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Abstract: This paper proposes a framework for unmixing of hyperspectral data that is based
on utilizing the scattering transform to extract deep features that are then used within a neural
network. Previous research has shown that using the scattering transform combined with a traditional
K-nearest neighbors classifier (STFHU) is able to achieve more accurate unmixing results compared
to a convolutional neural network (CNN) applied directly to the hyperspectral images. This paper
further explores hyperspectral unmixing in limited training data scenarios, which are likely to occur in
practical applications where the access to large amounts of labeled training data is not possible. Here,
it is proposed to combine the scattering transform with the attention-based residual neural network
(ResNet). Experimental results on three HSI datasets demonstrate that this approach provides at least
40% higher unmixing accuracy compared to the previous STFHU and CNN algorithms when using
limited training data, ranging from 5% to 30%, are available. The use of the scattering transform for
deriving features within the ResNet unmixing system also leads more than 25% improvement when
unmixing hyperspectral data contaminated by additive noise.

Keywords: hyperspectral unmixing; scattering transform; attention mechanism; ResNet; limited
training samples

1. Introduction

Hyperspectral image unmixing aims at extracting information about multiple target endmembers
from spectral curves that include hundreds of wavebands, which efficiently removes the limit of low
spatial resolution of current hyperspectral satellite sensors and retrieves the information of interest
in complex ground object conditions, leading to extensive application prospects [1–6]. Unmixing
algorithms based on supervised learning are one of the key research directions for hyperspectral image
unmixing [7–9]. With the rapid development of artificial intelligence, the structure of deep neural
networks based on supervised learning has been recently applied to hyperspectral images [10,11].
However, existing deep learning approaches require a large amount of prior training data to achieve
accurate results, while it is difficult to obtain the ground truth for the composition of mixtures of
hyperspectral remote sensing images [12]. Therefore, a crucial challenge faced currently is to increase the
accuracy of hyperspectral unmixing based on supervised learning when utilizing limited training data.

Recently, deep neural networks that possess great advantages in terms of gaining deep structural
features have become the mainstream algorithm in the field of computer vision and image processing,
achieving excellent results in various tasks [13–17]. Compared with conventional methods, the deep
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learning approaches can automatically obtain high-order features according to the input data, and
these algorithms have been used within hyperspectral unmixing research. An autoencoder (AE)
cascade approach [18], which concatenates a marginalized denoising autoencoder and a non-negative
sparse autoencoder, was employed to solve the unmixing problem in noisy environments. Stacked
non-negative sparse autoencoders (NNSAE) [19] for hyperspectral unmixing have been proposed
in order to reduce the effect of the outliers and low signal-to-noise ratio scenarios of hyperspectral
data. In [20], a weakly-supervised unmixing network, named WU-Net, is proposed. The endmember
network is introduced to correct the weights of another SAE unmixing network towards a more
accurate unmixing performance. However, the network heavily depends on the endmember extraction
results. In this paper, it also shows that the lack of necessary prior knowledge could result in
unsatisfactory unmixing results when utilizing the autoencoder-like deep network models. In [10],
an end-to-end hyperspectral unmixing method based on the convolutional neural network (CNN)
was proposed to extract features and obtain the abundance percentages. The research showed
that the multilayer perceptron (MLP) architecture presents a better performance in unmixing than
traditional methods. In [21], CNNs were used for the joint optimization of spectral unmixing and
subpixel mapping stages. Long-short-term memory (LSTM) networks were also proposed in this
article to achieve unmixing, which perform better than the encoder–decoder approach for linear
mixtures. Deep spectral convolution networks (DSCNs) were improved in [22] to compute high-level
representations, which are then combined with a multinomial mixture kernel to estimate abundances.
Although these algorithms have brought good results compared with conventional methods, they are
all deep-learning-based approaches and thus require lots of data to train in order to guarantee high
accuracy for the obtained model.

However, it is difficult to obtain labeled data for hyperspectral remote sensing images in real-world
cases, which leads to the problem of limited training data. In order to solve this problem in hyperspectral
image classification, two methods are usually used: generating congeneric data that can be utilized for
training as well as constructing network structures suitable for training with a small amount of data.
Generative adversarial networks (GAN)-based model was used for semisupervised hyperspectral image
classification with a limited number of training samples in [23]. Different transfer learning strategies were
presented for limited-samples-based HIS classification and achieved competitive performances [24,25].
In [26], a supervised spectral–spatial residual network (SSRN) was proposed and was shown to be
effective in the case of small training samples for hyperspectral image classification. A collaborative
representation-based method was applied to deal with the small training set using deep features, which
was obtained by deep autoencoder with sample similarity regularization term [27]. In [28], a novel
tensor-based model, named rank-1 feedforward neural network (rank-1 FNN), was proposed to train
both linear and nonlinear classifiers for hyperspectral data classification. It shows the outperformance
in the cases where a small number of training samples is available. In [29], a simplified deep learning
model named multigrained network (MugNet) is proposed for limited-sample-based HIS classification,
in which the multigrained scanning strategy was utilized to represent the spectral and spatial relationships
in different grains. Hyperspectral images classification based on dense convolutional networks with
spectral-wise attention mechanism (MSDN-SA) was proposed [30]. It learnt features at different scales
and used the spectral-wise attention mechanism to enable accurate training with relatively small training
sets. However, in the research area of unmixing, only a few existing articles pay attention to the limited
training data problem. The literature [31] discussed the convex optimization problems in hyperspectral
unmixing, and constrained sparse regression based on alternating direction algorithms was also proposed
for unmixing with limited samples.

