Hydrometeor Distribution and Linear Depolarization Ratio in Thunderstorms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vertically-Oriented Cloud Radar
2.2. Calculation of AV
- For an ig (ig = 4 at first), we define de-aliasing function (DAL) calculating velocity Vcor using original and reference velocities Vori and Vref, respectively:Vcor = DAL(Vori, Vref),
- AV1 is calculated in the same way as by Sokol et al. [33], i.e., we consider only those components of Doppler spectra whose amplitude is at least 0.1% of the maximum Doppler spectra amplitude.
- AV2 is calculated in the same way as in point 2 but without the mentioned condition concerning the maximum Doppler spectra amplitude.
- In addition to the (first) interval corresponding to the lowest speed, we also consider the (second) interval corresponding to the second lowest speed. We determine AV3 as the most left point of the second interval. The reason is that it can happen that the first interval containing the lowest speed is very narrow and far from the second interval. A closer comparison commonly shows that the first interval is likely an unremoved noise since its values are usually inconsistent with values in a gate below and a gate above and these values are also inconsistent with the values recorded in previous measurements. In such a case, it is evident that the second interval should also be considered in AV calculation (AV3).
- We take into account AV calculated for the same gate but in the previous recording (≈2 s prior to the investigated recording) and we denote the resulting value AVL.
- If AV(ig − 1) is available, then we calculate AV(ig) using the following:AV1cor(ig) = DAL(AV1(ig), AV(ig − 1))AV2cor(ig) = DAL(AV2(ig), AV(ig − 1))AV3cor(ig) = DAL(AV3(ig), AV(ig − 1))If |AV2cor(ig) - AV(ig − 1)| < qtol, then AV(ig) = AV2cor(ig), stopIf |AV1cor(ig) - AV(ig − 1)|, then AV(ig) = AV1cor(ig), stopIf |AV3cor(ig) - AV(ig − 1)|, then AV(ig) = AV3cor(ig), stop
- If all the above given conditions (no. 6) are fulfilled, then AV(ig) is assigned according to the nearest value among AV1cor(ig), AV2cor(ig) and AV3cor(ig) to Vref = AV(ig − 1) if AV(ig − 1) is available.
- If AV(ig − 1) is not available but AVL(ig) is available, then:Vref = AVL(ig) and AV(ig) = DAL(AV2(ig), Vref(ig)).
- If AVL(ig) is not available, which usually does not happen, then AV(ig) from more past recordings is used as Vref.
- AV(ig = 4) is calculated using no. 7 and if AV(ig = 4) > qmax1, then AV(ig = 4) is set to AV(ig4) − Vd, because we do not allow large positive values of AV.
- We repeat the procedure from no. 1 to no. 9 for the next gate, i.e., one gate higher (ig = ig + 1).
- The procedure finishes at the highest gate (ig = 512) or at the (highest) gate, where we still recognize discrete intervals of Doppler spectra in the radar data.
2.3. Clasiffication of Hydrometeor Species—Hclass
2.4. Analysed Data: Thunderstorms of 2018 and 2019
2.5. Methods of Comparison between Cloud Radar Data and Lightning Data
3. Results
3.1. Thunderstorm on 10 June 2019
3.2. Common Characteristics of Analyzed Thunderstorms
3.3. LDR during Analyzed Thunderstorms
4. Discussion
5. Conclusions
- In the case of NL, the vertical profiles contain vertically-oriented areas with clearly high LDR, likely caused by an intensified electric field, which makes the ice particles align. The areas with increased LDR are visible at an elevation from 4 to 6.5 km above the radar, approximately. This finding confirms results published in other studies. Unlike other studies, which usually analyze one single event, we processed 38 days of thunderstorms.
