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1. Fusion of Daily Aqua and Terra AOD  

The MODIS Aqua and Terra sensors usually provide different AOD images corresponding 
to their different overpass time. Due to different overpass time and meteorology (e.g. cloud 
coverage), these images usually have different missing patterns in space. It is a common 
practice to average Aqua and Terra AOD snapshots at two local time points (usually 10:30 am 
for Terra and 1:30 pm for Aqua) to get daily AOD averages. Sometimes only one of Aqua or 
Terra AOD is available and the other is missing [only one of Aqua or Terra AOD available at a 
spatial location/grid cell]. To better calculate daily averages and take full advantage of all AOD, 
Hu et al. (Hu et al., 2014) and Xiao et al. (Xiao et al., 2017) construct linear regression to associate 
Aqua AOD with Terra AOD. When one (Aqua or Terra AOD) is missing but the other is 
available, linear regression can be used to predict for the missing one.  

For estimation of missing Aqua AOD (dependent variable), Terra AOD is the sole 
explanatory variable; for estimation of missing Terra AOD (dependent variable), Aqua AOD is 
the sole explanatory variable. Thus, using the data of both Aqua and Terra AOD available as 
the training samples, two regression models need to be trained to make prediction for the other 
missing AOD.  

GAM is a non-linear regression model that had better performance than linear regression 
in estimation of Aqua or Terra AOD, as shown in sensitivity analysis. Thus, it was used in this 
paper to estimate the missing AOD. Then, the average over available or estimated AOD can be 
obtained to increase the size and spatial coverage of the training samples.  

2. Covariates 

2.1. Meteorological Measurement 

Meteorological data came from daily ground observation values in China Mainland 
(Version 3.0) from the China Meteorological Data Service (http://data.cma.cn). The 2015 daily 
meteorological data [including daily air temperature (ºC), air pressure (hPa), relative humidity 
(%) and wind speed (m/s)] were collected from 824 national baseline meteorological stations in 
China, among which 27 were located in the Jing-Jin-Ji region.   

2.2. Reanalysis Data 

The reanalysis data provide reliable estimates of surface meteorological factors (e.g., air 
temperature, air pressure, relative humidity, wind speed and PBLH) or AOD at a regional scale 
(a coarse spatial resolution) (Parker, 2016). The reanalysis data of meteorological factors were 
gathered from the newest Goddard Earth Observing System-Forward Processing (GEOS-FP) 
dataset that was based on the Data Assimilation System (DAS) 
(ftp://rain.ucis.dal.ca/ctm/GEOS_0.25x0.3125_CH.d/GEOS_FP). Reanalysis data of MERRA2 
AOD (as regional AOD) and PBLH were collected for 2015 
(https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2). The dataset covers all of mainland China at 
a spatial resolution of 0.25º (latitude) × 0.3125º (longitude) and a temporal resolution of 3 h. 
Daily-level averages were obtained by averaging over 3 h reanalysis data.  

2.3. Fusion of Meteorological Data 

A GAM and autoencoder-based deep residual network were developed to fuse ground 
meteorological measurements and reanalysis data into high-resolution grid surfaces of the 
meteorological parameters, including air temperature, air pressure, relative humidity and 
wind speed. The results showed high CV R2 (0.92 for air temperature and pressure; 0.94 for air 
pressure, 0.86 for relative humidity and 0.79 for wind speed). Ground measurement data were 
employed to obtain the fine local variability and reanalysis data at a regional scale to adjust the 
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final prediction. The prediction surfaces of meteorological parameters matched the high spatial 
(1km) and temporal (daily) resolution needed for MAIAC AOD imputation and PM2.5 
estimation and were used as the inputs to both models. For details about fusion of 
meteorological data, please refer to Li (2019) and Fang and Li (2019).   

2.4. Coordinates and Elevation 

The coordinates (latitude and longitude) and their derivatives (squares and products) 
were leveraged to capture complex spatial variation. Because the proposed models cannot 
directly embed spatial autocorrelation at the pixel level, they were used as a proxy for spatial 
autocorrelation.   

The elevation data of 500-m spatial resolution were gathered from the Shuttle Radar 
Topology Mission (SRTM, https://www2.jpl.nasa.gov/srtm/), which was published in 2003.  