The problem caused by limited data also becomes a key reason why applying deep learning to
hyperspectral unmixing can be difficult. To provide solutions to the issue, the scattering transform and
the attention mechanism are considered to improve the accuracy of hyperspectral unmixing using deep
learning algorithm under the condition of limited training samples in this paper. In [32], scattering
transform has been shown to possess a better capability for feature extraction than the CNN network,
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which achieves high-order features of the hyperspectral data in a cascade manner and has an explicit
physical meaning. Additionally, neural network using attention mechanism has the ability to focus on
specific parts of information in the feature space [30,33], which is helpful in learning both spatial and
spectral features in HSIs.

In this paper, we construct a novel attention-based residual network with scattering transform
features (ARNST) learning architecture for hyperspectral unmixing with limited training samples.
The major contributions in this paper include three aspects, as follows:

1. A novel network model is proposed, which is a combination of the scattering transform and a deep
neural network, such as the CNN and the ResNet. The scattering transform extracts deep-level
features from hyperspectral images and the resulting high-order information is processed through
neural networks.

2. Hyperspectral unmixing using ResNet and attention-based ResNet are introduced. The attention
mechanism is helpful in paying attention to important features in HSIs during learning.

3. Under the condition of limited training data, the proposed approach with only a few parameters
to be configured can achieve more accurate results than state-of-the-art methods.

4. When unmixing HSI images corrupted by additive noise, the proposed approach utilizes the
scattering transform combined with deep learning to reduce the effect of noise, which is shown to
be more robust in terms of suffering a smaller reduction in accuracy compared to the CNN applied
directly to the HSI images, which requires retraining with noisy data to achieve satisfactory results.

The rest of this paper is organized as follows. In Section 2, the proposed ARNST method is
introduced in detail. In Section 3, we present and discuss the experimental results. Finally, conclusions
and future work are described in Section 4.

2. Methods

The proposed ARNST network architecture, as shown in Figure 1, consists of three parts: (1)
scattering transform layers, which obtain scattering transform features from original hyperspectral
images; (2) deep neural network feature extraction layers, which extract features based on residual
networks and attention modules; (3) fully connected layers, which predict the abundance maps for
each pixel.

In our work, the scattering transforms are capable of extracting stable and enhanced high-order
features in a process that has explicit physical meanings, so that the distinguishable information of
original limited hyperspectral samples is enriched. Based on the scattering transform feature maps,
the low-complexity residual network is utilized for training. The combination of features and the
lower layers has been performed to capture fine features. Moreover, attention modules including
channel attention and spatial attention are also utilized to obtain information of interest, which is
to enhance relevant features and restrain irrelevant features, so that the key parameters of feature
information are kept. Finally, fully connected layers with a soft-max activation function are used to
obtain the abundance maps. Thus, this paper combines the above advantages, proposing a method that
constructs a network to further extract feature information, improve the accuracy of trained models,
and ensure the stability of the network when the resources for training are limited.
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Figure 1. Network architecture of the proposed attention-based residual network with scattering
transform features (ARNST).

2.1. Scattering Transform Module

The scattering transform structure with known filters has shown a great potential in lots of
different applications, such as feature extraction, classification, unmixing and recognition. Given the
vth pixel spectrum as rv ∈ <

1×l, the spectral mixture model f can be simply described as:

rv = f (Av, X, εv)

s.t.


avk ≥ 0

n∑
k=1

avk = 1
(1)

where Av = [av1, . . . , avk, . . . , avn] ∈ <1×n is the abundance fractions and avk denotes the abundance of
the kth endmember. X = [x1, x2, . . . , xn]

T
∈ <

n×l is the endmember matrix of n endmembers and l is the
number of bands of hyperspectral data. εv = [εv1, . . . , εvk, . . . , εvn] ∈ <1×n represents the error vector.
avk ≥ 0 is the abundance non-negativity constraint, while

∑n
k=1 avk = 1 is the sum-to-one constraint of

the abundances.
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According to the literature [32], the scattering transform expression of the spectral mixture model
can be written as:

S(r) =
{
S0(r), S1(r), . . . , Sm(r)

}
= f (Av, X, εv)

s.t.


avk ≥ 0

n∑
k=1

avk = 1
(2)

where S(r) ∈ <1×1×L is a collection of the scattering transform coefficient outputs from the zero-order
to the mth-order and represents the main information at low frequency bands of the input signal. L is
the length of S(r), and r is the spectral vector input.

