptibility
class (Figure 4c). Approximately 24.26%, 23.51% and 14.83% are located in very low, moderate and
high susceptibility classes, respectively.

3.4. Application of FR–RF Integrated Model

To calculate LS in the study area by using the FR–RF integrated approach, the following equation
was used in ArcGIS10.5 environment:

LSMFR−RF = (WFRElevation× 13.6) + (WFRSlope degree× 0.34)
+ (WFRSlope aspect×−2.27)
+ (WFRConvergence index×−1.93) + (WFRLS× 0.29)
+ (WFRPlan curvature×−2.49)
+ (WFRProfile curvature×−2.63)
+ (WFRDrinage density× 4.87)
+ (WFRDistance to stream× 1.24)
+ (WFRDistance to road× 15.32)
+ (WFRDistance to fault× 6.19) + (WFRLothology× 8.71)
+ (WFRRainfall× 8.98) + (WFRLU/LC× 16.95)
+ (WFRNDVI× 16.44)

(17)

LS values of the resulting map varied from 19.96 to 278.21. Susceptibility was classified according
to natural break method into five classes (Figure 5c), which included 19.96–60.47 (very low), 60.47–88.83
(low), 88.83–127.31 (moderate), 127.31–187.06 (high) and 187.06–278.21 (very high). The results
(Figure 4c) indicated that the largest fraction (35.37%) of the study area had low susceptibility, whereas
the very high susceptibility class had the smallest extent (6.31%). Very low, moderate, and high
susceptibility classes cover 30.23, 19.45, and 8.61% of the study area, respectively.
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3.5. Model Validation

The results of the model validation using the ROC curve (Figure 7) showed that the FR–RF
integrated model (AUC = 0.917) had a higher predictive accuracy compared with the individual
methods FR (AUC = 0.865) and RF (AUC = 0.840). To investigate the effect of the resolution of different
DEMs on the accuracy of the models, the DEM used in this study (ALOS PALSAR, with 12.5 m spatial
resolution) was compared with ASTER and SRTM DEMs with 30 m and 90m spatial resolutions,
respectively. The results of comparing the LSM derived from ASTER (Figure 8a) and SRTM (Figure 8b)
DEMs and the FR–RF integrated model with the LSM derived from PALSAR DEM and FR–RF
integrated model (Figure 5c) showed that the PALSAR DEM provided higher accuracy of the combined
approach compared with the other DEMs. The AUC of FR–RF–PALSAR was 0.917, whereas those of
FR–RF–ASTER and FR–RF–SRTM approaches were 0.865 and 0.863, respectively (Figure 9).
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4. Discussion

In this study, low-frequency radar data (i.e., ALOS PALSAR) was used in providing a DEM to
obtain high-precision and high-quality data. The integration of two highly efficient models, namely,
FR and RF, was tested to predict areas that are susceptible to landslides accurately. Analysing the varied
and complex data related to landslide occurrence requires robust and flexible analytical methods that
control nonlinear relationships, interactions, and lost data. Understanding and presenting the results
achieved by these methods should be simple and easily interpretable. RF is a powerful and useful
data mining technique, which is used for classification and prediction [89]. Tree-based methods can be
easily understood by everyone. These methods combine data analysis and modelling; thus, they are a
powerful step in modelling. Given its high degree of classification accuracy, the RF has introduced
a new method for determining the importance of variables, that is, the capability to model complex
interactions between predictor variables and the flexibility to implement different types of statistical
data analysis. This method is also useful when complex interactions exist between predictor and
response variables and when coherence exists among predictor variables. Another advantage of this
method is that it does not need to normalise the data and it can handle nonlinear relationships. The most
important disadvantage of this method in the prediction of landslide is the lack of calculation of the
spatial relationship between the occurrence of landslides and their effective parameters. Therefore,
this method cannot calculate the importance of the classes of each of the parameters in the occurrence
of landslide. This problem can be resolved using the FR model. By contrast, the most important
disadvantage of the FR model is its incapability to calculate the importance of LCFs, which can be
solved using the RF model.

The results of determining the importance of parameters by the RF method showed that parameters
LU/LC, NDVI, distance to roads and elevation had the greatest effect on landslide occurrence.
These results are in line with the findings of [72,100]. In the results of the model validation, several
cases can be mentioned.

