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Abstract: Timely and accurate regional rice paddy monitoring plays a significant role in maintaining
the sustainable rice production, food security, and agricultural development. This study proposes an
operational automatic approach to mapping rice paddies using time-series SAR data. The proposed
method integrates time-series Sentinel-1 data, auxiliary data of global surface water, and rice
phenological characteristics with Google Earth Engine cloud computing platform. A total of
402 Sentinel-1 scenes from 2017 were used for mapping rice paddies extent in the Mun River
basin. First, the calculated minimum and maximum values of the backscattering coefficient of
permanent water (a classification type within global surface water data) in a year was used as the
threshold range for extracting the potential extent. Then, three rice phenological characteristics
were extracted based on the time-series curve of each pixel, namely the date of the beginning of the
season (DBS), date of maximum backscatter during the peak growing season (DMP), and length of
the vegetative stage (LVS). After setting a threshold for each phenological parameter, the final rice
paddy extent was identified. Rice paddy map produced in this study was highly accurate and agreed
well with field plot data and rice map products from the International Rice Research Institute (IRRI).
The results had a total accuracy of 89.52% and an F1 score of 0.91, showing that the spatiotemporal
pattern of extracted rice cover was consistent with ground truth samples in the Mun River basin.
This approach could be expanded to other rice-growing regions at the national scale, or even the
entire Indochina Peninsula and Southeast Asia.

Keywords: rice paddy; time-series; Sentinel-1; Google Earth Engine; permanent water;
phenological characteristics

1. Introduction

Fields of paddy rice, one of the three leading grain crops throughout the world, account for
approximately 12% of global cropland area and feed more than half of the world’s population [1].
The fields, or paddies, are the important reservoirs of water and methane (the second most abundant
greenhouse gas) emissions because of the waterlogged environment [2,3], which has implications for
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water management and climate change [4,5]. Therefore, efficient and timely collection of accurate
information on the geographic location, distribution, and extent of rice paddies is important for
sustainable rice production, water and food security, greenhouse gas emissions, environmental
sustainability, effective decision making, and policy management [2,6–13].

Despite its significance for water and food security and global change research, the extent of rice
paddies worldwide still remains uncertain [14,15]. Those existing maps covering the continental or
global scale have been derived primarily from regional or national statistics, which cannot reflect
the extent or distribution of rice paddies across large areas [16,17]. Remote sensing has gradually
become the core alternative for rice paddy mapping over large areas due to its low cost, scalability,
unbiased estimates, high temporal resolution, and spatial continuity [18,19].

Remotely sensed rice paddy mapping has been performed since the launch of the first-generation
Landsat satellite [9], and subsequent research has grown more and more. Early traditional unsupervised
and supervised image classification methods have been applied using single and multitemporal optical
images such as Landsat, SPOT, or other higher spatial resolution satellite images [20–25] to fulfill the
needs of rice paddy mapping. With the development of classification methods, new classification
algorithms such as neural networks (NNs), support vector machines (SVMs), random forest (RF),
and deep learning have been gradually introduced into rice paddy mapping [3,26,27]. However,
these methods commonly require local prior knowledge to map rice paddies at relatively fine scales,
which is not always directly exportable to other regions at larger scales.

In recent years, time-series vegetation indices were gradually increasingly used for extracting the
extent of rice paddies at regional or larger scales [9,13,14,20,22,24,28–37]. Common indices include
the normalized difference vegetation index (NDVI), normalized difference water index (NDWI),
land surface water index (LSWI), and the enhanced vegetation index (EVI). The indices are often used
with multispectral data with medium-low spatial resolution, e.g., SPOT vegetation (VGT), or moderate
resolution imaging spectroradiometer (MODIS). Due to the large number of mixed pixels, however,
additional high-resolution imagery is needed for estimating the fractional coverage of rice paddies in
each mixed pixel, and the overall classification accuracies are typically not high [3,33,38–40].

Some recent research has also used time-series remote sensed vegetation index products from
Landsat or Chinese HJ-1 satellites with a high spatial resolution of 30 m [6,10,18,30,41,42]. Although most
of these studies provide effective performance for revealing the spatial heterogeneity of rice paddies,
they also have limitation. Since most of the available imagery with a spatial resolution of 30–1000 m, it is
difficult to identify the smaller rice paddy areas with a spatial resolution of less than 30 m, which may
be the dominant planting pattern and size in agriculturally developing countries [43]. The Sentinel-2
A/B optical satellites launched by European Space Agency (ESA) in 2015 and 2017, respectively,
can provide the imagery with a higher resolution of 10–20 m, which facilitates the identification of very
small rice paddies. It may be difficult to separate rice from other crops or vegetation types in humid
tropical and subtropical areas. This is because of substantial unfavorable cloudy or rainy weather,
which inevitably leads to unusable imagery in the series, constraining the application of optical time
series images [19,44,45]. Thus, mapping rice paddies with a higher spatial resolution, short revisit time,
wide coverage area, and all-weather capabilities is urgently needed.