2.5. Temporal Index 

For the MAIAC AOD, the three continuous daily data of available MAIAC AOD were 
combined to train the models to predict the target (middle) day’s AOD. Given a large sample 
size, the daily level models were trained using the combinational data from the samples of 
three continuous days. The temporal index (-1, 0, 1) was used to indicate different day indices 
for the samples.  

For PM2.5, due to its small sample size, a single base model was constructed using the 
Julian day as the temporal index to capture the temporal variation.  

2.6. Match of the Measurement and Covariate Data 

The measurement samples and the covariate data were matched by their corresponding 
spatial locations and measurement time (for spatial covariates such as elevation, just spatial 
locations were used for a match).    

3. Autoencoder-Based Residual Network 

This section provides technical details for the base model of the autoencoder-based 
residual network proposed in the main manuscript.  

3.1. Autoencoder 

As a special type of neural network, Autoencoder is designed to learn an efficient data 
compression or latent representation coding by the middle layer (Tschannen et al., 2018; Ya, 
2019). In a typical auencoder, assuming a d-dimension input and output, x, weight matrix, W, 
bias vector, b, the set θ of parameters, the layer index, L, and the activation function f, the 
mapping formula is given as follow: 

 (1) 

 (2) 

The optimal solution of the parameters, θw,b can be solved by minimizing the loss function 
between x and its output estimates, 𝐱′:  

 (3) 

3.2. Residual Connections and Backpropagation 

Assume the shallow encoding layer, d, the latent coding layer, C, and its corresponding 
deep decoding layer, D. xd and yd denote the input and output of the encoding layer, d, 
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respectively, and xD and yD denote the input and output of the decoding layer, D, respectively. 
With the addition of residual identity mapping, the output of the deep decoding layer, D, is:  

yD=xd+f(xD,WD) (4) 

xD+1=f(yD) (5) 

Given that D is the corresponding deeper layer for d, (4) can be rewritten as follows: 

yD=xd+f(…f(xd,Wd)…) (6) 

Based on automatic differentiation (Baydin et al., 2018) and Equation (6), the derivative of 
the loss function, L, for input of the shallow input, xd, can be:  

 (7) 

where fD(yD) and fd(yd) denote the activation functions for yD and yd, respectively. 
According to Equation (7), a residual connection makes one constant term and the regular 

terms available in the derivative of the comprehensive loss function in terms of the 
corresponding shallow layer’s parameters. If an appropriate activation function such as ReLU 

is used to maintain  as linear or simple in Eq. (7), the error information of the 
deep layer [ ] can be directly back-propagated to the shallow layer, xd, without 
affecting any weight layers, as has been demonstrated in the application of CNN (He et al., 
2016a, b). In the proposed framework (Figure 1a), the residual connections are mapped in a 
nested way as shortcuts from multiple encoding layers to the corresponding decoding layers, 
which efficiently improves the back-propagations of the errors from the deep decoding layers 
to the shallow encoding layers in a parallel way. Thus, the introduction of residual connections 
can effectively solve the potential issues of saturation of gradients and degradation of accuracy 
in the regular neural network, as demonstrated in the fusion of the meteorological parameters 
(Fang and Li, 2019; Li, 2019).  

3.3. ReLU Activation Function     

Rectifier linear unit (ReLU) was used mostly in the hidden layers due to its efficient 
gradient propagation. ReLU is defined as the positive part of its argument: 

f(x)=x+=max(0,x) (8) 

where x is the input to a neuron. ReLU simplifies the calculation of  (=0 or 1) in 
Equation (7), thus maintaining the efficient back-propagation of the error during training.  

4. Optimization of Hyperparamters 

The gradient descent was used as the optimizer to find the (sub-) optimal solution for the 
models in training. A grid search was used to find an optimal solution for the hyperparameters, 
including the mini-batch size, number of decoding layers, number of nodes for each layer, 
learning rate, momentum, and activation functions in base models, as well as for sampling a 
proportion of the features and number of base models in bagging. A grid search is an 
exhaustive search for all possible values of parameters with high temporal complexity (Claesen 
and Moor, 2015). For two hyperparameters (i.e., a mini-batch size, a number of base models) 
that may have a local optimal value, the strategy of a binary search (Cormen et al., 2009) was 
used to decrease the temporal complexity from O(n) to O(log(n)) (n: number of options). To 
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ensure fairness of comparison, similar methods were used to find the optimal hyperparameters 
for XGBoost, a GAM and a regular neural network.  

