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Abstract: Land-cover information is significant for land-use planning, urban management, and
environment monitoring. This paper presented a novel extended topology-preserving segmentation
(ETPS)-based multi-scale and multi-feature method using the convolutional neural network
(EMMCNN) for high spatial resolution (HSR) image land-cover classification. The EMMCNN
first segmented the images into superpixels using the ETPS algorithm with false-color composition
and enhancement and built parallel convolutional neural networks (CNNs) with dense connections
for superpixel multi-scale deep feature learning. Then, the multi-resolution segmentation (MRS)
object hand-delineated features were extracted and mapped to superpixels for complementary
multi-segmentation and multi-type representation. Finally, a hybrid network was designed to
consist of 1-dimension CNN and multi-layer perception (MLP) with channel-wise stacking and
attention-based weighting for adaptive feature fusion and comprehensive classification. Experimental
results on four real HSR GaoFen-2 datasets demonstrated the superiority of the proposed EMMCNN
over several well-known classification methods in terms of accuracy and consistency, with overall
accuracy averagely improved by 1.74% to 19.35% for testing images and 1.06% to 8.78% for validating
images. It was found that the solution combining an appropriate number of larger scales and
multi-type features is recommended for better performance. Efficient superpixel segmentation,
networks with strong learning ability, optimized multi-scale and multi-feature solution, and adaptive
attention-based feature fusion were key points for improving HSR image land-cover classification in
this study.

Keywords: attention-based weighting; convolutional neural network; high spatial resolution image;
land-cover classification; multi-scale and multi-feature fusion; superpixel segmentation

1. Introduction

Land-cover information reflects the distribution of various natural and man-made ground objects,
which is essential for land-use planning, urban management, and environment monitoring. Remote
sensing imagery has provided a wide-range and real-time data source for land-cover mapping in
past decades. In particular, with the development of advanced satellite sensors, such as WorldView,
SuperView, and GaoFen, high spatial resolution (HSR) images are becoming increasingly available and
popular [1-3]. However, as the observation scale becomes finer, the difficulty of feature extraction
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and land-cover classification sharply increases [4]. The clear visibility of objects’ composition and
surrounding peripherals can cause high intra-class variability, and the similarity of construction
materials and spectral properties among man-made objects can lead to low inter-class disparity, making
land-cover classification of HSR images a challenging task [5,6].

Applying pixel-based methods to HSR images can cause a salt-and-pepper effect and fragmented
class boundaries [7,8]. In addition, object-based methods require great domain knowledge for object
segmentation and feature selection [1,9-11], and it is difficult to represent multi-scale ground objects
using a single segmentation parameter. In addition, irregular objects are not suitable for classification
models that require the input of regular patches, such as some deep learning models [3], and geometrical
decomposing is needed to determine the multi-center patches of objects [12,13]. Superpixels, which
are coherent local regions of segmentation level between pixels and objects, have advantages in
reducing pixel noise, requiring less domain knowledge and suiting for regular input [14]. Hence,
superpixel-based methods have been employed in many land-cover classification and mapping studies
in recent years [3,14-18]. However, many superpixel segmentation algorithms are developed from
computer vision and designed for natural images, which are not directly applicable to multi-spectral
remote sensing images. Moreover, the results of superpixel segmentation are also influenced by the
spectral reflectance and contrast of remote sensing images. Therefore, we adopted superpixels as
processing units for HSR image land-cover classification and made efforts to adapt to multi-spectral
images and join with deep feature extraction.

The conventional feature engineering process extracts the discriminative information from HSR
images depending on the manual design, e.g., grey-level co-occurrence matrix (GLCM), local binary
patterns (LBP), histogram of gradient (HOG), scale-invariant feature transform (SIFT), and bag-
of-visual-words (BOVW), such a middle-level feature-based model [19,20]. Recently, convolutional
neural networks (CNNSs), as a widely used deep learning method, have been extensively employed
in remote sensing image classification [21], semantic segmentation [22], change detection [23], scene
classification [24], and object extraction [25]. Nonetheless, CNNs are not sensitive to class boundaries
and object characteristics due to the local patch calculation, and it is hard to interpret what deep features
arelearned by CNNs. As proposed, remote sensing knowledge and deep learning have been increasingly
combined to further improve performance [26-28]. Hence, researchers have attempted to integrate
object segmentation into CNNs for boundary refinement [12,13,21] and combine hand-delineated
features with CNNs for aggregative classification [29,30]. However, the comprehensive fusing effect of
manual and CNN features from various segmentation levels (e.g., superpixels and objects) has yet to
be considered, which can utilize the complementary information of multi-perspective and multi-type
representation. Moreover, multiple features are often fused through direct concatenation instead of
hierarchical extraction and adaptive integration according to their characteristics and contributions.
Therefore, it is necessary to explore an effective fusion approach for CNN and hand-delineated features
to advance the HSR image land-cover classification.

The contextual information of objects is conductive to recognize land-cover types [27], and the
proper scale of context considering various objects is differential due to the heterogeneous
distribution [31]. Conditional random field (CRF), Markov random field (MRF), morphological
filters (MF), and composite kernel (CK) are several commonly used methods for contextual analysis.
In the case of using deep learning methods, multi-scale contextual features are mainly learned upon
multi-resolution pyramids [31,32] and multi-size contexts [21,33]. The former maintains consistent
input size and sacrifices some resolution fineness, whereas the latter has various input sizes and
preserves high-resolution information. Langkvist et al. [33] hold the view that it is preferable to change
context size instead of scaling patches to utilize high-resolution information. However, the effect
of multiple scales and various combinations is rarely discussed comprehensively with superpixels.
Moreover, attention-based weighting methods have been developed for multi-layer [34,35] and
spectral-spatial [36,37] feature fusion to adapt to the varied impacts of diverse features, but none is
designed for multi-scale feature fusion, which significantly reflects the spatial heterogeneity. For objects
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in various contexts, the contributions of multiple scales and features for recognition are distinguished.
Therefore, we designed an integrated and adaptive approach for superpixel-based multi-scale and
multi-feature fusion to enhance the self-adjustment ability and explore the optimal combing solution.

In this paper, an extended topology-preserving segmentation (ETPS)-based multi-scale and
multi-feature method using CNN (EMMCNN) was proposed for HSR image land-cover classification.
The EMMCNN consisted of four parts: efficient superpixel segmentation using ETPS with false-color
composition and image enhancement, parallel dense CNN training for superpixel multi-scale deep
feature learning, object hand-delineated feature extraction and mapping, and feature fusion and
comprehensive classification upon a hybrid network consisting of 1-dimension (1-D) CNN and
multi-layer perception (MLP) with attention-based weighting design. The main contributions of this
study were as follows: (1) a new scheme for HSR image land-cover classification was developed to
enhance the feature fusion and raise the performance, which introduced ETPS superpixels, dense CNN,
object segmentation, and hybrid network; (2) an optimized combining strategy for superpixel multi-scale
CNN features and object hand-delineated features was proposed to utilize the complementarity of
multi-segmentation and multi-type representation; (3) an effective feature fusion approach based on 1-D
CNN-MLP with attention-based weighting was designed to emphasize and adjust the differentiating
significance for comprehensive classification.

Four real GaoFen-2 HSR datasets were used to demonstrate the effectiveness of our proposed
EMMCNN method. The experimental results of the EMMCNN were compared with ETPS-based
single-scale and single-feature CNN (ESSCNN), object-based CNN (OCNN), patch-based CNN (PCNN),
simple linear iterative clustering (SLIC)-based multi-scale CNN (SMCNN), SLIC-based multi-scale
and multi-feature CNN (SMMCNN), and object-based random forest (ORF) methods. For the four
testing HSR images, the EMMCNN obtained better overall accuracy than other comparison methods
by 2.11% to 26.84%, 1.22% to 12.57%, 1.72% to 17.65%, and 1.90% to 20.33%, respectively. For the
two validating HSR images, the EMMCNN achieved higher overall accuracy than the other methods
by 1.58% to 7.14% and 0.54% to 10.42%, respectively. The quantitative and qualitative experimental
analysis showed the effectiveness and superiority of our proposed method.

The remainder of this paper is organized as follows: related work and the proposed method are
introduced in Sections 2 and 3, respectively. Section 4 describes the datasets, experimental settings,
and analysis of the results. A discussion is presented in Section 5, and conclusions are drawn in
Section 6.

2. Related Work

2.1. Superpixel Segmentation

Superpixels have been widely employed in remote sensing image classification, detection,
and extraction tasks due to the ease of use and adaptability of shape and size. Superpixels can be
combined with various models jointly, such as multiple kernels [15], discriminative sparse models [16],
stacked denoising autoencoders (SDA) [38], deep CNNs [3,17], graphical models [14], and CRF
models [18]. Stutz et al. [39] suggested ETPS, superpixels extracted via energy-driven sampling
(SEEDS), entropy rate superpixels (ERS), contour relaxed superpixels (CRS), eikonal region growing
clustering (ERGC), and SLIC as recommended algorithms with superior and stable performance. As an
optimized and sped-up algorithm, ETPS provides parameters for compactness and number, trains
iteratively, takes less runtime, and obtains satisfying performance [40,41], making it suitable for HSR
images. Therefore, ETPS was adopted in this study to partition HSR images into superpixels for CNN
feature learning and land-cover classification.

The ETPS method employed is built with a coarse to fine optimization to converge to
a better labeling energy minimum in each iteration, which makes it significantly faster [41].
The ETPS algorithm proposes an objective function containing multiple constraints to calculate
and evaluate the segmentation result. Let s, € {1, ..., M} denote the superpixel assignment of pixel
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p,and s = (sq,..., sy) denote the set representing superpixel segmentation, with M the number of
superpixels, and N the size of the image. Let y;and p = (uq,..., M) represent the mean position of
the i-th superpixel and all superpixels, respectively, and ¢; and ¢ = (cq,..., cp1) represent the mean
color of the i-th superpixel and all superpixels, respectively. The energy objective function is defined
as [41]

Emono(s, 1, €) = Z Ecol(sp/ Csp)'f'Apos Z Epos(spr HSP)+/\h Z Z Eb(spr Sq)+Etopo(5)+Esize(5) @

p p P geNg

where Ny is the 8th neighborhood of pixel p. The energy items included above are expressed in detail as

Ecol(sps cs,)= (I(p)—cs,)? b
EPOS(Spr HSP)ZHL(P) - Hsp”% (3)
a5 ={ @

where I(p) and L(p) denote the color and location of pixel p, respectively, and cs, and ps, denote
the mean color and mean position of a superpixel s,, respectively. Ey is the appearance coherence
constraint for the color homogeneity of each superpixel. Ejs is the shape constraint to hold the
regularity of the superpixels. The constraint with A,,s obtains relatively regular superpixels by limiting
the distance of pixels from the central position not too far. E, is the boundary length constraint
imposing that superpixels should have short boundaries. The constraint with A; makes superpixels
with good boundary adherence by limiting the length of boundaries not too long. Etopo(s) is the
topological preservation constraint that keeps superpixels connected and penalizes co otherwise. Eg;z, is
the minimum size constraint that restrains superpixels to be at least 1/4 of initialized size and penalizes
oo otherwise. Through these combined constraints, the ETPS method can make the objective function
get better local optimal value faster and better retain the boundary information of superpixels.