Contrary to the optical satellites’ sensors, Synthetic aperture radar (SAR) is free from the influence
of weather conditions. Moreover, SAR data has the special backscattering characteristics to the
inundated vegetation, which can distinguish rice paddies from other crops or vegetation types, so it can
be used to identify the rice fields [40,46,47]. Thus, the availability of SAR data in multiple frequencies
and polarizations with frequent observations offers an important alternative for rice mapping. However,
only a few SAR datasets (ERS-1/2, JERS-1, RADARSAT-1/2, ENVISAT advanced synthetic aperture
radar (ASAR), TerraSAR-X, TanDEM-X, and ALOS Phased Arraytype L-band SAR (PALSAR)) could
be obtained in the past decades for capturing dynamic water signals for rice mapping. Furthermore,
the cost of using radar datasets is too high, which leads to the limitation of large-scale practical
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applications [19,23,40,45,46,48–51]. With the appearance of free data from Sentinel-1, it has become
easier to use SAR datasets for the research of rice paddies identification [19,41,44,52–54].

Similar to optical remote sensing classification, there are two main strategies for rice paddy
mapping based on SAR data. The first strategies in classification algorithms for rice detection
were exploitation of backscatter properties, the polarization ratio, or polarimetric decompositions
(e.g., volume scattering, double-bounce scattering, anisotropy (A), entropy (H), alpha or beta angle
(a or b), amplitudes, and relative phase) [40,46,49,50,55,56]. However, these methods commonly
require local prior knowledge of rice paddies at local scales. The second strategy mainly relies on a
time-series analysis of SAR backscatter to capture the dynamic water signals and gradually increasingly
backscattering characteristics during the rice growth process [45,48,50,53,57,58]. Although these
rice paddies identification methods have been implemented using SAR data with the medium and
high spatial resolution of less than 50 m, and have been proven effective at small regional scales [40],
the exorbitant requirements of SAR data storage and computing should be considered when developing
rice maps, especially for higher spatial resolutions of around 10 m and more frequent mapping over
larger areas (regional to continental scales). Fortunately, with free access to Sentinel-1 SAR imagery and
free sharing of Google Earth Engine remote sensing cloud computing platform, provides a convenient
means for us to develop a rice paddy mapping method with a high spatial resolution of 10 m.

The innovation presented in this paper has two components. (1) An operational approach was
developed for identifying rice paddy extent using high-resolution, dual-polarization SAR images of
Sentinel-1, based on the outstanding temporal behavior of water and rice backscattering. (2) Time-series
Sentinel-1 SAR datasets were used to map the extent of rice paddy in the Mun River basin in Thailand
on the Indochina Peninsula. These methods and the rice map could be used to aid in local sustainable
rice production, food security, water resource utilization, and policy making.

2. Materials and Methods

2.1. Study Area

Mun River Basin, located in Northeastern Thailand, is an important tributary of the Mekong River
and the largest river basin in the country. The total area is approximately 71,000 km2, and covering
10 provinces (Figure 1). The Mun river begins in the Sankamphaeng Range, flows through the Korat
Plateau, and finally enters into the Mekong River at the Khong Chiam in Ubon Ratchathani. The terrain
of this basin is higher in the southwest with plateaus and mountains and lower in the eastern plains.

The study area is located in the tropics, significantly affected by the Asian monsoon climate,
and has the characteristics of distinct rainy/wet and dry seasons. In the rainy/wet season, i.e., mid-May
to mid-October, the southwest monsoon brings abundant precipitation to the study area, with the
ranging from 1300 to 1500 mm, and the maximum precipitation occurs in August or September.
While in the dry season, i.e., mid-October to mid-May of the following year, the northeast monsoon
brings a dry climate with little precipitation. The annual average temperature is higher than 18 ◦C,
with the highest of 40–42 ◦C in April and the lowest in December or January [59].

The warm climate, concentrated abundant precipitation, and convenient river water resources
provide excellent conditions for rice cultivation in the Meng River Basin. There are approximately
75% of the agricultural land is devoted to the paddy fields in our study area. Farmers in this area
generally rely on the precipitation as the main water source to plant single-season rice with the
cultivation mode of direct-seeding during the rainy/wet season, and the main varieties of rice are the
photoperiod-sensitive varieties, such as RD15, RD6, and KDML105, whose phenological periods vary
from 150 to 180 days [45]. A small number of farmers near the Mun River or its tributaries rely on their
convenient irrigation conditions to replant rice with direct-seeding during the dry season, and the main
varieties of paddy rice are the non-photoperiod-sensitive varieties, such as RD series (RD29, RD31,
RD41, etc.), PTT1, or SPR1, whose phenological periods vary from approximately 95 to 120 days [45].
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Figure 1. Location of the study area in the Mun River basin in Thailand.