Specifically for this study, as an advanced method, the Adam optimization (Kingma and 
Ba, 2014) was used in model training. This method can adaptively update learning rate and the 
weights iteratively during learning and can achieve a better effect than classical stochastic 
gradient descent. The default configure of parameters (learning rate: 0.001, beta1: 0.9, beta2: 
0.999) was used. The method of reducing learning rate when a metric has stopped improving 
was also used (patience: 20, minimum learning rate: 0.0001). The early stopping was also used 
to prevent overfitting (patience: 50). An optimal mini batch size is 512 for AOD and 1024 for 
PM2.5. For this study, 100 base models sufficiently achieved the expected accuracy, as reported 
in the results.      

5. XGBoost  

As a scalable end-to-end tree boosting learning system, XGBoost 
(https://xgboost.readthedocs.io) is widely used to achieve state-of-the-art results in many 
domains (Chen and Guestrin, 2016). XGBoost is a sparsity-aware algorithm, and a cache-aware 
block structure is used for efficient tree learning. In this algorithm, the greedy heuristic 
algorithm or approximate algorithms can be used to construct the optimal trees according to 
the split score, i.e., the loss reduction after the split, based on the optimal weights and losses. 
For details, please refer to (Chen and Guestrin, 2016). In this paper, as a state-of-the-art machine 
learning method, XGBoost was tested for spatiotemporal estimation of PM2.5 and compared 
with the proposed approach.    

6. Processing of Extreme Values  

For practical predictions, several trained base models may generate few extreme values 
beyond a normal range if the covariates have values beyond those of the training samples. 
Thus, for the MAIAC AOD, the valid range [0, 4] was used to constrain an individual base 
model’s output; for PM2.5, the outer fences (Iglewicz and Hoaglin, 1993) (defined as Q3+3×IQR, 
where Q3 is the third quartile and IQR is the interquartile range) were extracted from the daily 
training samples. For the valid daily PM2.5 estimate, the lower bound was zero, and the upper 
bound was the maximum value among the outer fence and the maximum daily measured PM2.5 
concentration. If a predicted PM2.5 was beyond the lower or upper bound, the bound would be 
used as an alternative to the predicted value.  
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Table S1. Descriptive Statistics for the covariates and target variables (2015). 

Group Variable Correlation with MAIAC 
AOD 

Correction with 
PM2.5 

Annual  Summer  Winter  
Mean  Sd.a  Mean  Sd.  Mean  Sd.  

Target variable  MAIAC AOD 1 0.39 0.38 0.17 0.55 0.23 0.43 0.19 
PM2.5 (μg/m3)  0.39 1 80.2 70.46 57.16 34.26 121.91 97.59 

Converted (ground) 
AOD 

MAIAC AOD by PBLH and 
RHb 0.59 0.54 0.0014 0.0016 0.0009 0.0007 0.002 0.002 

Meteorology 

Air temperature ((°C)) 0.29 -0.33 12.56 9.06 23.18 1.94 0.37 2.02 
Wind speed (m/s) -0.23 -0.21 19.28 7.59 17.56 5 18.43 8.24 
Air pressure (hpa) 0.42 0.28 1001.97 25.44 994.93 24.92 1008.5 24.81 

Relative humidity (%) 0.39 0.19 59 17 66 12 54 16 

Reanalysis data PBLH  0.09 -0.25 844.95 495.13 1242.2 292.92 359.85 210.06 
MERRA2 AOD 0.11 -0.08 0.12 0.13 0.18 0.21 0.08 0.04 

Coordinate  Latitude (°) -0.44 -0.16 39.32 1.13 39.31 1.13 39.31 1.13 
Longitude (°) -0.43 -0.07 116.23 1.1 116.23 1.11 116.23 1.11 

Elevation  Elevation (meter) -0.43 -0.21 123.86 213.22 122.21 212.83 122.21 212.83 
Note: a. Sd. Standard deviation. b. MAIAC AOD by PBLH and RH: MAIAC AOD corrected by PBLH and relative humidity. 