In summary, as shown in Figure 1, S0(r), S1(r), . . . , Sm(r) are calculated using wavelet or Fourier
functions in the scattering transform layers, and then the scattering transform feature maps S(r) can be
obtained, which will be used as the input of following deep learning neural networks. Translation
invariance, local deformation stability, energy conservation and strong antinoise ability are the main
advantages of the scattering transform.

2.2. Deep Neural Network Feature Extraction Module

Due to limited obtainable labels of the ground truth in practical applications of hyperspectral
remote sensing images, it is hard for existing algorithms to achieve ideal results. The scattering
transform has been shown to extract deep features in a similar way to that of the CNN but utilizes
a fixed transform rather than a learnt transform (kernel) as used in the CNN. Moreover, scattering
transforms have few characteristic parameters and high stability, which brings better unmixing results
than the CNN under conditions of limited training samples. However, state-of-the-art deep learning
algorithms usually require a large amount of labeled data for training to have good results. The single
scattering transform features also cannot lead to ideal unmixing results when the training data are
extremely limited. For example, when unmixing Urban hyperspectral data using 5% data for training,
the summation of the root-mean-square error (RMSE) of CNN is 0.5717, while the summated RMSE of
scattering transform is 0.4738, both of which are relatively inaccurate. Therefore, there is a need for
deeply exploring the capability of hyperspectral feature extraction when the training data are limited,
so that the performance of hyperspectral unmixing can be improved.

Previous research [26,30,34] has shown that the ResNet [35] with hundreds of layers can provide
effective features and achieve state-of-the-art performance in hyperspectral image classification.
This paper focuses on the combination of the scattering transform and the deep neural network, aiming
at sufficiently making use of the advantages of both to extract the feature information of interest,
realizing accurate abundance estimation under limited training samples.

(1) Residual network based on scattering transform features
Let scattering transform coefficients of vth pixel S(r) ∈ <1×1×L be reshaped to three dimensions,

i.e., S ∈ <H×W×C, where H, W and C represent the three dimensions. S ∈ <H×W×C is the input of the
deep neural network.

One of the key parts within feature extraction layers is the convolution model. The input S or the
feature maps FS are convolved with convolution kernels to obtain the feature maps as follows:

FS
l = FS

l−1 ∗Wl + bl, (3)

where FS
l−1 and FS

l represent the input and output of the lth convolution layer, respectively. When l = 0,
FS

l = S. Additionally, ∗ refers to the convolution operator. Wl and bl are the weights and biases of the
lth convolution layer.

However, CNN can cause the gradient vanishing problem as the depth of the network increases,
particularly for the high-frequency space where scattering transform coefficients become smaller and
smaller, which leads to higher probabilities of occurring gradient vanishing. In order to remove this
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effect, this paper adopts the residual network, which is trained in the network to ensure the efficiency
of the network. Defining the residual function to be learnt as χ(FS

l−1) = FS
l − FS

l−1, we have:

FS
l = χ(FS

l−1) + FS
l−1. (4)

(2) Scattering transform attention mechanism module
Due to limited obtainable ground truth of hyperspectral images, the algorithm needs to pay

much attention to key feature information in the network, so that the accuracy of training can be
improved. Thus, the attention mechanism is introduced to address this issue. The convolution block
attention module (CBAM) [36] is utilized to recalibrate scattering transform feature maps in the ResNet
model. In the attention blocks, channel-wise attention and spatial-based attention are both utilized to
train scattering transform features in a three-dimensional structure. Therefore, this method is called
scattering transform attention mechanism, which is targeted at enhancing useful scattering transform
features and suppressing less useful information. The basic structure of the scattering transform
attention mechanism is illustrated in Figure 2.
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FS
l−1 will be reshaped to an appropriate dimension FS1

∈ <
h×w×c, which is beneficial for the input

of the spatial attention network. The 2D spatial attention map is defined as MSp ∈ <
h×w×1, while the

1D channel attention map is defined as MCh ∈ <
1×1×c. Considering the feature map FS

l−1, the CBAM
module can calculate the attention weights in two independent dimensions (spatial and channel),
which are then multiplied with FS

l−1 to implement the detailing of the feature map. The 2D spatial
attention map is used for searching for the mostly focused information in the spatial dimension, while
the channel attention is to search for the focal point along the channel axis.

According to [36], average pooling and max pooling operations are applied to the spatial module
along the channel axis, and these outputs are concatenated to generate a feature descriptor, which is
then used to obtain the spatial attention map MSp using convolution layers with a filter f 7×7, whose
size is 7 × 7, and the sigmoid activation function σ.