2.2. Data Preparation

2.2.1. Field Plot Data

The main purpose of field-plot data is to identify and validate classified rice paddies. The field-plots
are commonly selected as the area with uniform and homogeneous, which can be easy accessed by the
road. Representative samples should be able to represent one of land use/cover types, so as to ensure
that the geographic location of each class of pixel is accurate [14]. The spatial resolution of time-series
Sentinel-1 data and the final rice map was 10 m. Thus, the representative field plot data is based on our
field observations with homogeneous land cover in a minimum radius of 50 m [45] for each plot in
this study.

Sampled field-plot data was gathered from two field trips carried out at 542 locations during
24 February to 10 March (dry season) and 698 locations during 15–24 August (rainy season) in 2017.
The 1240 locations in total were all recorded with the geographic coordinates from a handheld Trimble
GeoXT3000 GPS receiver along with the observed cropping pattern or land cover categories and digital
photographs (Figure 2). Furthermore, interviews with farmers were conducted to collect relevant
information about crop planting, including the crop varieties, sowing density, fertilization amount,
spraying conditions, crop growth phenology period (such as seeding, jointing, heading, booting,
and harvesting), and the rice ecosystem (irrigated or rainfed). Ultimately, all observed field-plots were
used as the validation points for verifying the accuracy of the final classification results in this study.
In the end, 722 observation samples of rice paddies were obtained, and the remaining 518 sample plots
were unified as the other land use/land cover types.
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Figure 2. Location of field plot data.

2.2.2. Time-Series Sentinel-1 SAR Data

Current Sentinel-1 is a satellite constellation composed of Sentinel-1A and Sentinel-1B. These two
satellites have the same orbital plane, and carry the same dual-polarization synthetic aperture radar
(SAR) sensors. The working band and the frequency of these SAR are the C-band, and 5.4 GHz,
respectively [60]. The Sentinel-1 satellites are the important part of the Global Monitoring for
Environment and Security program (GMES, a set of earth observation missions by ESA). Two additional
satellites of Sentinel-1C and Sentinel-1D will be launched to provide better all-weather, day-and-night,
and continuous Earth observation services [53,61]. With a high spatial resolution (10 m) and short
revisit period (12 days for one satellite, and 6 days for two satellites), Sentinel-1 is an attractive option
for frequent, effective mapping of rice paddies at a large regional level.

The Sentinel-1 satellite products covering the Mun River watershed can be obtained from the
Copernicus Open Access Hub [61]. The Sentinel-1 Level-1 ground range detected (GRD) products
could also be used via the Google Earth Engine platform [62] after the scenes had been preprocessed as
a backscatter coefficient in decibels (dB) using the Sentinel-1 Toolbox in this study. The operations
included: (1) applying the precise orbit ephemerides file to update the orbit metadata to reduce the
impact of satellite orbit errors on imagery; (2) a SAR border noise removal function to remove the
invalid values on imagery edges and the low intensity noise; (3) a thermal noise removal operator to
reduce additive thermal noise effects; (4) a radiometric calibration step to convert the digital signal
to radiometrically calibrated backscatter; and (5) orthorectification to remove the effects of scenes
perspective and terrain, and get the backscatter coefficient of each pixel by using the NASA shuttle
radar topography mission (SRTM) global digital elevation model (DEM) products [54,63]. To further
reduce the short-term influence of speckle, high frequency signals, and other noise inherent in the
Sentinel-1 data, and to further aid the extraction of the key phenological characteristics of paddy rice,
the obtained time-series backscattering imagery were filtered using a multitemporal speckle filter
named a Gaussian filter [52,64].

The Sentinel-1 data ultimately used in the study had a high spatial resolution of 10 m for the study
area with dual-polarization of VV (vertical transmit and vertical receive) and VH (vertical transmit
and horizontal receive) in the mode of “Interferometric Wide Swath (IW)”. The VV polarized and VH
polarized data were selected for potential water information and rice mapping, respectively, because of
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their accuracy in detecting water and rice paddies [52,53]. Finally, 402 available Sentinel-1 SAR images
were acquired over the study area in 2017. The coverage frequency of the acquired data is shown
in Figure 3. The high temporal resolution and wide range of dense data coverage of the Sentinel-1
mission increased and improved the mapping of rice paddies in our study.
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2.2.3. Auxiliary Data

The temporal distributions of surface water from 1984 to 2019 at 30 m resolution are available from
the datasets of the JRC Yearly Water Classification History v1.2 [65]. These datasets were generated
using more than 4.1 million Landsat satellite images (TM, ETM+, and OLI sensors’ images) between
15 March 1984 and 31 December 2019, in the Google Earth Engine. The overall producer’s accuracy
and the user’s accuracy are 98.8% and 99.8%, respectively [65]. Thus, these datasets (Figure 1) could be
used to calculate the backscattering threshold interval of surface water areas in our study.