(i) The RF model had a higher predictive accuracy compared with the FR model, which is consistent
with the results of [18,45,50,57,100]. Chen et al. (2017), Zhang et al. (2016), Kim et al. (2018), and Taaleb
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et al. (2018). [45]) used the logistic model tree, RF, and classification and regression tree (CART) to
prepare an LSM. They used 12 controlling parameters and 171 landslide locations. Their results showed
that the RF model had a higher predictive accuracy than the other models. [18] evaluated the LS in
China using RF and decision tree models along with GIS techniques. They used 34 hydrological,
topographic, geological, LC, and environmental LCFs and 300 landslide locations. They concluded
that the RF model had a higher efficiency in identifying sensitive areas to landslide. [50] prepared an
LS map at Pyeong-Chang, Korea using RF and boosted tree methods. They used various information
layers and divided the landslides that occurred in the area into two groups for modelling (50%) and
validation (50%) purposes. Both models had an acceptable accuracy in identifying landslide sensitive
areas. [100] evaluated and compared four methods, namely, RF, BRT, CART, and the general linear
model (GLM) in LSM in Wadi Tayyah Basin area. The authors used 11 LCFs and 125 landslide locations.
The validation of the models, which was performed using success and prediction rate curves, showed
that the RF model had a reasonable accuracy in predicting LS and could thus be used to this aim by
environmental planners.

(ii) In the experiment, the integration of the individual models (i.e., FR and RF) increased their
efficiency. This result is in line with the findings of [32,48,52,56,68]. Ref. [56] combined RF and
EBF methods to assess LS. They used 153 landslide locations and 11 effective parameters, namely,
slope angle, altitude, TWI, distance from roads, plan curvature, slope aspect, profile curvature, lithology,
LU, distance from rivers, and distance to faults. Their results indicated that the integration approach
had a higher efficiency in identifying areas susceptible to landslides and eliminate the disadvantages
of each individual models.

(iii) The PALSAR DEM had a greater influence on the prediction accuracy of the proposed
integrated model compared with ASTER and SRTM DEMs. Moreover, different DEMs derived from
various data sources with different spatial resolutions could considerably affect the models’ accuracy.
This result is in line with the findings of [104,105], which highlighted that the accuracy of landslide
prediction depends on the accuracy and quality of the controlling factors, which in turn depend on the
accuracy of their resources, such as DEMs. The methodological framework introduced in this study
showed that the integration of models could eliminate their disadvantages and increase their efficiency.
Furthermore, the use of radar remote sensing data in comparison with optical data could play a
significant role in increasing the prediction accuracy of the models. Thus, using this methodology is
recommended in areas with the same environmental conditions.

5. Conclusions

LSM is the first and most important step in managing mountainous areas and reducing the
damage caused by landslides. In recent years, many quantitative and qualitative methods have been
introduced for LSM. Thus far, no method is considered the best; nevertheless, each one has its obvious
advantages and disadvantages. In this study, two statistical- and artificial intelligence-based methods,
namely FR and RF, and their integration were used for LSM to promote their advantages and overcome
their shortcomings. For this purpose, 15 LCFs (i.e., elevation, slope, slope aspect, convergence index,
SL, plan curvature, profile curvature, drainage density, distance to stream, distance to road, distance to
fault, lithology, rainfall, LU/LC, and NDVI) and a modelling dataset were used for LSM. The results of
RF showed that the LU/LC parameter had the most important role in landslide occurrence in the study
area. Validation results showed that the FR–RF integrated model had a higher prediction accuracy
than individual models. The results also showed that the quality and accuracy of the input DEMs
considerably influenced the prediction accuracy of the resulting LSMs; thus, the resulting LSM from
the PALSAR DEM had a higher accuracy compared with the LSM from ASTER and SRTM DEMs.
On the basis of the results of the introduced methodology (i.e., FR–RF–PALSAR), 14.92% of the study
area is located in high and very high susceptibility classes. The proposed methodology had many
advantages (Section 4). The main advantage of this methodology is its capability to determine the
relative importance of effective factors and the spatial relationship between these factors and landslide
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locations. Areas with high sensitivity to landslides are located around residential areas and human
infrastructure; thus, any construction in these areas should be performed with caution and observance
of engineering principles. The results of this study can be used for LU management, reduction of
landslide damages and sustainable development.

Author Contributions: Conceptualization, A.A., and B.P.; data curation, A.A.; formal analysis, A.A.; investigation,
A.A., B.P., K.R.; methodology, B.P., A.A., K.R.; resources, B.P. and A.A.; software, A.A.; supervision, B.P.; validation,
A.A.; writing–original draft, A.A.; writing–review and editing, B.P., A.A., K.R., and C.-W.L.

Funding: This research was supported by the Centre for Advanced Modelling and Geospatial Information
Systems, UTS under grant number 321740.2232335 and 321740.2232357.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, W.; Li, W.; Hou, E.; Bai, H.; Chai, H.; Wang, D.; Wang, Q. Application of frequency ratio, statistical
index, and index of entropy models and their comparison in landslide susceptibility mapping for the
Baozhong Region of Baoji, China. Arabian J. Geosci. 2015, 8, 1829–1841. [CrossRef]

2. Blöchl, A.; Braun, B. Economic assessment of landslide risks in the Swabian Alb, Germany –research
framework and first results of homeowners and experts surveys. Nat. Hazard. Earth Syst. Sci. 2005, 5,
389–396. [CrossRef]

3. Komakpanah, A.; Hafezi Moghadas, S. Method of landslide hazard zonation. In Proceedings of the first
workshop examined strategies to reduce landslide losses in the country, Tehran, Iran, 1995.