- The vertically-oriented areas with increased LDR comprise various hydrometeors, namely the ice and snow particles, graupel, hail, and (supercooled) cloud water. These are the areas which meet the condition for the development of electrification by the collision of hydrometeors. In our opinion, electric field formation due to the collisions of graupel and ice particles is followed by the alignment of ice particles in the electric field and both the processes contribute to increases in LDR.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Usoskin, I.G.; Kovaltsov, G.A. Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. J. Geophys. Res. 2006, 111, D21206. [Google Scholar] [CrossRef] [Green Version]
- Sato, T. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS. PLoS ONE 2015, 10, e0144679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, C.P.R.; Bax-norman, H.; Emersic, C.; Avila, E.E.; Castellano, N.E. Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Q. J. R. Meteorol. Soc. 2006, 132, 2653–2673. [Google Scholar] [CrossRef]
- Takahashi, T. Riming Electrification as a Charge Generation Mechanism in Thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- Takahashi, T.; Miyawaki, K. Reexamination of Riming Electrification in a Wind Tunnel. J. Atmos. Sci. 2002, 59, 1018–1025. [Google Scholar] [CrossRef]
- Takahashi, T.; Sugimoto, S.; Kawano, T.; Suzuki, K. Riming Electrification in Hokuriku Winter Clouds and Comparison with Laboratory Observations. J. Atmos. Sci. 2016, 74, 431–447. [Google Scholar] [CrossRef]
- Saunders, C.P.R.; Peck, S.L. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res. Atmos. 1998, 103, 13949–13956. [Google Scholar] [CrossRef]
- Saunders, C. Charge Separation Mechanisms in Clouds. Space Sci. Rev. 2008, 137, 335–353. [Google Scholar] [CrossRef]
- Stolzenburg, M.; Rust, W.D.; Marshall, T.C. Electrical structure in thunderstorm convective regions: 2. Isolated storms. J. Geophys. Res. 1998, 103, 14079–14096. [Google Scholar] [CrossRef]
- MacGorman, D.R.; Biggerstaff, M.I.; Waugh, S.; Pilkey, J.T.; Uman, M.A.; Jordan, D.M.; Ngin, T.; Gamerota, W.R.; Carrie, G.; Hyland, P. Coordinated lightning, balloon-borne electric field, and radar observations of triggered lightning flashes in North Florida: Triggered lightning and storm charge. Geophys. Res. Lett. 2015, 42, 5635–5643. [Google Scholar] [CrossRef]
- Weinheimer, A.J.; Dye, J.E.; Breed, D.W.; Spowart, M.P.; Parrish, J.L.; Hoglin, T.L.; Marshall, T.C. Simultaneous measurements of the charge, size, and shape of hydrometeors in an electrified cloud. J. Geophys. Res. Atmos. 1991, 96, 20809–20829. [Google Scholar] [CrossRef]
- Winn, W.P.; Schwede, G.W.; Moore, C.B. Measurements of electric fields in thunderclouds. J. Geophys. Res. 1974, 79, 1761–1767. [Google Scholar] [CrossRef]
- Weiss, S.A.; Rust, W.D.; MacGorman, D.R.; Bruning, E.C.; Krehbiel, P.R. Evolving Complex Electrical Structures of the STEPS 25 June 2000 Multicell Storm. Mon. Weather Rev. 2008, 136, 741–756. [Google Scholar] [CrossRef]
- Adamo, C.; Goodman, S.; Mugnai, A.; Weinman, J.A. Lightning measurements from satellites and significance for storms in the mediterranean. In Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research; Betz, H.D., Schumann, U., Laroche, P., Eds.; Springer: Dordrecht, Netherlands, 2009; pp. 309–329. ISBN 978-1-4020-9079-0. [Google Scholar]
- Vorpahl, J.A.; Sparrow, J.G.; Ney, E.P. Satellite Observations of Lightning. Science 1970, 169, 860–862. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Damase, N.P.; Banik, T.; Paul, B.; Sharma, S.; De, B.K.; Guha, A. Satellite-based observation of lightning climatology over Nepal. J. Earth Syst. Sci. 2019, 128, 221. [Google Scholar] [CrossRef] [Green Version]
- Sparrow, J.G.; Ney, E.P. Lightning Observations by Satellite. Nature 1971, 232, 540–541. [Google Scholar] [CrossRef]
- Labrador, L. The detection of lightning from space. Weather 2017, 72, 54–59. [Google Scholar] [CrossRef]