MSp(FS1) = σ( f 7×7([FS1
avg, FS1

max])), (5)

where FS1
avg and FS1

max represent the average pooling operator and max pooling operator, respectively.
Therefore, the output of the spatial attention module can be described as:

FS2 = MSp(FS1) ⊗ FS1, (6)

where ⊗ denotes element-wise multiplication.
For the channel module, both max-pooling outputs and average-pooling outputs are utilized with

a shared network that is composed of the multi-layer perceptron (MLP) with one hidden layer. The two
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output feature vectors are merged using element-wise summation, and then the sigmoid activation
function is utilized to gain the channel attention map:

MCh(FS2) = σ(ω ∗ FS2
avg +ω ∗ FS2

max), (7)

where ω is the shared MLP weights.
After that, the output of the channel attention module can be described as:

FS3 = MCh(FS2) ⊗ FS2. (8)

Finally, the output of the whole scattering transform attention mechanism is:

FS
l = FS3 + FS

l−1. (9)

Comparing Equation (4) with Equation (9), the proposed attention-based residual network with
scattering transform features can be achieved, and the residual function can be expressed as:

χ(FS
l−1) = FS3. (10)

In most cases, the input of the scattering transform attention mechanism is not required to be
reshaped, which means that FS1 = FS

l−1, and thus the residual function can be finalized as:

χ(FS
l−1) = MCh([MSp(FS

l−1) ⊗ FS
l−1]) ⊗ [MSp(FS

l−1) ⊗ FS
l−1]. (11)

By calculating the ARNST module, we can realize the goal of further extracting high-order features
and eliminating inefficient feature information when there are few training samples.

After executing the last feature extraction layer, the final feature maps FS
k can be obtained, followed

by achieving the fully connected network. In addition, in order to make sure that the final output
can satisfy the abundance non-negativity constraint and sum-to-one constraint, a soft-max activation
function is used in the final output layer. The operation principle is illustrated in Figure 3, in which
the input is the feature maps based on scattering transform deep residual network features, and the
output is the abundance maps.
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3. Experimental Results

In this section, we introduce three public datasets used in our experiments. The hyperspectral
unmixing performance of the proposed attention-based residual network method with scattering
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transform features is presented by comparing with other approaches, which are based on the deep network
architecture. All the experiments are implemented with NVIDIA Quadro P4200 GPU, Tensorflow-gpu [37],
scikit-learn [38] and Keras [39] with Python 3.6.

3.1. Description of Hyperspectral Datasets

To evaluate the effectiveness of the proposed method, three widely-used real-world hyperspectral
data sets, namely Urban, Jasper Ridge and Samson, are selected. These datasets can be openly accessed
online [40,41].

(1) Urban: the first dataset contains 307 × 307 pixels and 162 effective spectral bands in the range
of 0.4 to 2.5 µm. There are six endmembers in the dataset, including “Asphalt Road”, “Grass”, “Tree”,
“Roof”, “Metal” and “Dirt”.

(2) Jasper Ridge: the second dataset has 100 × 100 pixels, while each pixel contains 198 effective
spectral bands with the wavelength ranging from 0.38 to 2.5 µm. There are four endmembers latent in
this dataset, including “Road”, “Dirt”, “Water” and “Tree”.

(3) Samson: the third dataset contains 95 × 95 pixels and 156 channels covering the wavelengths
from 401 to 889 nm. There are three target endmembers in the dataset, including “Rock”, “Tree” and
“Water”.

3.2. Experimental Setup

(1) Setup for limited training samples
In our experiment, the training set and cross-validation set are generated from the ground truth

data, while the testing set is composed of the remaining ground truth samples. As our work focuses
on the problem of limited training samples, small training ratios of ground truth data are considered,
which are selected from approximately 30% to 0.5% downwards. In this paper, each of the selected
datasets corresponding to each ratio is divided into a training set (80% of this set of samples) and
a cross-validation set (remaining 20% of these sample).

The details of the training, cross-validation and testing pixels in the Urban dataset are listed in
Table 1. As shown in the table, there is a total of 33,153 pixels corresponding to the “Asphalt road”
endmember (last column of Table 1) among all the 307 × 307 = 94,249 pixels of the training dataset.
For example, when choosing 5% as the training ratio, it means that 3438 and 860 pixels out of the total
of 94,249 pixels are utilized for training and cross-validation, respectively, among which 1378 pixels
contain the endmember “Asphalt road”, and 3256 pixels include the endmember “Grass”. Meanwhile,
the other 94,249 – 3438 – 860 = 89,951 pixels are used for testing.

Table 1. Number of the training, cross-validation and testing pixels in the Urban dataset.