4. Arabameri, A.R.; Pourghasemi, H.R.; Yamani, M. Applying different scenarios for landslide spatial modeling
using computational intelligence methods. Environ. Earth Sci. 2017, 76, 832. [CrossRef]

5. Cruden, D.M. A simple definition of a landslide. Bulletin Int. Assoc. Eng. Geol. 1991, 43, 27–29. [CrossRef]
6. Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides, Investigation and Mitigation;

Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–75.
ISSN 0360–859X. ISBN 030906208X.

7. Feizizadeh, B.; Blaschke, T. Landslide risk assessment based on GIS multi-criteria evaluation: A case study
in Bostan-Abad County, Iran. J. Earth Sci. Eng. 2011, 1, 66–71.

8. Akgun, A.; Kıncal, C.; Pradhan, B. Application of remote sensing data and GIS for landslide risk assessment
as an environmental threat to Izmir city (west Turkey). Environ. Monit. Ass. 2012, 184, 5453–5470. [CrossRef]
[PubMed]

9. Pradhan, B. Landslide hazard and risk analyses at a landslide prone catchment area using statistical based
geospatial model. Int. J. Remote Sens. 2011, 32, 4075–4087. [CrossRef]

10. Fell, R.; Hartford, D. Landslide risk management. In Proceedings of the international workshop on landslide
risk assessment, Honolulu, HI, USA, 19–21 February 1997; pp. 51–109.

11. Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria
decision analysis, support vector machines, and logistic regression. Landslides 2014, 11, 425–439. [CrossRef]

12. Arabameri, A.; Pradhan, B.; Rezaei, K.; Sohrabi, M.; Kalantari, Z. GIS-based landslide susceptibility mapping
using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted
regression tree algorithms. J. Mt. Sci 2019, 16, 595–618. [CrossRef]

13. Brabb, E.E. Innovative approaches to landslide hazard mapping. In Proceedings of the 4th International
Symposium on Landslides, Toronto, Japan, 4 October 1984; pp. 307–324.

14. Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide
susceptibility models. Geomorphology 2006, 81, 166–184. [CrossRef]

15. Varnes, D.J. IAEG Commission on Landslides and Other Mass-Movements Landslide Hazard Zonation: A
Review of Principles and Practice; UNESCO Press: Paris, France, 1984; Available online: https://www.
scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1768332 (accessed
on 25 April 2019).

16. Wang, L.j.; Kazuhide, S.; Shuji, M. Landslide susceptibility analysis with logistic regression model based On
FCM sampling strategy. Comput. Geosci. 2013, 57, 81–92. [CrossRef]

http://dx.doi.org/10.1007/s12517-014-1554-0
http://dx.doi.org/10.5194/nhess-5-389-2005
http://dx.doi.org/10.1007/s12665-017-7177-5
http://dx.doi.org/10.1007/BF02590167
http://dx.doi.org/10.1007/s10661-011-2352-8
http://www.ncbi.nlm.nih.gov/pubmed/21915598
http://dx.doi.org/10.1080/01431161.2010.484433
http://dx.doi.org/10.1007/s10346-013-0391-7
http://dx.doi.org/10.1007/s11629-018-5168-y
http://dx.doi.org/10.1016/j.geomorph.2006.04.007
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1768332
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1768332
http://dx.doi.org/10.1016/j.cageo.2013.04.006


Remote Sens. 2019, 11, 999 20 of 24

17. Kumar, R.; Anbalagan, R. Landslide susceptibility mapping using analytical hierarchy process (AHP) in
Tehri reservoir rim region, Uttarakhand. J. Geol. Soc. India 2016, 87, 271–286. [CrossRef]

18. Zhang, G.; Cai, Y.; Zheng, Z.; Zhen, J.; Liu, Y.; Huang, K. Integration of the statistical index method and
the analytic hierarchy process technique for the assessment of landslide susceptibility in Huizhou, China.
CATENA 2016, 142, 233–244. [CrossRef]

19. Shahabi, H.; Khezri, S.; Ahmad, B.B.; Hasim, M. Landslide susceptibility mapping at central Zab basin, Iran:
A comparison between analytical hierarchy process, frequency ratio and logistic regression models. CATENA
2014, 155, 55–70. [CrossRef]

20. Kumar, R.; Anbalagan, R. Landslide susceptibility zonation in part of Tehri reservoir region using frequency
ratio, fuzzy logic and GIS. J. Earth Syst. Sci. 2015, 124, 431–448. [CrossRef]

21. Youssef, A.M.; Al-Kathery, M.; Pradhan, B. Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi
Arabia) using GIS-based frequency ratio and index of entropy models. Geosci. J. 2015, 19, 113–134. [CrossRef]

22. Ro ian, G.; Csaba, H.; Kinga-Olga, R.; Bo an, C.N.; Gavrilᾰ, I.G. Assessing landslide vulnerability using
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