- Makowski, J.A.; MacGorman, D.R.; Biggerstaff, M.I.; Beasley, W.H. Total Lightning Characteristics Relative to Radar and Satellite Observations of Oklahoma Mesoscale Convective Systems. Mon. Weather Rev. 2012, 141, 1593–1611. [Google Scholar] [CrossRef]
- Vonnegut, B. Orientation of Ice Crystals in the Electric Field of a Thunderstorm. Weather 1965, 20, 310–312. [Google Scholar] [CrossRef]
- Hendry, A.; McCormick, G.C. Radar observations of the alignment of precipitation particles by electrostatic fields in thunderstorms. J. Geophys. Res. 1976, 81, 5353–5357. [Google Scholar] [CrossRef]
- Krehbiel, P.; Chen, T.; McCrary, S.; Rison, W.; Gray, G.; Brook, M. The use of dual channel circular-polarization radar observations for remotely sensing storm electrification. Meteorl. Atmos. Phys. 1996, 59, 65–82. [Google Scholar] [CrossRef]
- Metcalf, J.I. Radar Observations of Changing Orientations of Hydrometeors in Thunderstorms. J. Appl. Meteor. 1995, 34, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Biggerstaff, M.I.; Zounes, Z.; Addison Alford, A.; Carrie, G.D.; Pilkey, J.T.; Uman, M.A.; Jordan, D.M. Flash propagation and inferred charge structure relative to radar-observed ice alignment signatures in a small Florida mesoscale convective system. Geophys. Res. Lett. 2017, 44, 8027–8036. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, V.; Zrnić, D.S.; Weber, M.E.; Fierro, A.O.; MacGorman, D.R. Electrified Cloud Areas Observed in the SHV and LDR Radar Modes. J. Atmos. Ocean. Technol. 2018, 36, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Caylor, I.J.; Chandrasekar, V. Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar. IEEE Trans. Geosci. Remote Sens. 1996, 34, 847–858. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.V.; Zrnić, D.S. Depolarization in Ice Crystals and Its Effect on Radar Polarimetric Measurements. J. Atmos. Ocean. Technol. 2007, 24, 1256–1267. [Google Scholar] [CrossRef] [Green Version]
- Hubbert, J.C.; Ellis, S.M.; Chang, W.-Y.; Rutledge, S.; Dixon, M. Modeling and Interpretation of S-Band Ice Crystal Depolarization Signatures from Data Obtained by Simultaneously Transmitting Horizontally and Vertically Polarized Fields. J. Appl. Meteor. Climatol. 2014, 53, 1659–1677. [Google Scholar] [CrossRef]
- Kollias, P.; Albrecht, B.A.; Lhermitte, R.; Savtchenko, A. Radar Observations of Updrafts, Downdrafts, and Turbulence in Fair-Weather Cumuli. J. Atmos. Sci. 2001, 58, 1750–1766. [Google Scholar] [CrossRef]
- Gossard, E.E. Measurement of Cloud Droplet Size Spectra by Doppler Radar. J. Atmos. Ocean. Technol. 1994, 11, 712–726. [Google Scholar] [CrossRef] [Green Version]
- Shupe, M.D.; Kollias, P.; Matrosov, S.Y.; Schneider, T.L. Deriving Mixed-Phase Cloud Properties from Doppler Radar Spectra. J. Atmos. Ocean. Technol. 2004, 21, 660–670. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Liu, L.; Zhu, K.; Wu, J.; Wang, B. A Method for Retrieving Vertical Air Velocities in Convective Clouds over the Tibetan Plateau from TIPEX-III Cloud Radar Doppler Spectra. Remote Sens. 2017, 9, 964. [Google Scholar] [CrossRef] [Green Version]
- Sokol, Z.; Minářová, J.; Novák, P. Classification of Hydrometeors Using Measurements of the Ka-Band Cloud Radar Installed at the Milešovka Mountain (Central Europe). Remote Sens. 2018, 10, 1674. [Google Scholar] [CrossRef] [Green Version]
- Sokol, Z.; Zacharov, P.; Skripniková, K. Simulation of the storm on 15 August 2010, using a high resolution COSMO NWP model. Atmos. Res. 2014, 137, 100–111. [Google Scholar] [CrossRef]
- Ge, J.; Zhu, Z.; Zheng, C.; Xie, H.; Zhou, T.; Huang, J.; Fu, Q. An improved hydrometeor detection method for millimeter-wavelength cloud radar. Atmos. Chem. Phys. 2017, 17, 9035–9047. [Google Scholar] [CrossRef] [Green Version]
- BLIDS, Der Blitz Informationsdienst Von Siemens. Available online: https://new.siemens.com/global/de/produkte/services/blids.html (accessed on 10 March 2020).