The DEM data are available from the NASA SRTM V3 digital elevation products, derived from
the NASA Jet Propulsion Laboratory (JPL). The spatial resolution of these DEM products is 30 m.
Before sharing, this product was filled with the invalid pixels using the open products of GMTED2010,
ASTER GDEM2, and NED, to ensure the spatial continuity of the elevation [63]. Thus, this dataset
could be directly used to analyze or calculate slopes using Google Earth Engine.

The rice map for our study area in 2017 was acquired from the International Rice Research Institute
(IRRI), derived using MODIS multispectral data with the moderate spatial resolution of 250 m and
500 m, high temporal resolution, and large study area coverage [14,22]. A new algorithm of phenology-
and pixel-based paddy mapping (PPPM) was developed, then successfully applied to China and India,
and the MODIS-based rice paddy maps were obtained with a high accuracy [10,54]. This data was
used for intercomparison with our paddy extraction results.

2.3. Methods

Paddy rice has a unique physical feature in that it commonly grows on flooded soil, which was
maintained until the harvest season. Then the rice was harvested successfully with some equipment
operations in the dried condition. Thus, the temporal dynamics of this unique feature from flood
water through a rapid plant growth period to an existing full canopy can be recorded with a high
backscatter value difference, which make it easier to distinguish them from other land cover/land
use types with no surface water. Permanent water has a low backscatter value compared with forest,
grass, shrub, built-up land, and other crops. Thus, an approach integrates time-series SAR data,
auxiliary data of permanent water, and rice phenological characteristics to identify flooded rice paddies.
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First, the threshold interval of the backscattering coefficients for permanent water were determined
using the backscatter values of time-series Sentinel-1 SAR data and the global surface water data.
Second, the potential rice areas were extracted with a rule-based method using the above thresholds,
removing the areas that exceeded the thresholds of the elevation and slopes, and the permanent water
pixels. Third, the growth and phenological characteristics of potential rice paddies were extracted
based on backscatter time-series features. Fourth, the rice paddies were identified based on a decision
tree approach. Last, the accuracy assessment of our rice paddy map was verified using the field plot
data and reference rice map from IRRI. Figure 4 shows the diagram of the overall technical workflow.
The relevant algorithm codes for rice identification are written with JavaScript code, and are available
from the Supplementary Materials.
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Figure 4. Workflow of the method adopted for this study to extract rice paddies using the Google
Earth Engine.

2.3.1. Determination of the Backscattering Threshold of Permanent Water

Datasets of global surface water over 36 years (from 1984 to 2019) were used to calculate the
backscattering threshold interval of the water areas. These datasets classified the water into ten types:
four types of permanent water (permanent, new, lost, and ephemeral) and seasonal water (seasonal, new,
lost, and ephemeral), and two types of conversion between each other [65]. We selected the permanent
type (areas that were always water during the 36-year period, Figure 1) and the backscattering SAR
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images to analyze the value ranges of all water pixels. Then we could obtain the maximum and
minimum backscattering coefficients of the water pixels in each image (Equations (1) and (2)).

σo
max,n = Maximum

{
σo

1, σo
2, σo

3, . . . , σo
i

}
(1)

σo
min,n = Minimum

{
σo

1, σo
2, σo

3, . . . , σo
i

}
(2)

where i is the number of water pixels, and may be different in each image, and n is the number of each
image, which is between 1 and 402 in this study.

After obtaining the maximum and minimum values of water pixels in each image, we further
calculated the average of all the maximum and the average of minimum values (σo

max_ave and σo
min_ave)

of water pixels with all images (Equations (3) and (4)).

σo
max_ave = Average

{
σo

max,1, σo
max,2, σo

max,3, . . . , σo
max,n

}
(3)

σo
min_ave = Average

{
σo

min,1, σo
min,2, σo

min,3, . . . , σo
min,n

}
(4)

Then the final maximum and minimum results of σo
max and σo

min were calculated with
Equations (5) and (6).

σo
max = σo

maxave + StdDevmax (5)

σo
min = σo

min_ave − StdDevmin (6)

where StdDevmax and StdDevmin are the standard deviation (StdDev) of all maximum and minimum
values from the Sentinel-1 SAR data, respectively.