The ETPS algorithm uses a coarse-to-fine segmentation scheme to quickly find the local optimal
value of the objective function. It initializes each superpixel to a square grid of the same size and
calculates the initial center position and the average color of each superpixel. Then, it initializes L
layers, and each layer corresponds to a different grid size. The grid size at the first layer is a quarter
of the superpixel grid, and the grid size at the second layer is a quarter of that at first layer, and so
on until the grid size is equal to one pixel. For each layer, boundary blocks are defined and added
to a first-in-first-out queue. Each time it is popped from the queue and determined if deleting this
boundary block from its superpixel will affect the connectivity of superpixels, and if not, then the block
is tried to merge with other neighboring superpixels to make the objective function value smaller. If so,
the block is merged with the neighboring superpixel, the center position and average color of changed
superpixels are updated, and the new boundary blocks are added to the queue. Next, the above steps
are repeated until the boundary block queue is emptied. The ETPS method reaches a much better local
optimum faster at coarser levels and approximates to the final local optimum gradually at finer levels.

2.2. CNN-Based Classification

CNNs have become the popular deep learning method in many computer vision and remote
sensing image interpretation tasks. Representative CNN methods have developed from LeNet [42] and
AlexNet [43] to VGG [44], ResNet [45], and DenseNet [46]. These models are broadly used in remote
sensing image interpretation combined with pre-training strategy [47], LBP encoding [48], attention
units [49], internal classifiers [50], and multiple comparisons [51]. DenseNet, as a deep CNN model
embracing dense shortcut connections between layers, reduces the problems of gradient vanishing and
parameter increasing, as well as enhances the feature reuse and sample utilization [46], making it more
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appropriate for HSR images. Therefore, dense CNN is adopted to extract discriminative features from
data based on different contextual scales.

The structure of CNNs mainly consists of convolutional, pooling, fully connected layers, and a
classifier. The multi-layer network learns detailed and semantic features at lower and higher layers,
respectively. Convolutional layers calculate the results on feature maps using local perception and
weight sharing strategies, and multiple kernels are used to learn various features. If the size of the input
feature map is m X m, then the size of the output feature map becomes ((m —n)/s+1)x ((m—n)/s+1)
after a convolutional layer with 1 X n kernels and s sliding steps. The feature map is computed by

x= f (w1 +by) 5)

where wy and by denote the k-th filter and bias, respectively, * is the convolution operator, x;_; and
xy are the input and output feature maps, respectively, and f(-) represents the activation function.
The rectified linear unit (ReLU) f(x)= max(0, x) [43] is a commonly used and robust activation
function. Pooling layers are often set following convolutional layers to reduce the size of feature maps,
and the maximum pooling and average pooling are widely employed operators. Then, fully connected
(FC) layers are set to transform feature dimensions and input into the classifier. Finally, the classifier
predicts labels based on the feature vector using softmax, MLP, support vector machine (SVM), or other
methods.

DenseNet, as shown in Figure 1, is a deep CNN designed with dense connections and shortcut
propagation. In the structure, dense blocks and transition layers are the main components for
feature extraction and reduction, respectively. Each dense block contains several densely connected
convolutional blocks, which consist of batch normalization (BN) [52], ReLU activation, and 3x3
convolutional layers. When bottleneck layers are adopted to reduce the channels of input feature maps,
the consecutive operations of BN-ReLU-convolution (1x1) are added before BN-ReLU-convolution
(3%3). In a dense block, if the number of input channels is ko, and the growth rate of feature maps is k,
then the [-th convolutional block will have kg + k x (I — 1) input feature maps, and its produced feature
map x; can be calculated as

xi=F([xo, x1,..., x1-1]) 6)

where F; denotes the computation of the I-th convolutional block, and [x, x,..., x)_1] represents the
stacking of feature maps from all preceding blocks. Between two adjacent dense blocks, transition
layers are set as a significant bridge for feature extraction and reduction, including BN, ReLU activation,
and 1x1 convolution with compression factor and average pooling layers. Moreover, dropout is used
to improve the diversity of the network, and the global average pooling (GAP) layer is employed for
global semantic extraction instead of fully connected layers [46].

Input image Dense block 1 Dense block N Label

T

&

Figure 1. DenseNet architecture with dense blocks and transition layers.
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3. Methodology

In this section, the implementation of the proposed method is illustrated concretely. The overall
flowchart of our scheme is shown in Figure 2. Given an HSR multi-spectral image, superpixels were
initially generated using the ETPS algorithm with false-color composition and image enhancement.
Then, the multi-size patches of superpixels were selected and learned through parallel dense CNNSs,
and multi-scale features were extracted from GAP layers. Next, superpixel multi-scale CNN features
were mapped and combined with multi-resolution segmentation (MRS) [53] object hand-delineated
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features. Finally, multiple features were fused for comprehensive land-cover classification upon a
1-D CNN-MLP hybrid network with channel-wise stacking and attention-based weighting design.
In particular, the effect of various multi-scale and multi-feature combinations was explored to determine
the optimal fusing solution.
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Figure 2. Flowchart of the proposed extended topology-preserving segmentation (ETPS)-based
multi-scale and multi-feature method using the convolutional neural network (CNN) for high spatial
resolution (HSR) image land-cover classification.

3.1. ETPS Superpixel Segmentation

Instead of concentrating on individual pixels or irregular objects, superpixels were employed
as basic units for HSR image land-cover classification in our proposed method. ETPS was designed
for natural images with red, green and blue bands, whereas HSR images were multi-spectral with
more than 3 bands. Standard false-color composition of images could reflect invisible environmental
information and highlight the vegetation, and image enhancement using standard deviation stretching
could adjust the brightness and contrast to emphasize the important content. Therefore, standard
false-color composition with standard deviation stretching was employed upon original HSR images
for ETPS segmentation in this study to enhance the discriminative features and boundary adherence.
The comparison between ETPS segmentation based on true color and standard false-color is shown in
Figure 3, using GaoFen-2 fused images with 1 m resolution in the study area. It could be observed
that the boundaries of trees were easily confused with soil, crops, or grass in true color, whereas the
boundaries of different vegetation categories were clearer and more accurate in standard false-color.
Considering the farmland, woodland, grassland, and vacant were similar in appearance and had
similar spectral characteristics, the false-color composition with information enhancement was more
applicable to the ETPS method and highlighted its superiority. In addition, this approach could also
better separate buildings from vegetation and produce better-fitting ground object boundaries.
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Figure 3. Comparison of superpixel segmentation using extended topology-preserving segmentation
(ETPS)based on different color compositions. (a) ETPS segmentation based on true color. (b) ETPS
segmentation based on standard false-color.

3.2. Multi-Scale CNN Feature Extraction

Based on ETPS segmentation results, multi-scale patches of superpixels were extracted from
original HSR images for feature learning. According to the center points of superpixels, multi-scale
contextual windows were designed, including 24x24, 32x32, 40x40, 48x48, 56x56, 64x64, 72x72, 80x80,
88%88, 96x96, 104x104, and 112x112, to comprehensively explore the spatial effects and determine
the optimal solution. Considering that multi-scale patches represent multi-scope spatial relationships
and multi-level spatial semantics, parallel dense CNNs were designed to learn multi-scale features
specifically. In the designed network structure, dense CNNs were built upon 4 dense blocks and 3
transition layers alternatively, and the number of convolutional blocks within each dense block was
evaluated and set according to the complexity of land cover in images. After training parallel dense
CNNs, multi-scale features were extracted from GAP layers for feature fusion and comprehensive
classification. Taking an example of 80x80 patch input, the two concrete dense CNN architectures
employed in this study are shown in Table 1, designed with dense blocks containing 5 (DCNN-5) and 6
(DCNN-6) convolutional blocks, respectively. In the network, the growth rate was set to 12, the initial
number of feature maps was set to 24, and the compression factor was set to 0.5.

Table 1. Dense convolutional neural network (CNN) architecture for multi-scale feature extraction in
high spatial resolution (HSR) land-cover classification.

Layers DCNN-5 Output Size DCNN-6 Output Size
Convolution 3 X 3 conv 80 x 80, 24 3 X 3 conv 80 x 80, 24
1x1 conv 1x1 conv
Dense block (1) [ 3% 3 conv ] 5 80 x 80, 84 [ 3% 3 conv ] 6 80 x 80, 96
.. 1 %1 conv 80 x 80, 42 1x1 conv 80 x 80, 48
Transition layer (1)
2 X 2 avg pool, 2 X 2 avg pool,
stride 2 4040, 42 stride 2 40>40, 48
Dense block (2) 11 conv 40 x 40,102 11 conv 40 x 40,120
3% 3 conv 3 %3 conv
Transition layer (2) 1 X1 conv 40 x 40, 51 1 X1 conv 40 x 40, 60
2 X 2 avg pool, 2 X 2 avg pool,
stride 2 20 %20, 51 stride 2 20 %20, 60
Dense block (3) 11 conv 20 % 20, 111 1x1 conv 20 x 20, 132
3 %3 conv 3 %3 conv
Transition layer (3) 1x1conv 20 x 20, 55 1x1conv 20 % 20, 66
2 X 2 avg pool, 2 X 2 avg pool,
stride 2 1010, 55 stride 2 1010, 66
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Table 1. Cont.

Layers DCNN-5 Output Size DCNN-6 Output Size
1% 1 conv 1x1conv
Dense block (4) [ 3% 3 conv ]X5 10 x 10, 115 [ 3% 3 conv ]X6 10 x 10, 138
GAP layer 10 x 10 GAP 1x1,115 10 x 10 GAP 1x1,138
Classification layer softmax softmax

The “conv” and “avg pool” denote “convolution” and “average pooling”, respectively, in the table. Note that each
“conv” block corresponds to the sequence of BN-ReLU-convolution.