- Poelman, D.R.; Schulz, W.; Vergeiner, C. Performance Characteristics of Distinct Lightning Detection Networks Covering Belgium. J. Atmos. Ocean. Technol. 2013, 30, 942–951. [Google Scholar] [CrossRef]
- Sokol, Z.; Mejsnar, J.; Pop, L.; Bližňák, V. Probabilistic precipitation nowcasting based on an extrapolation of radar reflectivity and an ensemble approach. Atmos. Res. 2017, 194, 245–257. [Google Scholar] [CrossRef]
- Mejsnar, J.; Sokol, Z.; Minářová, J. Limits of precipitation nowcasting by extrapolation of radar reflectivity for warm season in Central Europe. Atmos. Res. 2018, 213, 288–301. [Google Scholar] [CrossRef]
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: Cambridge, UK, 2003; ISBN 978-0-521-58327-5. [Google Scholar]
- Myagkov, A.; Seifert, P.; Wandinger, U.; Bauer-Pfundstein, M.; Matrosov, S.Y. Effects of Antenna Patterns on Cloud Radar Polarimetric Measurements. J. Atmos. Ocean. Technol. 2015, 32, 1813–1828. [Google Scholar] [CrossRef]
- Kollias, P.; Albrecht, B.A.; Marks, F.D. Cloud radar observations of vertical drafts and microphysics in convective rain. J. Geophys. Res. Atmos. 2003, 108, 108. [Google Scholar] [CrossRef]
- Lhermitte, R.M. Observation of rain at vertical incidence with a 94 GHz Doppler radar: An insight on Mie scattering. Geophys. Res. Lett. 1988, 15, 1125–1128. [Google Scholar] [CrossRef]
- Rakov, V.A. Fundamentals of Lightning; Cambridge University Press: Cambridge, UK, 2016; ISBN 978-1-107-07223-7. [Google Scholar]
- Minářová, J.; Sokol, Z.; Pešice, P. First comparison of measurements of Ka-band cloud radar with lightning in Central Europe. In Proceedings of the 2019 11th Asia-Pacific International Conference on Lightning (APL), Hong Kong, China, 12–14 June 2019; pp. 1–6. [Google Scholar]
Technical Parameter | Cloud Radar MIRA 35c |
---|---|
Radar system | Doppler polarimetric |
Radar band | Ka-band |
Radar core | Magnetron type |
Antenna type | Cassegrain |
Transmitter frequency | 35.12 GHz +/−0.1 GHz |
Peak power | 2.5 kW |
Antenna diameter | 1 m |
Antenna gain | 48.5 dB |
Antenna beam width | 0.6° |
Pulse repetition frequency | 2.5–10 kHz |
Pulse width | min. 0.1 μs |
max. 0.4 μs | |
Detection unambiguous velocity range (± VNyquist) | ±10.65 m/s |
Original measurements | Doppler spectra |
Hydrometeor Specie | Terminal Velocity Range |
---|---|
Cloud water (C) | 0.0001–0.15433 m/s |
Rain (R) | 0.15433–6.3384 m/s |
Ice & Snow (IS) | 0.0290–1.3133 m/s |
Graupel (G) | 1.3133–7.7747 m/s |
Hail (H) | 7.7747–10.0253 m/s |
Thunderstorms in 2018 | Thunderstorms in 2019 |
---|---|
2018-06-01 | 2019-05-20 |
2018-06-10 | 2019-05-25 |
2018-06-11 | 2019-06-06 |
2018-06-27 | 2019-06-10s |
2018-06-28 | 2019-06-12 |
2018-07-05 | 2019-06-20 |
2018-07-21 | 2019-07-21 |
2018-07-28 | 2019-07-29 |
2018-08-02 | 2019-07-31 |
2018-08-03 | 2019-08-02 |
2018-08-04 | 2019-08-03 |
2018-08-08 | 2019-08-04 |
2018-08-13 | 2019-08-7 |
2018-08-17 | 2019-08-11 |
2018-08-24 | 2019-08-12 |
2018-09-21 | 2019-08-27 |
2019-08-29 | |
2019-09-01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokol, Z.; Minářová, J.; Fišer, O. Hydrometeor Distribution and Linear Depolarization Ratio in Thunderstorms. Remote Sens. 2020, 12, 2144. https://doi.org/10.3390/rs12132144
Sokol Z, Minářová J, Fišer O. Hydrometeor Distribution and Linear Depolarization Ratio in Thunderstorms. Remote Sensing. 2020; 12(13):2144. https://doi.org/10.3390/rs12132144
Chicago/Turabian StyleSokol, Zbyněk, Jana Minářová, and Ondřej Fišer. 2020. "Hydrometeor Distribution and Linear Depolarization Ratio in Thunderstorms" Remote Sensing 12, no. 13: 2144. https://doi.org/10.3390/rs12132144
APA StyleSokol, Z., Minářová, J., & Fišer, O. (2020). Hydrometeor Distribution and Linear Depolarization Ratio in Thunderstorms. Remote Sensing, 12(13), 2144. https://doi.org/10.3390/rs12132144