Training Ratio
Total Pixels

20% 10% 5% 1% 0.5%

Total training pixels 14,736 7122 3438 491 245
94,249Total validation pixels 3684 1781 860 123 62

Total testing pixels 75,829 85,346 89,951 93,635 93,942

Endmembers Number of training and validation pixels for each
endmember

Asphalt road 9630 4015 1378 171 82 33,153
Grass 11,216 6135 3256 471 233 61,978
Tree 7251 4499 2328 318 159 48,244
Roof 8350 4354 1899 263 134 36,303
Metal 5677 2768 1068 141 66 18,446
Dirt 13,966 6515 3008 390 192 56,082
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The training and testing parameters of the datasets of Jasper Ridge and Samson are also set
in alignment with the same principle. In all comparative experiments, the training data selected
are identical.

(2) Performance evaluation approach
To assess the unmixing performance of the proposed method, the root-mean-square error (RMSE) [42]

is used to evaluate the difference between ground truth abundance maps and predicted results.
The performance of the proposed ARNST is compared with two state-of-the-art contrastive

methods, namely, the scatter transform framework for hyperspectral unmixing (STFHU) [29] and the
CNN [10], which are also based on deep network and perform better than other supervised methods.
Meanwhile, the scattering transform plus CNN (STCNN), ResNet, attention-based ResNet (AResN)
and ResNet with scattering transform features (RNST) are used for unmixing for the first time.

For CNN and STCNN, four convolution layers and four sampling sublayers are used in the
network. The sizes of the convolution layers are set to be 1 × 5, 1 × 4, 1 × 5 and 1 × 4, while their feature
maps are configured to be 3, 6, 12 and 24, respectively [10]. The scattering transform parameters of
the Urban dataset are set to be J = 2 and m = 3, while the parameters of the Jasper Ridge and Samson
datasets are set as J = 3 and m = 2. The parameters of CNN and scattering transform are selected the
same as the previous references, where the effectiveness of parameters has been proven in different
experiments. The training phase for CNNs in our paper is 500 epochs, while the training phases for
ResNet-based approaches are 100 epochs. For the parameter of the number of epochs, the larger value
usually obtains the better accuracy. In fact, the training phases for the proposed approaches with
500 epochs can only achieve slightly higher results than 100 epochs. Therefore, we selected 100 epochs
in this paper. This also shows that our proposed method can achieve better results using a smaller
number of training epochs.

(3) Computational cost of proposed method
The main structures of the ARNST consist of scattering transform, attention mechanism and

ResNet. The computational cost should be computed with three parts.
According to [43], the complexity of scattering coefficients is O(n log n), and the computational

cost of self-attention in each layer is O(n2
∗ d) [44], where n is the cardinality of the training set and

d is the dimension of each sample. In addition, the complexity of neural networks [45] is usually
considered as O(n5). When combining them together, the ResNet plays a major role in complexity
calculation. Therefore, the computational cost of proposed ARNST is O(n5).

(4) ARNST network implementation details
Now we consider the Urban data with 162 spectral bands as an example. The architecture details

of the proposed ARNST are described in Table 2.
K refers to the size of the convolving kernel. Forming the ARNST framework, the input of the

proposed network is the spectrum with the size of 1 × 1 × 162. Firstly, the scattering transform layer
with parameters m = 2, j = 3 is employed to extend the input and extract the scattering features with
the size of 1 × 1 × 648, which is then reshaped to 9 × 9 × 8. Next, several residual network blocks are
used to extract deep features from scattering transform feature maps. Each residual block includes
four parts: the module of convolutions with different kernel filters with batch normalization and
ReLU (Conv-BN-ReLU), channel attention module, spatial attention module and addition module.
The kernel filters of convolutions of residual blocks are set as 3 × 3 in this paper. The number of
filters in the residual network layers of Block1, Block2 and Block3 are set to 16, 32 and 64, respectively.
It is worth mentioning that “1 × 1 × 16, 81” represents that an attention weight of 81 is obtained by
channels, while “9 × 9 × 1, 16” means that an attention weight of 16 is obtained by the spatial attention
module. Finally, a flattened layer and fully connected layers transform the previous feature maps into
an output feature vector with a size of 6, which is the number of endmembers.
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Table 2. Architecture details of the proposed ARNST for the Urban dataset.

Layers K Network Structure Output Size

Input - - 1 × 1 × 162
Scattering Transform m = 2, j = 3 Scattering transform 1 × 1 × 648

Feature Reshape - Reshape 9 × 9 × 8

Residual Block 1
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As the whole proposed network is carried out in an end-to-end manner, the parameters and
effective paths can be learnt automatically. Therefore, the implementation details will be carried out in
a similar way for different datasets.

For a fair comparison, the same training and testing samples are utilized for all methods, and
all algorithms are executed five times. The average results can reduce the error involved by random
selection effects. In addition, the network structures are set to the same width and depth.