3.3. Multi-Scale and Multi-Feature Combination

Ground objects were greatly heterogeneous in shape, texture, distribution, and context.
For superpixels within class boundaries, the context was relatively uniform, and larger windows
were needed to make a better decision. For superpixels across class boundaries, the context became
complicated and disordered, and smaller windows were required to exclude confusing noise. Hence,
multi-scale feature fusion would contribute to utilizing complementary information of multiple
contexts and achieve better performance. Multi-scale description of objects or superpixels was like
observing them from near to far or far to near, which was more in line with the visual recognition
and multi-scale nature of remote sensing. In different spatial resolutions, the ground objects showed
different characteristics and patterns, and object information from the single-scale observation field was
insufficient for accurate classification. It was proposed to capture multi-scale contextual information of
objects to exploit their attributes and spatial distributions [21]. Multi-scale feature learning has been
shown to improve the performance in scene parsing, object categorization, and so on [33]. Todo a
multi-scale combination, we needed to solve the two problems of what scale to combine and how to
combine scales. However, it was not the best choice to combine as many as possible single-scale features
together for classification because it would cause information redundancy and accuracy reduction.
Considering various multi-scale combinations have different effects of spatial complementarity, it was
necessary to design and find the optimal solution. Therefore, among 12 sets of single-scale features,
36 solutions of combining 4, 6, 8, 10, 12 sets of features were put forward to test and discuss the fusion
effect further, as shown in Table 2. The 1st to 36th combinations corresponded to the 1st to 36th columns
in the table and were expressed as COMB1 to COMB36 in the remainder of this paper.

HSR images were segmented into objects using the MRS algorithm, and spectral (i.e., mean and
standard deviation of bands), geometrical (i.e., shape index, compactness, length/width, and density),
textural (i.e., GLCM homogeneity, contrast, entropy, dissimilarity, correlation, angular second moment,
mean, and standard deviation), and spectral index (i.e., normalized difference vegetation index (NDVI)
and normalized difference water index (NDWI)) attributes were extracted from objects. To integrate
features from different segmentation levels, superpixels and objects were intersected and calculated
to determine the object to which each superpixel maps. The segmentation boundaries of ETPS
superpixels and MRS objects both were adherent to ground objects, so the boundaries were relatively
coincident, and the mapping results were corresponding. Then, the ETPS superpixels were assigned
with the hand-delineated features of their mapping objects to integrate and utilize the comprehensive
multi-segmentation and multi-type features. NDVI and NDWI were often used to interpret vegetation
and water information from the images, respectively. NDVI and NDWTI are defined as

NDVI = (NIR - R)/(NIR + R) @)

NDWI = (G - NIR) /(G + NIR) )

where R, G, and NIR denote the red, green, and near-infrared bands of multi-spectral images,
respectively.
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Table 2. Multi-scale combining solutions based on single-scale convolutional neural network (CNN) features for high spatial resolution (HSR) land-cover classification.

Scale 12 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

24%24 % * * * * *

32%32 T * * * * * * * *

40x40 % % % % * * * * * * * * * *

48x48 % % % % % * * * * * * * * * * * *

56x56 % % % % % % * * * * * * * * * * * * * *

6464 % % % % % % * * * * * * * * * * * * * * *

72%72 % % % % % % * * * * * * * * * * * * * * *

80x80 % % % % % % * * * * * * * * * * * * * *

88x88 % % % % % % * * * * * * * * * * * *

96x96 % % % % % * * * * * * * * * *
104x104 * * % O * * * * * * *
112x112  * * * * * * * *

The horizontal and vertical axes denote 36 combinations and 12 single scales, respectively. Each combining solution contains the spatial scales marked with

v
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3.4. 1-D CNN-MLP Comprehensive Classification

The softmax classifier used in dense CNNs was mainly for feature learning, and the 1-D CNN-MLP
classifier with attention-based weighting was subsequently designed for feature fusion and final
classification. Feature fusion would result in high-dimension features and intricate patterns, and there
was great nonlinearity between land-cover types and multi-scale and multi-type features. The softmax
classifier was simple and easy to use, but it was insufficient to fit complex relationships and not suitable
for multi-scale and multi-feature fusion classification. Although SVM was good at processing large
features and performed well with limited samples, it needed much more effort to optimize parameters
and more time for training large datasets. Therefore, MLP, with an easy-to-adjust network structure,
steady learning performance, and robust anti-noise capacity, was chosen as a comprehensive classifier.
As shown in Figure 4, the hybrid network mainly consisted of 1-D CNN for multi-scale fusion and MLP
for multi-feature fusion. Considering multi-scale features are interrelated vectors in the same length
and feature space with various spatial semantics, channel-wise stacking and 1-D CNN were designed
for feature fusion and encoding, respectively. 1-D CNN extracted cross-channel information from
multi-scale sequence input through alternative 1-D convolution and max-pooling operators, and the
convolutional layers with 32, 64, 96, 128 3x1 filters were employed in this study. After that, the GAP
was used to further abstract the features and transform the dimension for the following multi-feature
fusion. In addition, the significance of multiple scales was unbalanced for diverse superpixels, and,
thus the attention-based weighting block was designed to adaptively adjust the different rate of
contributions among multiple scales, instead of using equal weights. The attention block contained
weighted summation for input aggregation, FC layer with ReLU for nonlinear significance evaluation,
FC layer with Sigmoid for value normalization, and residual addition for value enhancement to avoid
response vanishing. The attention block is calculated as

y = Concatenate (wysx) )
z = ReLU(wyery + ber) (10)
s = Sigmoid(w.z + bfcs) (11)
t=s5+1 (12)

where x and wys represent the CNN features and summation weights, respectively, y is the concatenation
of multi-scale response values, w fers b fer, and z denote the weights, bias, and output of the first FC layer,
respectively, Wy, bfes, and s denote the weights, bias, and output of the second FC layer, respectively,
and t is the final weighing factors for multi-scale CNN features.

In comparison, multi-scale CNN and hand-delineated features were not in the same shape and
feature space, and hence they were encoded through 1-D CNN and FC layer, respectively, before
multi-feature fusion. In a similar way, the encoded multi-scale and hand-delineated features were
adaptively weighted using a learnable attention block to emphasize the differentiating significance for
each superpixel input. After that, two types of features were combined via length-wise concatenation,
and finally, FC layers with ReLU and softmax were employed for feature abstraction and classification,
respectively. As a result, multi-scale CNN and hand-delineated features were efficiently and adaptively
fused upon a 1-D CNN-MLP hybrid network with channel-wise stacking and attention-based weighting
for comprehensive land-cover classification.
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Figure 4. 1-D CNN-MLP hybrid network with attention-based weighting design for comprehensive
land-cover classification. (a) Multi-scale CNN feature fusion and encoding. (b) Hand-delineated
feature encoding. (c) Multi-scale and multi-feature fusion and classification. CNN: convolutional
neural network; MLP: multi-layer perception.

4. Experiments

4.1. Datasets

To validate the effectiveness of the proposed method, four multi-spectral HSR GaoFen-2 datasets
were used for a land-cover classification demonstration. As shown in Figures 5 and 6, the four datasets
were located in Beilun and Cixi County of Ningbo City, Xiaoshan County of Hangzhou City, and
Yuecheng County of Shaoxing City, respectively, Zhejiang Province, China. The extracted Beilun
and Cixi images mainly showed the coastal urban and rural scenes, respectively, and the Xiaoshan
and Yuecheng images presented the urban-rural mixed scenes. These four datasets were chosen as
typical land-cover distribution scenarios to verify the applicability and generalization of our method.
The Beilun and Cixi images were taken on 10 and 15 February 2016, respectively, and the Xiaoshan
and Yuecheng images were taken on 12 July and 21 December 2017, respectively. All images were of
1 m resolution with 4 bands (i.e., blue, green, red, and near-infrared) and generated by the fusion of
panchromatic and multi-spectral GaoFen-2 images. The land-cover ground truth was provided by the
Zhejiang Provincial Bureau of Surveying and Mapping, and the data update time was 2016 for Beilun
and Cixi and 2017 for Xiaoshan and Yuecheng. Manual checking was carried out to adapt the ground
truth to image data.
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—— Klomoler g
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(a)

Figure 5. Study areas (a) and GaoFen-2 images of Beilun urban scenes (c) and Cixi rural scenes (b) in
true color.
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Figure 6. Study areas (a), GaoFen-2 images of Xiaoshan for training and testing (b) and validation (c),
and GaoFen-2 images of Yuecheng for training and testing (d) and validation (e) in true color.

For the Beilun dataset, as shown in Figure 5c¢, the image covered the size of 12782x3077 m?2. There
were mainly 10 land-cover classes in this urban scene, including farmland, woodland, grassland, dense
building, sparse building, road, impervious surface, facility land, vacant, and water. For the Cixi
dataset, as shown in Figure 5b, the image covered the size of 10367x2991 m?2. There were mainly 8
land-cover classes in this rural scene, including water, farmland, woodland, grassland, building, road,
impervious surface, and facility land. For the Xiaoshan dataset, as shown in Figure 6b,c, the training
and testing image covered the size of 7880x3855 m?, and the validating image covered the size of
5757x3086 m?. For the Yuecheng dataset, as shown in Figure 6d,e, the training and testing image
covered the size of 6269x4683 m?, and the validating image covered the size of 41503663 m?. There
were mainly 7 land-cover types in these two mixed scenes, including farmland, woodland, building,
road, impervious surface, vacant, and water. Ground object examples of all classes for the Beilun and
Cixi datasets are shown, for instance, in Figure 7, and sample conditions and subclass descriptions for
all datasets are presented in Tables 3-7, respectively. The 60% and 40% of samples in Figure 5b,c, as well
as Figure 6b,d, were employed for training and testing, respectively, and all samples in Figure 6¢c,e
were adopted for validation. All samples for each dataset were normalized using the z-score approach

band by band.

Farmland Woodland Grassland

Dense building

|
.@ .

Facility land Building Road Impervious surface

Grassland

Facility land

Vacant Water

(a) (b)

Figure 7. Examples of different land-cover classes in false-color for Beilun and Cixi datasets. (a) Images
of 10 land-cover classes in the Beilun dataset. (b) Images of 8 land-cover classes in the Cixi dataset.
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Table 3. Land-cover classes, sample numbers, and subclass descriptions in the Beilun dataset.