Finally, we used σo
max and σo

min as the main threshold interval of permanent water.

2.3.2. Extraction of Potential Rice Paddies

For the extraction of potential rice extent, our proposed method was to identify the Sentinel-1
images’ pixels that were within the maximum and minimum mean backscatter values of permanent
water. With this threshold, the areas with ephemeral potential water information throughout the year
were all extracted (including the permanent water areas).

Then the SRTM DEM products were used to remove the areas where paddy rice was impossible
to grow. Studies have shown that it is difficult for rice to grow at altitudes above 2500 m and slopes
greater than 2◦ [3,14,35]. Therefore, we used these above thresholds to remove the non-rice areas,
after which the permanent water was also removed, leaving potential rice paddies in the remaining
areas. The advantage of this step was that it could distinguish between flooded rice and forests, shrubs,
settlements, and infrastructure, which showed a different threshold interval and no backscattering
characteristic associated with surface water. However, classification errors occur in this process for
some other crops affected by precipitation, resulting in backscattering values just within the threshold.
Therefore, we still needed additional steps to extract other phenological characteristics to identify rice
paddies accurately.

2.3.3. Extraction of the Phenological Characteristics of Paddy Rice

Rice paddies in the subtropical climate of the Mun River are mainly rainfed and few are irrigated.
Monsoon rain is the only water source in the rainy season. Therefore, we extracted phenological
characteristics of paddy rice in the rainy season to determine if planted areas could represent the actual
rice planting situation the whole year.

Rice varieties in this study area range in duration from 95 to 180 days and commonly included
four main growth stages: nursery from sowing to seedling/transplanting stages (approximately from
0 to 45 days), vegetative growth period from tillering to panicle initiation (approximately from 45 to
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100 days), reproductive period from panicle initiation to flowering (around 35 days), and maturity
from flowering to mature grain (around 30 days) [45].

The main differences between paddy rice and other vegetation is the abundance of water in the
beginning of the vegetative stage, becoming greener during the peak growing season (panicle initiation
phase) [3]. The water information was first used to extract the potential rice paddies, described above
in Section 3.2, and then the other phenological characteristics were used to accurately identify the
extent of rice paddies.

Using the time-series Sentinel-1 SAR images, we obtained three phenological characteristics of
the date of the beginning of season (DBS), the date of maximum backscatter during the peak growing
season (DMP), and the length of the vegetative stage (LVS). The area that satisfies the above three
parameters was delineated as the rice paddy, and the remaining area was classed as the other land
use/land cover of non-rice type (Table 1, Figure 5).

Table 1. Three phenological characteristics of the rule-based paddy rice.

Parameters Abbreviation Definition and Explanation

date of the beginning of season DBS
Defined as the points reached the local

minimum backscattering value,
and gradually increased.

date of maximum backscatter
during the peak growing stage DMP Defined as the point after DBS reached

the local maximum backscattering value

length of the vegetative stage LVS Defined as the number of days from
DBS to DMP
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2.3.4. Identification of Rice Paddies

The initial extent of potential rice was extracted using the threshold intervals for the backscattering
values between σo

max and σo
min from permanent water bodies. There is no doubt that this potential

extent of rice paddies is significantly larger than the actual rice planting areas. Thus, based on the three
phenological characteristics of paddy rice above in Section 3.3, the decision tree method with a simple
threshold was used to identify the rice paddies. In order to better distinguish rice paddies from other
land use/land cover types, we selected a fixed threshold range of the vegetative growth stage based on
the time-series backscattering curve of VH cross-polarization: greater than or equal to 50 days, and less
than 120 days for LVS, which represents the shortest and largest possible vegetative stages of rice,
respectively. Based on the comprehensive evaluation method above, the final rice areas were obtained.
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2.3.5. Rice Accuracy Assessment

The accuracy of our method for rice extent mapping was assessed with two approaches:
(1) validation using the field plot samples and (2) comparison with the existing data of rice extent from
the IRRI (see Section 2.2.3).

In order to validate the accuracy of our identified rice results, the conventional standard accuracy
evaluation parameters were used in this study, i.e., overall accuracy (OA), user’s and producer’s
accuracies (UA and PA), and F1-score (Equation (7)).