3.3. Results for the Urban Dataset

To validate the robustness of the algorithms to noise, Gaussian white noise with a power of 20 dB
is added to the samples. Figure 4 shows the comparison of the spectral curves of the original and noisy
data, with the blue curve being the original and the red being the one with additive noise. The effects
of the noise are evident from the random spikes appearing in the spectrum. Results are evaluated for
noisy test samples by utilizing the trained model, which is based on the original data.
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Table 3 shows the summations of the RMSEs for different training ratios applied to the original
and noisy Urban dataset. For the original data, it is clear that the CNN, STFHU and STCNN set of
methods result in a lower performance than the set of four ResNet-based approaches. For training
ratios of 20%, 10% and 5%, the average difference of the two sets of methods in terms of the summation
of the RMSEs is approximately 0.2. When 1% or 0.5% of data are utilized for training, this difference
tends to be larger, ranging from 0.4 to 0.7. To be more specific, the CNN method performs the worst
for training ratios of 5% and higher, while the STFHU method results in the worst performance for
training ratios less than 5%. The combination of the scattering transform and the CNN (STCNN)
results in some improvement for training ratios of less than 5% but the resulting RMSEs are still much
higher than the ResNet based methods. The separate inclusion of the attention mechanism to ResNet
(AResN) and the scattering transform (RNST) both result in lower errors, while the proposed ARNST,
which combines both, presents the best hyperspectral unmixing results among all seven considered
algorithms across all conditions of training ratios. Moreover, the improvement caused by ARNST
shows increasing trends as the training ratio decreases, with the 0.1715 using 20% data for training
being the smallest error tested on the original data.

Table 3. Summations of RMSE with small training ratios for the Urban hyperspectral dataset.

Training Ratio CNN STFHU STCNN ResNet AResN RNST ARNST

Original

20% 0.4324 0.2930 0.3577 0.1896 0.1716 0.1864 0.1715
10% 0.4761 0.4125 0.4159 0.2356 0.2222 0.2324 0.2158
5% 0.5717 0.4738 0.4964 0.3217 0.2913 0.2997 0.2817
1% 0.8162 0.9208 0.7756 0.5456 0.4913 0.5395 0.4382

0.5% 1.0803 1.2889 1.0246 0.6095 0.5246 0.5836 0.5129

Noisy

20% 1.1002 0.3011 1.1302 0.2599 0.2511 0.2315 0.2227
10% 1.1291 0.4192 1.1924 0.3148 0.2970 0.2717 0.2643
5% 1.3143 0.4812 1.2826 0.3835 0.3776 0.3522 0.3365
1% 1.1435 0.9308 1.3196 0.6138 0.5382 0.5667 0.4706

0.5% 1.7159 1.3014 1.1140 0.6504 0.5683 0.5986 0.5468

When adding noise to the original data, the robustness of the algorithms to noise can be validated.
It is axiomatic that the CNN and STCNN result in summations of RMSE that are larger than one under
all considered conditions, with the 1.7159 resulting from the CNN being the largest error in the whole
table. The STFHU previously proposed by our team shows accurate results when the training ratio is no
less than 5%, which are equivalent to the performance of the ResNet-based approaches. However, due to
the extremely small training ratio, the normal scattering transform method cannot unmix hyperspectral
images properly either, and thus the errors increase to be similar to those of the CNN-based methods.
The ResNet leads to large improvements of the unmixing accuracy, and the difference of the summation
of RMSE to the CNN-based approaches ranges from approximately 0.5 to 0.9. The AResN and RNST
methods further enhance the results by incorporating the attention mechanism and the scattering
transform,respectively. The ARNST that includes both the attention mechanism and the scattering
transform achieves the most satisfied performance under all considered training ratios, with 0.2227 being
the smallest summation of RMSE in all conditions of noisy hyperspectral data unmixing. In addition,
the increase in the ARNST performance compared to other comparative methods becomes larger when
the training ratio is smaller.

Figure 5 shows the ground truth and estimated abundance maps for corresponding endmembers
using the proposed method and comparative methods with 5% training ratio. It can be clearly observed
that the ResNet-based methods (images of rows 4 to 7 of Figure 5) always achieve abundance maps
that are visually much more similar to the original Urban hyperspectral abundance maps with no noise
(images of row 1 of Figure 5) compared with the CNN-based approaches (images 2 to 3 of Figure 5).
This corresponds with the RMSE results observed in Table 3.
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Figure 6 shows the estimated maps for the endmember “Metal” using the noisy data when the 
training ratio is 5%. There are large differences between the ground truth results (Figure 6a and the 
results from the CNN-based methods (Figure 6b,d)). This corresponds with the results of Table 3, 
where RMSE results for the noisy data are far greater than 1. It can also be seen that abundance maps 
resulting from the STResN method (Figure 6e) are visually more similar to the original ground truth 
abundance maps (Figure 6a) than the abundance maps resulting from the ResNet method (Figure 6g). 
This indicates that the scattering transform is able to suppress noise and thus is helpful for stable 
feature representation of noisy data. 