Class Proportion Train Test Subclass

Farmland 7.09% 4262 2841 Paddy fields, dry lands, nurseries, orchards

Woodland 6.74% 4056 2703 Timber forest, shrub forest, planted forest

Grassland 10.37% 6236 4156 Native grassland, planted grassland

Dense building 14.65% 8811 5873 Dense high-rise and low-rise buildings

Sparse building 4.67% 2811 1874 Sparse high-rise and low-rise buildings

Road 11.88% 7143 4761 Highways, overpasses, streets

Impervious surface  17.91% 10769 7179 Squares, stadiums, parking lots, storage fields,
rolled surface

Facility land 8.18% 4923 3281 Qil drums, container fields, docks, industrial
facilities

Vacant 5.15% 3096 2063 Digging lands, bare surface

Water 13.37% 8040 5360 Rivers, rivulets, ponds, lakes

Table 4. Land-cover classes, sample numbers, and subclass descriptions in the Cixi dataset.

Class Proportion Train Test Subclass
Water 9.93% 4627 3085 Rivers, rivulets, ponds, lakes
Farmland 27.62% 12864 8576 Paddy field, dry land, nursery, orchard
Woodland 16.56% 7714 5143 Timber forest, shrub forest, planted forest
Grassland 4.41% 2056 1371 Native grassland, planted grassland
Building 20.39% 9499 6333 Low-rise and mid-rise buildings
Road 3.54% 1648 1099 Streets, country roads
Impervious surface  1.95% 909 607 Threshing ground, rolled surface
Facility land 15.59% 7260 4840 Greenhouses, agricultural facilities

Table 5. Land-cover classes, sample numbers, and subclass descriptions in the Xiaoshan dataset.

Class Proportion Train Test Subclass
Farmland 22.01% 11200 7500 Paddy field, dry land, nursery, orchard
Woodland 21.88% 11152 7441 Timber forest, shrub forest, planted forest,
grassland
Building 25.48% 13047 8602 Low-rise and mid-rise buildings
Road 5.92% 3013 2019 Streets, country roads
Impervious surface  5.58% 2836 1902 Threshing ground, rolled surface, facility land
Vacant 6.29% 3208 2134 Digging lands, bare surface
Water 12.85% 6527 4391 Rivers, rivulets, ponds, lakes
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Table 6. Land-cover classes, sample numbers, and subclass descriptions in the Yuecheng dataset.

Class Proportion Train Test Subclass
Farmland 20.10% 10029 6537 Paddy field, dry land, nursery, orchard
Woodland 13.33% 6619 4367 Timber forest, shrub forest, planted forest,
grassland
Building 27.03% 13345 8935 Low-rise and mid-rise buildings
Road 6.72% 3331 2205 Streets, country roads
Impervious surface  6.34% 3176 2046 Threshing ground, rolled surface, facility land
Vacant 5.12% 2494 1722 Digging lands, bare surface
Water 21.37% 10459 7157 Rivers, rivulets, ponds, lakes

Table 7. Land-cover classes and sample numbers in Xiaoshan and Yuecheng validating datasets.

Class Xiaoshan Dataset Yuecheng Dataset
Proportion Validate Proportion Validate
Farmland 27.13% 13581 14.44% 5592
Woodland 17.95% 8986 19.89% 7704
Building 27.52% 13773 29.18% 11303
Road 4.81% 2408 7.66% 2966
Impervious surface  7.57% 3787 14.34% 5556
Vacant 2.85% 1428 4.55% 1763
Water 12.17% 6091 9.95% 3855

4.2. Parameter Settings

Considering that the land-cover categories and distribution were more intensive in Beilun dataset
than the others, DCNN-6 was employed for the Beilun dataset, and DCNN-5 was adopted for Cixi,
Xiaoshan, and Yuecheng datasets. The growth rate k was set to 12, and the number of filters at the first
convolutional layer was set to 2k. The bottleneck width was set to 4k, and the compression factor was
set to 0.5 to reduce computation and increase efficiency. Dropout with a 0.2 rate was adopted to enhance
network diversity and generalization, and an Adam optimizer with default parameters [54] was used
to adjust the learning rate during training. The dense CNNs were trained for 500 epochs with a batch
size of 128 to learn sufficiently. In an attention-based weighting block, the number of nodes at FC
layers with ReLU and Sigmoid was set to 2m and m, respectively, for nonlinear significance evaluation
(m represents the number of input features). The number of nodes at FC layers for hand-delineated
feature encoding and final feature abstraction was both set to 32. In object segmentation, both images
were segmented using eCognition 9.0 software and MRS algorithm with 150 scale, 0.1 shape, and 0.5
compactness parameters.

4.3. Comparison Methods

Five comparison methods were employed to verify the proposed EMMCNN method for HSR
image land-cover classification: object-based CNN (OCNN), patch-based CNN (PCNN), SLIC-based
multi-scale CNN (SMCNN) [33], SLIC-based multi-scale and multi-feature CNN (SMMCNN) [55], and
object-based random forest (ORF). Moreover, single-scale and multi-scale experiments were carried
out to analyze scale effect, and single-feature and multi-feature experiments were performed to explore
feature complementarity.

The OCNN and PCNN methods employed the CNN with 12 convolutional layers, 3 pooling
layers, a GAP layer, and a softmax classifier. The first and second halves of convolutional layers
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adopted 64 and 128 3x3 filters per layer, respectively. The OCNN method extracted MRS object patches
from HSR images using envelopes and scaled them to a fixed size for CNN input. Various scaled sizes
were tried, and 64x64 was chosen for better performance. The multi-layer CNN was used to train and
predict land-cover types for objects. The PCNN method first divided images into 24x24 grids and
extracted contextual patches for CNN input. Various patch sizes were tried, and 80x80 was chosen for
higher accuracy. The multi-layer CNN was used to train and predict land-cover types for patches, and
land-cover types for objects were obtained through mapping with grids and majority voting [21].

The SMCNN method first performed the pixel-based multi-scale CNNs with contextual inputs in
size of 1515, 25%25, 35x35, and 45x45, and the concatenation of CNN last pooling layers was used as
input to an auto-encoder. The classification was made by a softmax classifier based on the hidden layer
of auto-encoder. The CNNs contained 5 convolutional layers with 50 filters and 2 max-pooling layers.
Then, the SLIC algorithm was employed to segment the image into superpixels, and the segments
were merged and classified using the prediction certainty of the classified pixels [33].

The SMMCNN method first performed pixel-based multi-scale CNNs with 16x16, 32x32, and
64x64 patch inputs, and the concatenation of CNN last convolutional layers was used as input to
a logistic classifier. The CNNs contained 4 convolutional layers with 32, 64, 96, and 128 filters,
respectively, and 4 max-pooling layers. Then, per-pixel hand-delineated features (i.e., NDVI, saturation,
(NIR+R+G)/3, spectral values, and entropy) were extracted and classified using random forest (RF)
with 100 trees. Finally, CNN and RF class probabilities were multiplied to result in the combined
prediction [55], and SLIC segments were also employed and merged for mapping. Taking account
of a large number of pixels in HSR images, pixel samples used in the SMCNN and SMMCNN were
partially selected from the images for training and testing in this study.

The ORF method first segmented the image into MRS objects with 150 scale, 0.1 shape, and
0.5 compactness parameters, and the spectral, textural, geometrical, and spectral index attributes
were extracted from each object. Then, it used the random forest classifier with 200 trees to train
and recognize the land-cover types. The ORF method was set as a comparison method using only
object hand-delineated features for classification, in order to prove the effectiveness of our proposed
integrated multi-scale and multi-feature method.

4.4. Evaluation Criteria

Overall accuracy (OA), Kappa coefficient (KC), user’s accuracy (UA), producer’s accuracy (PA),
and average accuracy (AA) were employed to inclusively assess the performance of the proposed
and comparison methods. In addition, the confusion matrix was adopted to analyze the land-cover
category confusion of classification results. It is a matrix of rows and columns in category number,
where the main diagonal elements represent the correctly classified samples of each category, and the
horizontal and vertical summation denote the total numbers of each type on classification and reference
maps, respectively. OA is the percentage of rightly predicted pixels in all pixels, and UA and PA are the
correct percentages for each class related to the classification and reference maps, respectively. If Q;;
denotes the number of pixels of class i predicted to class j, then OA, UA, and PA are expressed as

Qi
OA YTeY 13)
Qi
UA TG (14)
pA =i (15)

- XQji



Remote Sens. 2020, 12, 66 16 of 33

where i, j = 1,2,..., K and K denote the number of categories. AA is the average of UA for all
classes. KC is a statistical value measuring the consistency of predicted labels and ground truth.
LetN=},) j Qij represent the number of all pixels, and KC is defined as

- OA-Q,
where
0. — Yi(X; Qi X Qi) a7

N-N
wherek = 1,2,..., K and K denote the number of classes. The values of OA, KC, UA, PA, and AA
range between 0 and 1, and the higher value indicates higher accuracy and better performance.

4.5. Experimental Analysis

The proposed EMMCNN method was compared with ETPS-based single-scale and single-feature
methods using CNN (ESSCNN), OCNN, PCNN, SMCNN, SMMCNN, and ORF using OA, KC, UA,
PA, and AA indicators. Single-feature settings mean land-cover classification using only CNN features,
and multi-feature settings represent the classification using the fusion of CNN and hand-delineated
features. The experimental results for four datasets are displayed in Tables 8-13 and Figures 8-13.
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Figure 8. Confusion matrices of testing samples in the Beilun dataset for the ESSCNN, EMMCNN,
OCNN, PCNN, SMCNN, SMMCNN, and ORF methods. The numbers 1 to 10 in horizontal and vertical
axis denote the farmland, woodland, grassland, dense building, sparse building, road, impervious
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surface, facility land, vacant, and water classes, respectively. ESSCNN: extended topology-preserving
segmentation (ETPS)-based single-scale and single-feature convolutional neural network (CNN);
EMMCNN: ETPS-based multi-scale and multi-feature CNN; OCNN: object-based CNN; PCNN:
patch-based CNN; SMCNN: simple linear iterative clustering (SLIC)-based multi-scale CNN; SMMCNN:
SLIC-based multi-scale and multi-feature CNN; ORF: object-based random forest.
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Table 8. Classification accuracy comparison amongst ESSCNN, EMMCNN, OCNN, PCNN, SMCNN, SMMCNN, and ORF methods for the Beilun dataset.