F1−score =
UA× PA
UA + PA

× 2 (7)

3. Results

3.1. Temporal Backscattering Thresholds of Permanent Water

Among the 402 scenes used in this study, only 28,748 scenes had coverage by water bodies.
Therefore, the maximum and minimum values and the average of the permanent water pixels in all
images were statistically obtained (Figure 6). The distribution trends of the maximum and minimum
of VH and VV polarization were similar to a parallel distribution (Figure 6a). In general, the minimum
and maximum values of the VV polarization were greater than the VH polarization. Figure 6b shows
the average values of the maximum and minimum of VH and VV polarization. It can be seen that the
average maximum and minimum of VH were both less than the polarization of VV. The difference
between the maximum and minimum of VH was 33.68 dB, which was greater than the 30.85 dB of VV
polarization, while the first standard deviation of the maximum and minimum of VH (2.54 dB and
4.02 dB) were both smaller than the VV polarization (3.59 dB and 7.48 dB). The σo

max_VV and σo
min_VV

values were finally calculated with −15.05 dB and −55.29 dB, respectively, while σo
max_VH and σo

min_VH
were obtained with −7.69 dB and −49.60 dB. These results indicate that the range of the final maximum
and minimum of VV were larger than that of VH. At the same time, VV polarization also had a larger
standard deviation and volatility, and was sensitive to changes in water during the whole year, which is
beneficial to the extraction of water information. Therefore, σo

max_VV and σo
min_VV were selected as the

threshold range for the subsequent extraction of potential rice in this study.
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3.2. Phenological Characteristics of Paddy Rice

On the basis of extracting potential rice by using thresholds of σo
max_VV and σo

min_VV,
the corresponding three phenological characteristics were estimated for the time-series backscattering
curve of each potential rice pixel. It can be seen directly from the figure that DBS is mainly distributed
between 150 and 240 days (i.e., from the beginning of June to the end of August), which is the main
sowing period for rice (Figure 7a), while DMP is mainly distributed between 240 and 330 days (from the
end of August to the end of October), which is the main vegetative growth stage (Figure 7b). For the
length of the vegetative stage, LVS is concentrated between 60 and 120 days, which is within the set
thresholds between 50 and 120 days (Figure 7c). Therefore, this threshold range then could be directly
used for rice paddies identification in the subsequent studies.

3.3. Extent of Rice Paddies in the Mun River Basin

After obtaining the phenological characteristics, the rice paddies were extracted using the set
thresholds of LVS. The spatial extent of the paddies can be observed in the final time-series Sentinel-1
rice map in the Mun River basin (Figure 8a,c). The extracted rice cultivation area obtained using our
proposed rice identification method was 32,066.81 km2 in 2017, mostly concentrated in the central
and northern plateau areas. Rice paddies are also distributed in low-lying plain areas along the Mun
River and its tributaries, while the non-rice cover such as forest and dry land are mainly distributed in
the upland mountain areas in the south of Mun River basin. Among the ten changwats (provinces)
covered by the Mun River basin, the rice cultivation areas are mainly distributed in the changwats of
Nakhon Ratchasima, Ubon Ratchathani, Surin, Buri Ram, and Si Sa Ket, with areas of 7945.94 km2,
5141.29 km2, 4620.90 km2, 4499.79 km2, and 3887.34 km2, respectively.
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3.4. Accuracy Assessment

3.4.1. Comparison with Field Plot Data

To validate the classification accuracy of our proposed rice paddy mapping method, the classified
rice paddy results were first compared against the field plot data. The accuracy validation was
conducted on the basis of rice paddy and other land use/land cover types, where all non-rice paddy
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types were uniformly grouped into the other land use/land cover class. The classification accuracies
shown in Table 2 demonstrate that only 63 plots out of all 722 rice plots were misclassified as other
land use/land cover types, and 67 other land use/land cover plots were misclassified as rice paddy.
The confusion matrix shows that the identified rice paddies results using our proposed approach owned
a high accuracy with the UA, PA, OA, and F1 score of 90.77%, 91.27%, 89.52%, and 0.91, respectively.

Table 2. Rice classification accuracies of time-series Sentinel-1 data compared with field plot data.

Class Value Rice Paddy Other Land Use/Land Cover Total User’s Accuracy (%)

Rice paddy 659 67 726 90.77
Other land use/land cover 63 451 514 87.74

Total 722 518 1240 100
Producer’s accuracy (%) 91.27 87.07

Overall accuracy (%) 89.52

F1-score 0.91

3.4.2. Comparison with Rice Paddy Acquired from IRRI

After comparison with field plot data, the performance of the proposed rice classification method
was then assessed by comparing the classified rice paddy map to the rice paddy products from IRRI
derived using MODIS data. The IRRI rice products showed a consistent spatial pattern with our rice
map (Figure 8b,d), though the area of the IRRI rice products was 36,386.69 km2, which was much
higher than the identified rice area of 32,066.81 km2 in this study. The comparison results show that our
proposed approach can identify smaller rice paddies effectively with its high spatial resolution, and at
a higher accuracy, while the MODIS-based rice results overestimated the rice cover in the perimeter
areas of rice fields, with an overall accuracy of 74.76% (Table 3). Despite the various spatiotemporal
resolutions among the rice paddy data, the intercomparison verified the effectiveness of our method
with Sentinel-1 SAR data to obtain a rice paddy map.