Figure 5. Ground truth and estimated abundance maps of its endmembers using the proposed method
and contrastive methods with a 5% training ratio. (1) Ground truth; (2) CNN; (3) STFHU; (4) STCNN;
ResNet; (5) AResN; (6) RNST; (7) ARNST; (a) Asphalt Road; (b) Grass; (c)Tree; (d)Roof; (e)Metal; and
(f) Dirt.

Figure 6 shows the estimated maps for the endmember “Metal” using the noisy data when the
training ratio is 5%. There are large differences between the ground truth results (Figure 6a and the
results from the CNN-based methods (Figure 6b,d)). This corresponds with the results of Table 3,
where RMSE results for the noisy data are far greater than 1. It can also be seen that abundance maps
resulting from the STResN method (Figure 6e) are visually more similar to the original ground truth
abundance maps (Figure 6a) than the abundance maps resulting from the ResNet method (Figure 6g).
This indicates that the scattering transform is able to suppress noise and thus is helpful for stable
feature representation of noisy data.
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ResNet, AResN and STResN all lead to similar experimental results that are significantly better than 
the results obtained for the STFHU and CNN approaches. ARNST achieves the best result among all 
comparative algorithms, and the summations of RMSE improve from 0.1986 to 0.1087 when 
comparing with the CNN approach when the training ratio is 30% (a 45.26% increase in accuracy). In 
the meantime, considering the training ratios of 20% and 10%, the performance of ARNST improves 
by 50% and 59%, respectively, which indicates that the improvement resulting from the proposed 
solution becomes larger as the percentage of data used for training decreases. Moreover, it is obvious 
that, compared to the other approaches, the results of ARNST are also more stable when the training 
ratio changes. 
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3.4. Results for the Jasper Ridge Dataset

Figure 7 compares original and noisy versions of spectral curves of the Jasper Ridge hyperspectral
dataset, again showing the impact of additive Gaussian noise.
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The experimental results for the Jasper Ridge hyperspectral dataset are listed in Table 4. It can be
found that considering the processing of original data when the training samples are limited, ResNet,
AResN and STResN all lead to similar experimental results that are significantly better than the results
obtained for the STFHU and CNN approaches. ARNST achieves the best result among all comparative
algorithms, and the summations of RMSE improve from 0.1986 to 0.1087 when comparing with the
CNN approach when the training ratio is 30% (a 45.26% increase in accuracy). In the meantime,
considering the training ratios of 20% and 10%, the performance of ARNST improves by 50% and 59%,
respectively, which indicates that the improvement resulting from the proposed solution becomes
larger as the percentage of data used for training decreases. Moreover, it is obvious that, compared to
the other approaches, the results of ARNST are also more stable when the training ratio changes.
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Table 4. Summations of RMSE with small training ratios for the Jasper Ridge dataset.

Training Ratio CNN STFHU STCNN ResNet AResN RNST ARNST

Original

30% 0.1986 0.4856 0.1725 0.1330 0.1162 0.1238 0.1087
20% 0.2246 0.4952 0.1837 0.1473 0.1240 0.1436 0.1106
10% 0.3237 0.5647 0.2009 0.1685 0.1487 0.1567 0.1320
5% 0.3360 0.6026 0.2295 0.2058 0.1795 0.2046 0.1432

Noisy

30% 1.9703 0.5509 1.9539 1.8460 1.6932 0.2967 0.2943
20% 1.9239 0.5531 2.2657 1.8541 1.8152 0.3356 0.3055
10% 1.8982 0.5720 2.0489 1.9129 1.7395 0.3866 0.3657
5% 1.8149 0.6067 2.0297 1.7578 1.7047 0.4102 0.3766

Considering the noisy data, Figure 8 illustrates the estimated abundance maps of the “Dirt”
endmember with a 5% training ratio. The estimated maps obtained by training the original data
using CNN (Figure 8b), ResNet (Figure 8e) and AResN (Figure 8f) are all unsatisfactory, with the
corresponding summations of the RMSE being greater than 1.7. Although the STCNN result (Figure 8d)
is not ideal, it can distinguish different endmembers to some extent. In comparison, all methods
based on scattering transform features, including STFHU (Figure 8c), RNST (Figure 8g) and ARNST
(Figure 8h) all perform well in unmixing, which shows that the scattering transform has advantages in
suppressing noise.
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When we compare of the summations of RMSE of unmixing noisy images using the Urban and
Jasper Ridge datasets under a training ratio of 20%, it can be observed that the CNN is not good at
adapting to noise and cannot perform well when unmixing noisy data. Since the scattering transform
approaches are robust and stable when representing features, the STFHU and the proposed ARNST have
ability to reduce the effects of Gaussian noise, and thus achieve satisfactory results. The proposed ARNST
obtains the smallest summations of RMSE, which are 0.2227 for Urban and 0.3055 for Jasper Ridge. Thus,
the involvement of the scattering transform in ARNST brings robust performances against noise.