ESSCNN EMMCNN OCNN PCNN SMCNN SMMCNN ORF
UA PA UA PA UA PA UA PA UA PA UA PA UA PA
Farmland 92.05%  91.51%  92.68%  93.81% 76.93%  8216%  85.23% 86.86% 89.09% 87.49% 91.57% 89.70% 73.04% 66.67%
Woodland 81.55%  84.97%  85.69%  85.53%  68.86%  7191%  64.12% 85.60% 79.91% 79.83% 79.14% 81.71% 72.75% 66.66%
Grassland 86.32%  90.72%  90.41%  90.27%  73.79%  69.71%  85.77% 77.96% 73.72% 91.70% 82.79% 88.21% 64.19% 67.44%

Land-Cover

blt?ﬁfilissg 88.76%  87.39%  89.85%  90.01%  76.90%  72.65%  88.94% 76.81% 82.41% 87.20% 86.61% 85.19% 75.19% 56.54%
bi}i)f;isr?g 83.15%  82.12%  86.37%  86.52%  57.21%  60.16%  75.80% 75.09% 74.73% 75.83% 77.35% 80.22% 23.02% 48.62%
Road 73.61%  75.61%  77.12%  77.86%  57.99%  56.16%  55.22%  68.00% 72.31% 65.60% 71.78% 68.61% 52.76% 58.03%
Irr;}l)lergzzus 86.89%  82.40%  87.56%  87.45%  66.29%  65.76%  76.57% 76.13% 82.09% 77.86% 80.94% 83.54% 54.37% 53.66%
Facility land ~ 89.73%  89.93%  92.51%  90.49%  66.99%  71.61%  85.34%  82.24% 88.67% 80.37% 89.86% 82.53% 33.85% 51.16%
Vacant 92.09%  89.21%  92.05%  93.33%  65.96%  64.85%  89.38% 74.38% 79.50% 79.41% 82.41% 87.72% 32.66% 52.54%
Water 90.10%  90.40%  91.69%  90.57%  81.39%  85.57%  8237%  88.81% 91.02% 84.56% 90.82% 87.46% 84.72% 83.47%

AA 86.43% 88.59% 69.23% 78.87% 81.35% 83.33% 56.65%

OA 86.45% 88.56% 70.57% 79.08% 81.55% 83.67% 61.72%

KC 0.847 0.871 0.667 0.763 0.792 0.816 0.564

The bold font highlights the best accuracy for AA, OA, and KC among various methods. The ESSCNN and EMMCNN performance in the table correspond to the best tests among
various spatial scales and different scale combinations, respectively. ESSCNN: extended topology-preserving segmentation (ETPS)-based single-scale and single-feature convolutional
neural network (CNN); EMMCNN: ETPS-based multi-scale and multi-feature CNN; OCNN: object-based CNN; PCNN: patch-based CNN; SMCNN: simple linear iterative clustering
(SLIC)-based multi-scale CNN; SMMCNN: SLIC-based multi-scale and multi-feature CNN; ORF: object-based random forest. UA: user’s accuracy; PA: producer’s accuracy; AA: average
accuracy; OA: overall accuracy; KC: Kappa coefficient.
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Table 9. Classification accuracy comparison amongst ESSCNN, EMMCNN, OCNN, PCNN, SMCNN, SMMCNN, and ORF methods for the Cixi dataset.

Land-Cover ESSCNN EMMCNN OCNN PCNN SMCNN SMMCNN ORF
UA PA UA PA UA PA UA PA UA PA UA PA UA PA
Water 83.59%  81.99%  84.46%  82.89%  69.11% 61.27%  6494%  82.52%  61.03%  80.14%  59.67%  86.25% 81.49% 83.82%

Farmland 90.19%  88.02%  90.29%  90.02%  75.94%  83.21%  91.29%  78.63%  80.28%  83.41%  86.62%  83.87%  87.26% 82.35%
Woodland 91.89%  90.77%  92.63%  92.13%  85.48%  7819%  91.14%  80.52%  88.22%  85.88%  88.66%  89.67%  87.22% 83.49%
Grassland 59.47%  75.45%  70.39%  79.01%  20.79%  48.83%  19.33%  78.41% 47.83% 71.71%  49.26%  79.02% 19.12% 77.63%
Building 92.33%  89.25%  92.89%  89.65%  91.51%  79.16%  92.04%  86.08%  92.72%  82.10%  94.19%  82.28%  91.55% 79.53%

Road 57.68%  67.39%  59.25%  70.54%  13.64% 58.41% 24.31%  65.00% 3574% 52.48%  33.16%  62.42%  4598%  72.21%
Irr‘si‘?rgzus 6527%  72.87%  T74.00%  7522%  32.28%  54.80%  39.37%  67.93%  4824%  66.60% 4121%  79.99%  18.16%  75.67%
Facility land ~ 89.39%  89.92%  90.32%  90.20%  8493% 7192% 8359%%  8351% 90.11% 74.34% 93.04% 7643%  8240%  76.98%

AA 78.73% 81.78% 59.21% 63.25% 68.02% 68.23% 64.15%

OA 87.13% 88.35% 75.78% 81.39% 80.27% 82.63% 80.77%

KC 0.841 0.857 0.701 0.767 0.756 0.784 0.761

The bold font highlights the best accuracy for AA, OA, and KC among various methods. The ESSCNN and EMMCNN performance in the table correspond to the best tests among
various spatial scales and different scale combinations, respectively. ESSCNN: extended topology-preserving segmentation (ETPS)-based single-scale and single-feature convolutional
neural network (CNN); EMMCNN: ETPS-based multi-scale and multi-feature CNN; OCNN: object-based CNN; PCNN: patch-based CNN; SMCNN: simple linear iterative clustering
(SLIC)-based multi-scale CNN; SMMCNN: SLIC-based multi-scale and multi-feature CNN; ORF: object-based random forest. UA: user’s accuracy; PA: producer’s accuracy; AA: average
accuracy; OA: overall accuracy; KC: Kappa coefficient.

Table 10. Classification accuracy comparison amongst ESSCNN, EMMCNN, OCNN, PCNN, SMCNN, SMMCNN, and ORF methods for the Xiaoshan testing samples.

ESSCNN EMMCNN OCNN PCNN SMCNN SMMCNN ORF
UA PA UA PA UA PA UA PA UA PA UA PA UA PA
Farmland 89.99%  89.45%  9191%  90.31%  75.68%  81.60%  90.21%  83.22%  85.77%  88.77%  87.21%  89.57%  78.15%  64.58%
Woodland 86.97%  86.06%  88.85%  88.01%  70.62% 7471%  83.21%  82.74%  81.77%  84.42%  83.58%  85.52%  65.62%  71.60%
Building 91.73%  87.85%  92.31%  89.89%  88.74%  7839%  86.92%  88.06%  89.03%  8543%  91.74%  84.17%  90.14%  68.60%
Road 67.82%  72.71%  69.98%  75.08%  56.46%  47.71%  56.36%  68.36%  59.34%  65.16%  63.96%  63.60%  54.99%  70.69%

Land-Cover




Remote Sens. 2020, 12, 66

Table 10. Cont.

19 of 33

Land-Cover ESSCNN EMMCNN OCNN PCNN SMCNN SMMCNN ORF
UA PA UA PA UA PA UA PA UA PA UA PA UA PA
Im;igi‘;“s 62.42%  73.74%  69.97%  7643%  29.03%  49.65%  65.11%  60.17%  62.93%  62.19%  6027%  70.26%  578%  52.67%
Vacant 91.06%  89.20%  92.10%  93.01%  7020%  70.41%  85.12%  89.44%  8332%  8331% 83.42% 87.58% 37.78%  75.28%
Water 89.72%  92.00%  90.66%  92.93%  86.29%  82.23%  8533%  90.40%  89.43%  84.03%  87.40% 88.15%  81.86%  90.76%
AA 82.81% 85.11% 68.14% 78.89% 78.80% 79.65% 59.19%
OA 86.91% 88.63% 75.22% 83.48% 83.16% 84.42% 70.98%
KC 0.839 0.860 0.694 0.796 0.793 0.808 0.634

The bold font highlights the best accuracy for AA, OA, and KC among various methods. The ESSCNN and EMMCNN performance in the table correspond to the best tests among
various spatial scales and different scale combinations, respectively. ESSCNN: extended topology-preserving segmentation (ETPS)-based single-scale and single-feature convolutional
neural network (CNN); EMMCNN: ETPS-based multi-scale and multi-feature CNN; OCNN: object-based CNN; PCNN: patch-based CNN; SMCNN: simple linear iterative clustering
(SLIC)-based multi-scale CNN; SMMCNN: SLIC-based multi-scale and multi-feature CNN; ORF: object-based random forest. UA: user’s accuracy; PA: producer’s accuracy; AA: average
accuracy; OA: overall accuracy; KC: Kappa coefficient.

Table 11.

validating samples.

Classification accuracy comparison amongst ESSCNN, EMMCNN, OCNN, PCNN, SMCNN, SMMCNN, and ORF methods for the Xiaoshan

Land-Cover ESSCNN EMMCNN OCNN PCNN SMCNN SMMCNN ORF
UA PA UA PA UA PA UA PA UA PA UA PA UA PA

Farmland 65.38%  75.09%  67.04%  77.68%  51.37%  77.40%  69.60% 71.87%  58.24%  76.97%  57.86%  77.02%  63.14%  60.72%
Woodland 66.31%  5839%  68.02%  60.02%  61.75%  55.10%  65.49%  58.95%  63.40%  56.27%  66.16%  56.13% = 62.40%  52.81%
Building 83.23%  72.05%  83.64%  72.87%  83.06%  67.03%  76.50%  75.48%  82.74%  69.16%  8590%  69.38%  76.93%  66.49%
Road 32.64%  43.55%  36.50%  42.52%  33.75%  27.69%  34.64%  43.95%  31.36%  40.48%  3441%  39.57%  29.95%  34.94%
Imslilergxus 19.65%  35.59%  24.48%  41.94%  12.29%  32.88%  30.15%  36.84%  22.22%  34.06%  19.42%  42.02% 2.62% 31.93%
Vacant 43.43%  26.81% 43.70% 30.74%  43.76%  2639%  34.70%  25.08%  43.26%  24.85%  40.70%  23.43%  31.43%  23.29%
Water 76.03%  76.41% 76.99%  76.47%  75.60%  64.67% 7571%  75.89%  76.61%  71.92% 7521% 76.41%  69.72%  80.97%
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Table 11. Cont.