Table 3. Rice classification accuracies of moderate resolution imaging spectroradiometer (MODIS) rice
products from IRRI compared with field plot data.

Class Value Rice Paddy Other Land Use/Land Cover Total User’s Accuracy (%)

Rice paddy 542 133 675 80.30
Other land use/land cover 180 385 565 68.14

Total 722 518 1240
Producer’s accuracy (%) 75.07 74.32

Overall accuracy (%) 74.76

F1-score (%) 0.78

4. Discussion

4.1. Comparison with Other Phenological-Based Studies

Since the launch of the first Earth resource satellite, various studies have been proposed to identify
rice cultivation using remote sensing data. So far, there have been dozens or even hundreds of
studies on the application of various satellite data sources [3,45,46,48,52,66], and various identification
algorithms [3,52,54].

Currently, the phenological-based studies mainly focus on the application of optical satellite
imagery for rice extraction, among that the MODIS data are used widely. The auxiliary rice products
in this study are extracted by IRRI based on the MODIS data [14,22]. Compared to the MODIS data
with 250 m, Sentinel-1 data has a much higher spatial resolution of 10 m, which greatly reduces the
impact of mixed pixels on rice extraction. Since the rice paddies area in our Mun River Basin is mainly
composed of large paddy fields and other smaller non-rice land types (pathways, irrigation canals,
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trees, and other vegetation patches). Therefore, most rice pixels may contain some small non-rice cover,
which may cause an overestimation of the rice-cultivation area. Moreover, this overestimation will be
more obvious at coarse resolutions of 250 m. Compared with the rice area acquired from IRRI using
MODIS data, our classified rice results greatly reduced the overestimation of rice caused by mixed
pixels and improved the accuracy of rice identification.

With the popularization of Landsat data, the Landsat based time series data with the
spatial resolution of 30 m and revisit cycle of 16 days has gradually been used to extract a rice
paddy [6,10,18,30,41,42]. Compared to the Landsat data, Sentinel-1 not only has a certain improvement
in spatial resolution, but also has a greater advantage in temporal resolution with the revisit cycle of
6/12 days. In addition, during the growing period of rice, there is frequently cloudy, rainy weather,
which seriously affects the usefulness of Landsat optical satellites, and severely may make it impossible
to construct a time series data set. In contrast, SAR has the capability of penetrating clouds and fog,
and is less affected by clouds and rain [15,52,54,67]. Thus, Sentinel-1 can provide sufficient images to
generate dense time-series imagery for rice identification in rainy study areas like the Mun River basin.
It also has a similar advantage compared to the Sentinel-2 time-series images.

In addition, there are also some phenological-based rice extraction studies based on time-series
SAR data [40,45,54,58,64,68–70]. However, the prerequisites of these research still need to obtain prior
knowledge of the study area, and relies on samples derived from the ground surveys or selected using
visual interpretation with a priori knowledge to construct a standard time-series curve of rice or find
the backscatter distribution interval of rice, which have been used as the standard or threshold value
for rice extraction [36,37,52,64,68,69]. Compared with these above approaches, this study proposes a
rice identification approach that need not rely on rice paddy sample plots. Our research relies on global
surface water data for extracting the time-series backscattering coefficient threshold, realizing the
substitution of prior knowledge. This approach is simple and effective. However, there are uncertainties
in extracting potential rice paddies on using the time-series backscattering threshold of permanent
water bodies. Affected by the sediment, water weeds, and water quality, the pixels of permanent
water may not be pure, which will cause a certain expansion of the water threshold, which affects
the extraction results. The impact of the annual maximum and minimum values of water pixels as
thresholds on the uncertainty of rice extraction will be discussed further in subsequent related studies.

4.2. Comparison with Non-Phenological Studies

Non-phenological methods usually include the traditional unsupervised, supervised classification,
and the increasingly popular algorithms of machine learning and deep learning. The traditional
unsupervised classification methods can directly identify the rice paddy based on the spectral features
without needing the field plot samples [3]. However, the manual classification discrimination must be
required after classification. In contrast, our proposed method does not require manual intervention
and can be performed automatically to identify a rice paddy.

For the supervised classification method, it is necessary to select a sufficient number of field
plot samples as training to achieve the purpose of high-precision classification [21,23,24]. With the
development of classification methods, some new algorithm based on machine learning were introduced
for identifying the rice paddy, but they still have the same requirements [3,22,25]. This requires a priori
knowledge of the study area, and also need a lot of manual field plot samples. Compared with the
above methods, our proposed method does not need the samples derived from the ground surveys
or selected using visual interpretation with a priori knowledge. We only rely on the global surface
water data for extracting the threshold of permanent water, realizing the substitution of plot samples.
Moreover, the relevant threshold is set automatically with little manual intervention.