When we compare of noisy hyperspectral unmixing performances of the STFHU, AResN and
ARNST under different training ratios, the proposed method leads to better performances than STFHU
across all conditions, with the average percentage of improvement being more than 25%. Therefore,
the ARNST shows better hyperspectral unmixing results than the scattering transform approach after
combining the attention mechanism and the ResNet. In addition, the AResN algorithm performs well
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for the Urban dataset but shows dissatisfactory results for Jasper Ridge. This also proves that the
proposed ARNST can obtain more stable results than other comparative algorithms.

3.5. Results for the Samson Dataset

The Samson dataset is also used to validate the proposed algorithms. The summations of RMSE
are listed in Table 5. It can be seen that ARNST method achieves the best results among all comparative
methods, which are 0.0751 using 20% of data for training and 0.5255 for the 10% case. The CNN-based
approaches both lead to large errors, while the ResNet and the attention mechanism bring more
accurate unmixing results than the two algorithms based on CNN. The STFHU without using the
proposed methods cannot work well either.

Table 5. Summations of RMSE with small training ratios for the Samson hyperspectral dataset.

Training Ratio CNN STFHU STCNN ResNet AResN RNST ARNST

Original

30% 0.1383 0.3738 0.1221 0.0986 0.0800 0.0595 0.0439
20% 0.1658 0.8253 0.1466 0.1168 0.0866 0.1047 0.0751
10% 0.8930 1.6998 0.7241 0.7416 0.9706 0.9819 0.5255
5% 0.9393 1.8950 1.2546 1.1362 0.9849 1.2985 0.8546

Noisy

30% 1.1581 0.7345 0.9467 0.9284 0.8741 0.1785 0.1320
20% 1.7946 0.8983 1.8845 1.1437 1.2148 0.3514 0.3372
10% 1.6485 1.8237 1.7618 1.6752 1.7553 1.2196 1.0743
5% 2.0059 1.9029 1.9864 1.7114 1.8828 1.3821 1.3608

3.6. Results when Training on Noisy Data

In order to validate the robustness of algorithms to different input data, this paper also attempts to
train the models using the noisy training data before utilizing the noisy data for testing, leading to the
results in Figure 9. All the considered algorithms achieve more accurate unmixing results by training
using the noisy data compared to the results obtained when training the original data. It is noted
that the greatest improvement is obtained for the CNN-based approaches, which indicates that these
methods are not as robust to noise when compared to the other methods. The ARNST achieves the
smallest summation of RMSE, proving that the proposed approach possesses the best robustness to
noise. It is also noted that the scattering-transform-based approaches (ARNST, RNST and STFHU)
achieve results that are most similar to those obtained when testing noisy data using models trained
with original (non-noisy) data). This indicates that the scattering transform helps in ensuring that the
unmixing system is robust to noise.

From Tables 3–5 and considering all algorithms, the summation of RMSE becomes larger as the
amount of training samples becomes smaller, which demonstrates the requirement to have a sufficient
amount of training samples to be able to accurately train the models of these approaches. Obviously,
the proposed ARNST can provide the best and most stable performance in all cases. There are two
key reasons that the proposed method achieves better results than other contrastive methods. Firstly,
the scattering transform possesses a multilayer structure which generates highly descriptive features
of the hyperspectral images. In addition, the scattering transform is able to distinguish noise from
original spectral signal, which reduces the effect of endmember variability. Secondly, the attention
mechanism in deep learning networks helps to focus on the interesting and important information of
scattering transform features using less training data. This will further suppress the noise information.
Therefore, the combination of scattering transform features and attention-based deep learning network
within the proposed ARNST approach can effectively address the problem of hyperspectral image
unmixing using neural networks trained on limited ground truth data and with endmember variability.
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4. Conclusions

In this paper, a novel attention-based residual network framework with scattering transform
features is proposed for hyperspectral data unmixing with limited training samples. The scattering
transform is utilized to extract high-order deep features that benefit the robustness of trained models
of the residual neural networks. Furthermore, the inclusion of attention mechanism into the model
helps to focus the residual neural network on the feature information of interest and results in
maximized performance. The proposed framework makes full use of the advantages of the scattering
transform, the residual neural network, and the attention mechanism. The resulting ARNST possesses
the capability of suppressing noise and provides significantly improved accuracy of hyperspectral
unmixing when extremely limited training data are available, which is helpful in real-world applications
where the data are usually corrupted by additive noise and the access to lots of labeled training data
is not practical. Experiments on public datasets have demonstrated that the proposed framework
achieves more accurate and stable results than state-of-the-art algorithms in hyperspectral unmixing
when noise is present and the training ratio is extremely low. When comparing with CNN and STFHU
approaches, the proposed ARNST approach can obtain at least 40% and 25% increases in performance
for original and noisy hyperspectral datasets, respectively.

Future work includes further improving the spatial–spectral joint 3D network structure to provide
more accurate hyperspectral unmixing results under extreme conditions.
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