Land-Cover ESSCNN EMMCNN OCNN PCNN SMCNN SMMCNN ORF
UA PA UA PA UA PA UA PA UA PA UA PA UA PA
AA 55.24% 57.20% 51.65% 55.25% 53.98% 54.24% 48.03%
OA 65.62% 67.20% 60.46% 65.43% 63.24% 64.20% 60.06%
KC 0.568 0.588 0.507 0.567 0.541 0.551 0.493

The bold font highlights the best accuracy for AA, OA, and KC among various methods. The ESSCNN and EMMCNN performance in the table correspond to the best tests among
various spatial scales and different scale combinations, respectively. ESSCNN: extended topology-preserving segmentation (ETPS)-based single-scale and single-feature convolutional
neural network (CNN); EMMCNN: ETPS-based multi-scale and multi-feature CNN; OCNN: object-based CNN; PCNN: patch-based CNN; SMCNN: simple linear iterative clustering
(SLIC)-based multi-scale CNN; SMMCNN: SLIC-based multi-scale and multi-feature CNN; ORF: object-based random forest. UA: user’s accuracy; PA: producer’s accuracy; AA: average
accuracy; OA: overall accuracy; KC: Kappa coefficient.

Table 12. Classification accuracy comparison amongst ESSCNN, EMMCNN, OCNN, PCNN, SMCNN, SMMCNN, and ORF methods for the Yuecheng testing samples.

ESSCNN EMMCNN OCNN PCNN SMCNN SMMCNN ORF
UA PA UA PA UA PA UA PA UA PA UA PA UA PA
Farmland 91.60%  90.34%  92.96%  91.90%  84.36%  73.73%  9293%  80.02%  86.99%  88.92%  91.68%  85.05%  79.13%  64.13%
Woodland 75.83%  75.84%  7833%  79.85%  52.95%  4859%  63.10%  68.79%  68.33%  70.80%  66.30%  76.94%  36.86% = 46.92%
Building 89.61%  87.56%  90.69%  89.29%  83.56%  75.09%  85.15%  83.28%  87.35%  85.73%  91.02%  83.25%  88.16%  62.81%

Land-Cover

Road 7353%  76.41%  76.94%  76.74%  4135%  63.60% 61.71%  68.67% 7612%  60.25%  7334%  64.66%  46.75%  56.49%
hr;i’igi?s 59.33%  65.74%  64.76%  70.46%  25.09%  42.96%  40.65%  61.32%  42.82%  63.17% 42.84%  70.82%  817%  44.71%
Vacant 8331% 8851%  89.48% 89.38%  4520%  48.88%  79.95%  78.87%  73.68%  8297%  7092%  89.21%  391%  61.03%
Water 9296% 91.83%  93.54%  93.18%  8347%  88.93%  9051%  89.99%  92.38%  87.88%  91.07%  89.88%  86.78%  91.45%
AA 80.88% 83.81% 59.43% 73.43% 75.38% 75.31% 49.97%
OA 85.62% 87.52% 71.11% 80.30% 81.68% 82.73% 67.19%
KC 0.822 0.846 0.641 0.756 0.774 0.785 0.584

The bold font highlights the best accuracy for AA, OA, and KC among various methods. The ESSCNN and EMMCNN performance in the table correspond to the best tests among
various spatial scales and different scale combinations, respectively. ESSCNN: extended topology-preserving segmentation (ETPS)-based single-scale and single-feature convolutional
neural network (CNN); EMMCNN: ETPS-based multi-scale and multi-feature CNN; OCNN: object-based CNN; PCNN: patch-based CNN; SMCNN: simple linear iterative clustering
(SLIC)-based multi-scale CNN; SMMCNN: SLIC-based multi-scale and multi-feature CNN; ORF: object-based random forest. UA: user’s accuracy; PA: producer’s accuracy; AA: average
accuracy; OA: overall accuracy; KC: Kappa coefficient.
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Table 13. Classification accuracy comparison amongst ESSCNN, EMMCNN, OCNN, PCNN, SMCNN, SMMCNN, and ORF methods for the Yuecheng

validating samples.

Land-Cover ESSCNN EMMCNN OCNN PCNN SMCNN SMMCNN ORF
UA PA UA PA UA PA UA PA UA PA UA PA UA PA
Farmland  67.56%  52.05% 69.16%  49.80% 63.37%  40.72% 81.61% 40.81%  60.64% 52.52%  7594%  46.60% 74.37%  36.91%
Woodland ~ 49.17%  56.08%  46.44%  56.74%  3534%  42.60% 32.81%  5547%  47.36%  55.38% 34.49% 57.70% 26.81%  50.96%
Building 80.55%  73.13%  81.30%  76.35%  76.55%  71.34%  77.94%  74.80% 76.72%  7541%  83.90%  68.63% 86.11%  60.85%
Road 46.83%  56.67% 53.33%  53.97%  43.44%  36.14% 42.74%  54.93%  59.24%  34.08% 53.19%  43.92%  37.92%  44.56%
Inli‘i?:i‘;”s 33.89%  4427%  3438%  4527% 2127%  38.60% 17.49%  38.38%  3217%  46.70%  26.22% 47.58%  3.04%  33.73%
Vacant 19.48%  20.90%  16.80% 21.73%  14.84% 1090%  25.73% 16.74% 13.14% 1823%  8.77%  23.88%  1.58%  15.38%
Water 80.71%  78.61%  82.52%  76.96%  5049%  76.65%  77.75%  79.92%  7844%  77.75%  80.06%  78.55%  79.91%  71.91%
AA 54.03% 54.85% 43.61% 50.87% 52.53% 51.80% 44.25%
OA 60.39% 60.93% 50.51% 55.69% 58.14% 58.48% 52.51%
KC 0.513 0.521 0.394 0.460 0.490 0.488 0.407

The bold font highlights the best accuracy for AA, OA, and KC among various methods. The ESSCNN and EMMCNN performance in the table correspond to the best tests among
various spatial scales and different scale combinations, respectively. ESSCNN: extended topology-preserving segmentation (ETPS)-based single-scale and single-feature convolutional
neural network (CNN); EMMCNN: ETPS-based multi-scale and multi-feature CNN; OCNN: object-based CNN; PCNN: patch-based CNN; SMCNN: simple linear iterative clustering
(SLIC)-based multi-scale CNN; SMMCNN: SLIC-based multi-scale and multi-feature CNN; ORF: object-based random forest. UA: user’s accuracy; PA: producer’s accuracy; AA: average

accuracy; OA: overall accuracy; KC: Kappa coefficient.
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Figure 9. Three typical image subsets (a, b, and c) in the Beilun dataset and their classification results
using ESSCNN, EMMCNN, OCNN, PCNN, SMCNN, SMMCNN, and ORF methods. The white
and black circles denote the correct and incorrect classification, respectively. ESSCNN: extended
topology-preserving segmentation (ETPS)-based single-scale and single-feature convolutional neural
network (CNN); EMMCNN: ETPS-based multi-scale and multi-feature CNN; OCNN: object-based
CNN; PCNN: patch-based CNN; SMCNN: simple linear iterative clustering (SLIC)-based multi-scale
CNN; SMMCNN: SLIC-based multi-scale and multi-feature CNN; ORF: object-based random forest.
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Figure 10. Confusion matrices of testing samples in the Cixi dataset for the ESSCNN, EMMCNN,
OCNN, PCNN, SMCNN, SMMCNN, and ORF methods. The numbers 1 to 8 in horizontal and vertical
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axis denote the water, farmland, woodland, grassland, building, road, impervious surface, and
facility land classes, respectively. ESSCNN: extended topology-preserving segmentation (ETPS)-based
single-scale and single-feature convolutional neural network (CNN); EMMCNN: ETPS-based multi-scale
and multi-feature CNN; OCNN: object-based CNN; PCNN: patch-based CNN; SMCNN: simple linear
iterative clustering (SLIC)-based multi-scale CNN; SMMCNN: SLIC-based multi-scale and multi-feature
CNN; ORF: object-based random forest.
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Figure 11. Three typical image subsets (a, b, and c) in the Cixi dataset and their classification results
using ESSCNN, EMMCNN, OCNN, PCNN, SMCNN, SMMCNN, and ORF methods. The white
and black circles denote the correct and incorrect classification, respectively. ESSCNN: extended
topology-preserving segmentation (ETPS)-based single-scale and single-feature convolutional neural
network (CNN); EMMCNN: ETPS-based multi-scale and multi-feature CNN; OCNN: object-based
CNN; PCNN: patch-based CNN; SMCNN: simple linear iterative clustering (SLIC)-based multi-scale
CNN; SMMCNN: SLIC-based multi-scale and multi-feature CNN; ORF: object-based random forest.
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Figure 12. Confusion matrices of testing (test) and validating (val) samples in the Xiaoshan dataset for
the ESSCNN, EMMCNN, OCNN, PCNN, SMCNN, SMMCNN, and ORF methods. Thenumbers1to7in
horizontal and vertical axis denote the farmland, woodland, building, road, impervious surface, vacant,
and water classes, respectively. ESSCNN: extended topology-preserving segmentation (ETPS)-based
single-scale and single-feature convolutional neural network (CNN); EMMCNN: ETPS-based multi-scale
and multi-feature CNN; OCNN: object-based CNN; PCNN: patch-based CNN; SMCNN: simple linear
iterative clustering (SLIC)-based multi-scale CNN; SMMCNN: SLIC-based multi-scale and multi-feature
CNN; ORF: object-based random forest.
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Figure 13. Confusion matrices of testing (test) and validating (val) samples in the Yuecheng dataset for
the ESSCNN, EMMCNN, OCNN, PCNN, SMCNN, SMMCNN, and ORF methods. The numbers1to7in
horizontal and vertical axis denote the farmland, woodland, building, road, impervious surface, vacant,

2 3

and water classes, respectively. ESSCNN: extended topology-preserving segmentation (ETPS)-based
single-scale and single-feature convolutional neural network (CNN); EMMCNN: ETPS-based multi-scale
and multi-feature CNN; OCNN: object-based CNN; PCNN: patch-based CNN; SMCNN: simple linear
iterative clustering (SLIC)-based multi-scale CNN; SMMCNN: SLIC-based multi-scale and multi-feature
CNN; OREF: object-based random forest.
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4.5.1. Beilun Dataset