For the hot research methods of deep learning [26,27], they need not require field samples, but it is
a very time-consuming and laborious task to construct a picture sample library for image identification.
In contrast, the method proposed by us does not require this process at all and can achieve accurate
extraction of rice automatically.
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4.3. Benefits from Using the Google Earth Engine Clouding Computing Platform

Since its emergence, Google Earth Engine has gradually become an important tool for Earth system
science, allowing researchers to take advantage of massive datasets, powerful computing capabilities,
a convenient and fast interface, and convenient data sharing and publishing [63,64,69]. Google Earth
Engine stores all available Sentinel-1 SAR images and provides a complete set of image preprocessing
functions that can quickly produce preprocessed Sentinel-1 SAR images, greatly reducing the time
and tedious steps required for image downloads, preprocessing, and storage. It also stores the dataset
of JRC Yearly Water Classification History v1.2 [65], which provided a complete auxiliary dataset for
the rice extraction method in our study. Furthermore, the Google Earth Engine platform provides a
high-performance parallel computing infrastructure to meet the powerful processing requirements of
massive data over large areas in multitemporal applications. Thus, the algorithm codes were written
with JavaScript in the Google Earth Engine online Code Editor, and all procedures in our rice paddy
classification could be operated on this platform. The time-series Sentinel-1 SAR images quickly
generated in Google Earth Engine can be combined with fine phenological characteristics to identify
rice information with periodic rules. This study proved that a large amount of 402 Sentinel-1 SAR
images could be used for rapid extraction of rice paddies in a large area.

4.4. Potential Extensions for Producing Large-Area Maps

This study proposes a rice identification approach that need not rely on rice paddy sample plots.
It could be used for accurate rice extraction relying only on the time-series Sentinel-1 SAR images
and a global surface water dataset. This approach is simple, effective, and also has the advantage for
automatic rice mapping. It can produce a large-area, high-precision rice map. Since this method does
not rely on the local prior knowledge, it also has the potential to expand to other national regions of
Indochina Peninsula, Southeast Asia, or the world.

Although this research has obtained a high accuracy of rice extraction (OA equal 89.52%), it is
still affected by other sources of errors, and the accuracy of our proposed approach needs to be
further improved. The proposed method relies heavily on rice paddies containing irrigation water;
when it encounters fields of upland rice, they may not be recognized. However, the planting area
of upland rice is very small, accounting for less than 0.3% of the whole of Thailand, which can be
ignored in this study. When there are land cover types similar to the temporal SAR signature of rice,
such as wetlands or other areas with water and vegetation cover, additional auxiliary information is
needed to further distinguish them [53,64,68]. In practical applications, wetlands and similar areas
are sparsely distributed in rice cultivation areas, so they could be ignored in our study. Different rice
planting systems (triple, double, and single cropping rice) have different time-series curves, while the
differences in plant morphology and growth period caused by different rice varieties also affect the
final backscattering of rice. These studies will be analyzed and discussed in detail in the future.

5. Conclusions

Although the research on SAR remote sensing mapping of rice paddies has lasted for more than
20 years, the development of operational automatic and rapid rice identification methods combined
with high spatial resolution and long time-series SAR data, is still the hotspot and frontier in current
rice mapping research. Therefore, this research proposes an automatic method to identify the regional
rice paddies using the long time-series Sentinel-1 SAR images. By integrating 402 Sentinel-1 scenes,
auxiliary data of permanent water bodies, and data on the general phenological characteristics of rice
with the Google Earth Engine geospatial data cloud computing platform, the proposed method can
rapidly identify the extent of rice paddies without needing local expert experience or field sample plots.

Comparison with the field plot data, it is concluded that our proposed approach is feasible for
mapping rice paddy extent at a fine resolution of 10 m, and can effectively obtain a high accuracy with
the OA of 89.52%. Through a comparison of the rice products from IRRI, our rice extraction results
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have a finer resolution, and the spatiotemporal pattern of rice paddies was consistent in the Mun
River basin.

This study has contributed to rice identification approaches and regional rice mapping using
time-series Sentinel-1 SAR dataset. The method developed in this study is timely, effective, and highly
accurate, while the rice results obtained had a high resolution of 10 m. This approach can be expanded
to other rice-cultivation countries, or even the entire Indochina Peninsula and Southeast Asia.

Supplementary Materials: The relevant codes for rice extraction are available online at http://www.mdpi.com/
2072-4292/12/23/3959/s1, all the algorithm codes were written with JavaScript in the Google Earth Engine online
Code Editor.
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