Table S2. The performance of the re-trained models for MAIAC AOD . 

Date  Training R2 Training RMSE Test R2 Test RMSE 
04/20/2015 0.97 0.071 0.97 0.071 
10/20/2015 0.97 0.13 0.96 0.14 
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Table S3. Pearson’s correlation between uncertainty (standard deviation) of grid surfaces of 
PM2.5 and the covariates. 

Covariate  Mean correlation for a year 
MAIAC AOD   0.46 

Corrected MAIAC AOD 0.44 
Air temperature  0.27 

Wind speed  -0.10 
Air pressure  0.20 

Relative humidity  0.17 
PBLH 0.03 

MERRA2 AOD -0.005 
Latitude  -0.07 

Longitude -0.38 
Elevation -0.20 

  
(a) Percentage of PM2.5 sources in 2014 
(BMEPB, 2014) 

(b) Percentage of PM2.5 sources in 
2018(BMEPB, 2018) 

Figure S1. Distribution of 2014 vs. 2015 PM2.5 emission sources in Beijing. 



 
Spatiotemporal Estimation of Satellite AOD and PM2.5: Supplementary Data 

8 
 

 
Figure S2. Study region (covering most of the Jing-Jin-Ji metropolitan area) with distributions 
and 2015 annual averages of PM2.5 ground monitoring stations, AOD sites of AERONET, and 
monitoring stations of the US embassy in Beijing for independent test.
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(a) AOD mean for summer of 2015  (b) Percentage of available MAIAC AOD for summer of 2015 
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(c) AOD mean for winter of 2015 (d) Percentage of available MAIAC AOD for winter of 2015 

 
Figure S3. Statistics for summer (a and b) and winter (c and d) of 2015.
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(a) Loss curve for 04/20/2015 (spring) (b) Loss curve for 07/20/2015 (summer) 

(c) Loss curve for 10/20/2015 (autumn) (d) Loss curve for 12/01/2015 (winter) 

Figure S4. Learning curves of test loss of four typical seasonal days of 2015 for MAIAC AOD 
imputation. 

(a) Spring day (04/20/2015) (b) Summer day (07/20/2015) 
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(c) Autumn day (04/20/2015) (d) Winter day (07/20/2015) 

Figure S5. Plots of observed vs. imputed daily MAIAC AOD in the test for four typical seasonal 
days in 2015. 

(a) Spring day (04/20/2015) (b) Summer day (07/20/2015) 

 
(c) Autumn day (10/20/2015) (d) Winter day (12/01/2015) 

Figure S6. Plots of observed vs. residual MAIAC AOD for four typical seasonal days in 2015. 

(a) (b) 



 
Spatiotemporal Estimation of Satellite AOD and PM2.5: Supplementary Data 

13 
 

  
(c) (d) 

Figure S7. Original (a and c) and imputed MAIAC AOD (b and d) of the study region for two 
seasonal days (a and b: summer; c and d: winter) in 2015. 

 
Figure S8. Learning curves of validation loss for PM2.5 estimation. 
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(a) (b) 

(c) (d) 

Figure S9. Grid surfaces of predicted PM2.5 (μg/m3) (a and c) and its standard deviation (b and 
d) for two seasonal days (a and b: summer; c and d: winter) in 2015. 
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Figure S10. Images for low (a) and high (b) bounds of the 95% confidence interval of predicted PM2.5 (winter day of /12/01/2015). 
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(a) (b) 
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(c) (d) 
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Figure S11. Grid surfaces of predicted PM2.5 (μg/m3) by XGBoost for four seasonal days (a: spring; b: summer; c: autumn; d: winter) in 2015 (representation with spatial 
discontinuity).  
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(a) MAIAC AOD (b) PM2.5 

Figure S12. Scatterplots between observed vs. predicted values in the independent tests of (a) MAIAC 
AOD using two AERONET sites and (b) PM2.5 using the US embassy monitoring station. 