Quantitative result analysis of the Beilun dataset is shown in Table 8 and Figure 8. The EMMCNN
achieved the highest OA (88.56%), KC (0.871), AA (88.59%), and UA/PA for most classes, consistently
greater than the ESSCNN. The accuracy increment was much more remarkable in comparison with
the OCNN, PCNN, SMCNN, SMMCNN, and ORF. Farmland, grassland, facility land, vacant, and
water classes had higher accuracy, with UA/PA more than 90% for EMMCNN, whereas road class
had the lowest UA/PA (77.12%/77.86%). Roads are typical linear objects distributed with other class
objects along both sides, especially similar buildings and impervious surfaces, making it difficult for
accurate recognition. Nonetheless, the EMMCNN method still achieved better precision in identifying
roads than the compared methods. For the ESSCNN and EMMCNN methods that employed ETPS
superpixels as analysis units, the classification accuracy was higher than the OCNN and PCNN
methods that employed MRS objects by 7.37% to 17.99% for OA, 0.084 to 0.204 for KC, and 7.56% to
19.36% for AA, especially the woodland, sparse building, and road classes, and was higher than the
SMCNN and SMMCNN methods that employed SLIC segments by 2.78% to 7.01% for OA, 0.031 to
0.079 for KC, and 3.10% to 7.24% for AA, especially the grassland and vacant classes. The performance
of the EMMCNN, ESSCNN, PCNN, SMCNN, and SMMCNN methods retaining high resolution was
better than the OCNN method using scaled resolution due to its information loss of spatial granularity.
As a comparison method using only object attributes for classification, the ORF method had the lowest
accuracy with OA 61.72%, KC 0.564, and AA 56.65%, especially the sparse building, facility land, and
vacant classes. From Figure 8, it was observed that the OCNN and ORF methods tended to confuse
similar artificial ground objects, such as dense buildings, sparse buildings, roads, impervious surfaces,
and facility land, whereas the EMMCNN method recognized them best with the most focused values
on the diagonal. The PCNN, SMCNN, and SMMCNN methods performed well on most classes except
the roads, which were easily confused with impervious surface and facility land.

For qualitative result analysis of the Beilun dataset, as shown in Figure 9, the EMMCNN method
had greater performance in not only recognizing land-cover types but also identifying class boundaries.
The ESSCNN method made some mistakes in classifying small ground objects and continuous objects
due to the insufficiency consideration of multi-scale contextual information and object hand-delineated
features. The OCNN, PCNN, SMCNN, and SMMCNN methods had inferior performance in classifying
large-scale ground objects with complex compositions and cross-class-boundary objects with variable
contexts. The boundaries of the OCNN, PCNN, and ORF methods that employed MRS objects
were more irregular and circuitous, and the boundaries of the SMCNN and SMMCNN methods
that employed SLIC segments were less smooth and continuous. The classification result of the
ORF method lacked integrity and continuity, indicating that the distribution of ground objects was
not orderly enough. In summary, the experimental results of the Beilun dataset illustrated that the
complementarity of multi-scale and multi-type features, the adaptability of attention-based weighting,
and the learnability of dense CNNs and hybrid network promoted the EMMCNN performance for HSR
image land-cover classification. The ORF, OCNN, and PCNN methods had inferior performance due to
the lack of deep feature representation, the loss of original resolution information, and coarse-grained
object segmentation, respectively. The SMCNN, SMMCNN, and ESSCNN methods did not achieve the
best accuracy since they considered single features and limited neighborhood scales without effective
parameter setting and combining solution.

4.5.2. Cixi Dataset

For the quantitative result analysis of the Cixi dataset, as shown in Table 9 and Figure 10,
the proposed EMMCNN method obtained the best OA (88.35%), KC (0.857), AA (81.78%), and
UA/PA for most classes, higher than the ESSCNN. Compared with the OCNN, PCNN, SMCNN,
SMMCNN, and ORF, the improvement of EMMCNN was more dramatic. The UA/PA of farmland,
woodland, and facility land classes was more than 90% for EMMCNN, whereas the UA/PA of road,
impervious surface, and grassland classes was only 59.25%/70.54%, 74.00%/75.22%, and 70.39%/79.01%,
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respectively. In addition to linear road objects, impervious surface and grassland objects in the Cixi
dataset were scattered and surrounded by analogous objects, making recognition difficult. Nonetheless,
the EMMCNN method still achieved better precision of identifying them than the compared methods.
For the ESSCNN and EMMCNN methods using ETPS superpixels, the classification performance was
better than the OCNN and PCNN methods using MRS objects by 5.74% to 12.57% for OA, 0.074 to 0.156
for KC, and 15.48% to 22.57% for AA, especially the grassland, road and impervious surface classes,
and was better than the SMCNN and SMMCNN methods using SLIC segments by 4.50% to 8.08% for
OA, 0.057 to 0.101 for KC, and 10.50% to 13.76% for AA, especially the water, road, and impervious
surface classes. The performance of the OCNN method with the scaled resolution was worse than
the other methods with the high resolution because of the spatial information loss. As a comparison
method using only object attributes for classification, the ORF method had the moderate accuracy with
OA 80.77%, KC 0.761, and AA 64.15%, but the grassland, road, and impervious surface classes had
much lower UA. From Figure 10, it was observed that the OCNN method tended to confuse woodland
and grassland, farmland and facility land, as well as buildings and impervious surfaces. Besides the
spectral similarity between these confusing classes, there were many greenhouses distributed in the
farmland in the Cixi image, so the other methods also had a certain misclassification. The EMMCNN
method achieved a relatively better and more balanced identification result, with more focused values
on the diagonal.

For the qualitative result analysis of the Cixi dataset, as shown in Figure 11, the EMMCNN method
achieved better performance in identifying land-cover types and class boundaries. The ESSCNN
method had similar performance to the EMMCNN but poor in recognizing extra small objects and
linear continuous objects. The SMCNN and SMMCNN methods sometimes tended to classify the
constituent parts of objects as different land-cover types or omit them. The OCNN and PCNN methods
had inferior performance in distinguishing objects from similar surroundings, such as identifying roads
from buildings and identifying grasslands from woodlands. The ESSCNN and EMMCNN methods
that used ETPS superpixels had more regular and smooth boundaries than the OCNN, PCNN, and
ORF methods using MRS objects, as well as the SMCNN and SMMCNN methods using SLIC segments.
In summary, the experimental results of the Cixi dataset demonstrated that the efficient superpixel
segmentation, attention-based multi-scale and multi-feature fusion, and deep learning networks in
EMMCNN improved the accuracy for HSR image land-cover classification. The comparison methods
had inferior performance considering they used segmentation methods with coarser granularity or
less boundary adherence, classified the land-cover types based on limited features and spatial scales,
and lacked comprehensive parameter optimization and feature integration.

4.5.3. Xiaoshan Dataset

For result analysis of the Xiaoshan testing dataset, as shown in Table 10 and Figure 12, the proposed
EMMCNN method achieved the best OA (88.63%), KC (0.860), AA (85.11%), and UA/PA for most classes,
better than the ESSCNN. The superiority of the EMMCNN was more significant when comparing with
the OCNN, PCNN, SMCNN, SMMCNN, and ORF methods. The UA/PA of farmland, vacant, and
water classes was higher than 90% in EMMCNN, whereas the road and impervious surface classes had
lower precision with UA/PA 69.98%/75.08% and 69.97%/76.43%, respectively. In the Xiaoshan testing
dataset, the road and impervious surface objects were dispersed and mixed with other similar artificial
ground objects, and the comparison methods had worse accuracy on these two classes, especially
the OCNN and ORF methods. For the ESSCNN and EMMCNN methods using ETPS superpixels,
the recognition accuracy was better than the OCNN and PCNN methods using MRS objects by 3.43%
to 13.41% for OA, 0.043 to 0.166 for KC, and 3.92% to 16.97% for AA, and was better than the SMCNN
and SMMCNN methods using SLIC segments by 2.49% to 5.47% for OA, 0.031 to 0.067 for KC, and
3.16% to 6.31% for AA. The ORF method, as a comparison method using only MRS object attributes
for classification, had inferior overall performance and especially worse precision for impervious
surface and vacant classes. Whereas, combining the MRS object hand-delineated features with the deep
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multi-scale features extracted by dense CNNS, as the auxiliary and complementary feature description,
could improve the performance in the EMMCNN method. From Figure 12, it could be seen that the
buildings and impervious surface, as well as woodland and roads, were relatively easier to be confused,
and the ORF method had relatively worse category confusion results. The ESSCNN and EMMCNN
methods had better discrimination ability with comparatively more balanced and focused values on
the diagonal.

For result analysis of the Xiaoshan validating dataset, as shown in Table 11 and Figure 12,
the proposed EMMCNN method achieved the highest OA (67.20%), KC (0.588), AA (57.20%), and
UA/PA for most classes. The performance of the EMCNN method was better than comparison methods
by 1.58% to 7.14% for OA, 0.020 to 0.095 for KC, and 1.95% to 9.17% for AA. The road, impervious
surface, and vacant classes—easily confusing objects—had inferior precision, as shown in Figure 12.
The farmland, building, and water classes had higher accuracy, having a relatively stable appearance
and characteristics between separate areas. The accuracy of all methods for validating the dataset was
worse than that for the testing dataset, considering the appearance and features of ground objects
changed, and the patterns of object distribution varied in a separate area. Directly applying a trained
model of one image to predict the land-cover types in another image would cause the accuracy
reduction, and more efforts, such as fine-tuning, sample transferring, and feature transferring, before
predicting could adjust the model and raise the performance. However, these aspects were not the
focus of this article, and they would be researched in future work. In summary, the EMMCNN method
achieved the best performance in both testing and validating images, owing to its hybrid network
design, combining solution optimization and adaptive multi-scale and multi-feature fusion. In addition,
for HSR images with complex ground objects, unbalanced land-cover types, and fragmented features,
where the segment characteristics and object features changed a lot, the land-cover classification
accuracy of the EMMCNN method would decrease. The parameter selection and optimization would
also influence the performance of the EMMCNN method. Nonetheless, the EMMCNN method could
still get relatively better accuracy with careful design and tuning in such conditions, although the
improvement was reduced.

4.5.4. Yuecheng Dataset

For result analysis of the Yuecheng testing dataset, as shown in Table 12 and Figure 13, the proposed
EMMCNN method obtained the highest OA (87.52%), KC (0.846), AA (83.81%), and UA/PA for most
classes, better than the ESSCNN. The improvement was more remarkable compared to the OCNN,
PCNN, SMCNN, SMMCNN, and ORF methods. The UA/PA of farmland and water was higher than
90% in EMMCNN, and the UA/PA of impervious surface was only 64.76%/70.46%. The accuracy of
road class improved in the Yuecheng dataset compared to other datasets because the road objects were
wider and more complete, with more discriminative characteristics. However, the impervious surface
objects in the Yuecheng dataset were more scattered and irregular, distributed among buildings, roads,
and farmlands. Nonetheless, the EMMCNN method still recognized them comparatively better, and,
in contrast, the OCNN and ORF methods had the worst precision. For the ESSCNN and EMMCNN
methods using ETPS superpixels, the performance was better than the OCNN and PCNN methods
using MRS objects by 5.32% to 16.41% for OA, 0.066 to 0.205 for KC, and 7.45% to 24.38% for AA,
and was better than the SMCNN and SMMCNN methods using SLIC segments by 2.89% to 5.84%
for OA, 0.037 to 0.072 for KC, and 5.50% to 8.50% for AA. The ORF method had inferior overall
performance and especially lower precision for impervious surface and vacant classes. From Figure 13,
it could be seen that the OCNN and ORF methods had more category confusion, whereas the ESSCNN
and EMMCNN methods showed better object discrimination. The buildings, roads, and impervious
surfaces were relatively easier to be confused, with similar appearance and spectral features.

For result analysis of the Yuecheng validating dataset, as shown in Table 13 and Figure 13,
the proposed EMMCNN method obtained the best OA (60.93%), KC (0.521), AA (54.85%), and UA/PA
for most classes. The accuracy of the EMCNN method was higher than comparison methods by 0.54% to
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10.42% for OA, 0.008 to 0.127 for KC, and 0.82% to 11.24% for AA. The woodland, impervious surfaces,
and vacant classes—easily confusing classes—had inferior accuracy, as displayed in Figure 13. The
building and water classes, whose appearance and characteristics are relatively more stable between
separate areas, had better precision. The performance of the validating dataset was worse than that of
the testing dataset, which could be raised in further using transfer learning in future work. In summary,
the EMMCNN method had the highest accuracy in both testing and validating images due to its
flexible multi-scale and multi-type feature fusion, parameter and solution tuning, and effective network
construction. In addition, the unbalance of numbers among different categories of samples would
influence the model learning ability and classification result accuracy;, i.e., better for majority classes
and worse for minority classes. In this study, the number of samples per land-cover type was basically
sufficient for network learning with at least 909 samples for training among all datasets, although the
class imbalance would result in the relatively biased model prediction capabilities. The solution to a
class imbalance in land-cover classification would be researched in future work, and we mainly focused
on how to raise the overall performance through multi-scale and multi-feature fusion in this paper. Asa
result, the precision of the majority and minority categories in the EMMCNN method was generally
higher than the comparison methods, showing the overall superiority of our proposed method.

5. Discussion
5.1. Evaluation of Single Spatial Scales

In the first discussion, we compared the land-cover classification accuracy using different scales
of contextual information and analyze the effect of multi-feature fusion in single-scale settings. Taking
Beilun and Cixi datasets, for example, as shown in Table 14, the accuracy and consistency generally
improved with larger scales and more features. For vertical comparison of the Beilun dataset, the OA/KC
was raised by 11.21%/0.127 and 10.99%/0.124 in single-feature and multi-feature settings, respectively,
as spatial scales extended from 24 x 24 to 112 x 112. For the Cixi dataset, the OA/KC was raised by
11.11%/0.138 and 5.81%/0.072 in single-feature and multi-feature settings, respectively. The increasing
accuracy became steady when the scale was larger than 80x80. This indicated that at smaller scales,
the larger contextual information was important for recognizing land-cover types, whereas, at larger
scales, the importance decreased because it might introduce irrelevant information. For horizontal
comparison, due to the superiority of multi-feature complementation, the OA was improved by 0.15%
and 1.74% on average for the Beilun and Cixi datasets, respectively, among various single scales.
Additionally, the multi-feature improvement became less significant as the spatial scale increased,
reflecting that a larger scale of contextual information would partially compensate for the limited
perception of object features.

Table 14. Classification accuracy comparison between single-feature and multi-feature methods based
on single scales.

Beilun Dataset Cixi Dataset
Single-Scale Single-Feature Multi-Feature Single-Feature Multi-Feature
OA KC OA KC OA KC OA KC
24 x 24 75.24% 0.720 75.56% 0.724 76.02% 0.703 81.73% 0.774
32x32 78.71% 0.760 79.01% 0.763 78.72% 0.737 82.59% 0.784
40 x 40 81.41% 0.790 81.50% 0.791 80.80% 0.763 83.98% 0.802
48 x 48 83.36% 0.812 83.39% 0.812 82.43% 0.783 84.60% 0.810
56 x 56 84.82% 0.829 84.97% 0.830 83.73% 0.800 85.52% 0.822
64 x 64 85.25% 0.834 85.43% 0.835 85.31% 0.819 86.33% 0.831
72 %72 85.68% 0.838 85.82% 0.840 85.83% 0.825 86.69% 0.836
80 x 80 86.04% 0.843 86.22% 0.844 86.61% 0.835 87.12% 0.841
88 x 88 86.20% 0.844 86.39% 0.847 86.57% 0.834 87.08% 0.841
96 x 96 86.40% 0.846 86.45% 0.847 86.89% 0.838 87.29% 0.843

104 x 104 86.45% 0.847 86.52% 0.848 86.97% 0.840 87.38% 0.845
112 x 112 86.42% 0.847 86.55% 0.848 87.13% 0.841 87.54% 0.846

OA: overall accuracy; KC: Kappa coefficient.
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5.2. Evaluation of Multi-Scale Combinations

In the second discussion, we compared the performance based on different combining solutions
and discussed the effect of feature fusion in multi-scale settings. Taking the Beilun and Cixi datasets,
for example, a total of 36 combinations and the performance for accuracy and consistency are shown in
Figure 14. For comparison among various combinations in single-feature settings, the OA/KC ranged
from 83.54%/0.814 to 88.37%/0.869 and from 82.26%/0.781 to 88.04%/0.853 for the Beilun and Cixi
datasets, respectively. In multi-feature settings with attention-based weighting, the OA/KC ranged
from 83.67%/0.816 to 88.56%/0.871 and from 84.43%/0.808 to 88.35%/0.857 for the Beilun and Cixi
datasets, respectively. For the Beilun dataset, the top five combining solutions were COMB 9, 18, 36, 17,
and 4. For the Cixi dataset, the top five combinations were COMB 18, 36, 9, 35, and 4. For the Xiaoshan
and Yuecheng datasets, which are not shown in the figure, the top five combinations were COMB
9,18,17, 4, and 35, as well as COMB 18, 9, 16, 17, and 8, respectively. It was found that most of the
top combinations with better performance were composed of an appropriate number of larger scales,
reflecting that it was not the best solution to combine as many scales as possible. Larger scales played a
major role in promoting the combination accuracy, and smaller scales provided assisting contributions
for the classification. Therefore, selecting appropriate and complementary contextual scales for the

combination was important to achieve the best multi-scale performance.
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Figure 14. Classification accuracy comparison among single-feature, multi-feature, and multi-feature
with attention-based weighting methods upon multi-scale combinations. The 1st to 36th columns of
the horizontal axis represent the COMB1 to COMB36 combining solutions, as shown in Table 2. OA:
overall accuracy; KC: Kappa coefficient.

For comparison among different settings, the multi-feature methods with attention-based
weighting obtained the most accurate and consistent results in general. For a total of 36 combinations,
the promotion of attention-based weighting classification OA/KC was 0.16%/0.002 and 0.46%/0.006 on
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average for the Beilun and Cixi datasets, respectively, compared to the single-feature settings, and was
0.08%;/0.001 and 0.37%/0.005 on average for the Beilun and Cixi datasets, respectively, compared to
the multi-feature settings without attention-based weighting. The results of multi-scale combinations
were better than single-scale settings, and multi-feature fusion raised the accuracy further. In addition,
the improvement of multi-feature fusion in multi-scale settings was less significant than that in
single-scale settings, considering that multi-scale fusion had partially compensated for the insufficient
perception of object features. In conclusion, the comprehensive classification method based on
multi-scale and multi-feature fusion with attention-based weighting design had applicable importance
for promoting HSR image land-cover classification.

6. Conclusions

In this paper, we presented a novel extended topology-preserving segmentation (ETPS)-based
multi-scale and multi-feature method using a convolutional neural network (EMMCNN) for high
spatial resolution (HSR) image land-cover classification. In the proposed scheme, HSR images were
first segmented into superpixels using the ETPS algorithm with false-color composition and image
enhancement to improve the boundary adherence to confusing ground objects, and parallel dense
convolutional neural networks (CNNs) were built for superpixel multi-scale deep and effective feature
learning. Next, superpixel multi-scale CNN features were mapped with hand-delineated features of
multi-resolution segmentation (MRS) objects for complementary multi-segmentation and multi-type
representation, and the effect of various multi-scale and multi-feature combinations was compared
to determine the optimal solution. Finally, the multiple features were input into a hybrid network
consisting of 1-dimension (1-D) CNN and multi-layer perception (MLP) with channel-wise stacking
and attention-based weighting for comprehensive fusion and classification. Four real datasets of
GaoFen-2 HSR images were employed for experimental demonstration. Through comparisons with
ETPS-based single-scale and single-feature CNN (ESSCNN), object-based CNN (OCNN), patch-based
CNN (PCNN), SLIC-based multi-scale CNN (SMCNN), SLIC-based multi-scale and multi-feature
CNN (SMMCNN), and object-based random forest (ORF) methods, conclusions were drawn as follows:
(1) the proposed EMMCNN achieved better performance than the compared methods considering
overall accuracy (OA), Kappa coefficient (KC), average accuracy (AA) indicators, and user’s (UA) and
producer’s (PA) accuracy for most classes, and it showed best results in identifying land-cover types
and class boundaries; (2) for single-scale settings, the accuracy became higher as the scale extended
and tended to be steady after a specific scale considering wider windows might introduce irrelevant
information, and multi-feature complementation promoted the accuracy, especially at smaller scales;
(3) for multi-scale settings, the performance was better when combining appropriate number of larger
scales, which played a major role in promoting the integration accuracy, and multi-feature fusion
raised the accuracy with attention-based weighting. This study shed light on enhancing HSR image
land-cover classification using ETPS superpixels, dense CNNs, multi-scale and multi-feature fusion,
and 1-D CNN-MLP hybrid network with attention-based weighting. In the future, we would focus on
the exploration of class imbalance problems and the application of our scheme to transfer learning
using images of different times, places, or sensors.
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