Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Sample Plots
2.2. Instrumentation and Data Collection
2.3. Point Cloud Processing
2.4. Clustering, Detection of Tree Positions, and dbh Measurement
2.5. Evaluation of Point Cloud Quality and Diameter Fitting on Cylindrical Reference Objects
2.6. Reference Data
2.7. Accuracy of Tree Detection and dbh Measurement
3. Results
3.1. Detection of Tree Positions
3.2. Estimation of dbh
3.2.1. Personal Laser Scanning (PLS)
3.2.2. Terrestrial Laser Scanning (TLS)
3.3. Cylindrical Reference Objects under Controlled Conditions
3.4. Simulated Noisy Cross-Sections
3.5. Diameter Correction
4. Discussion
4.1. Point Cloud Quality PLS/TLS
4.2. Stem Detection
4.3. dbh Estimation
4.4. Cylindrical Reference Objects
4.5. Comparison with Other Studies
4.6. Quality of Reference Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Plot | Stand Class | Regen- eration | dbh Range (cm) | PLS/TLS | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 27.4 | 5 | 86 | 3 | 3 | 1 | 25.7 | 5.3–54.4 | 38.4 | 740 | 774 | 0.71 | 0.52 | 0.85 | 0.61 | PLS/TLS |
2 | 3 | 2 | 22.4 | 9 | 73 | 4 | 2 | 5 | 32.3 | 7.0–49.5 | 37.2 | 454 | 685 | 0.34 | 0.38 | 0.93 | 0.98 | PLS |
3 | 3 | 4 | 32.5 | 37 | 47 | 0 | 3 | 7 | 41.8 | 16.0–58.0 | 32.8 | 239 | 546 | 0.25 | 0.20 | 1.14 | 1.20 | PLS/TLS |
4 | 2 | 1 | 24.0 | 58 | 11 | 31 | 0 | 0 | 28.1 | 5.2–57.3 | 39.5 | 637 | 768 | 0.65 | 0.31 | 1.13 | 0.92 | PLS/TLS |
5 | 1 | 0 | 22.4 | 26 | 71 | 3 | 0 | 0 | 15.0 | 5.0–42.5 | 40.0 | 2260 | 997 | 0.5 | 0.36 | 0.83 | 0.73 | PLS/TLS |
6 | 1 | 0 | 34.2 | 14 | 86 | 0 | 0 | 0 | 12.1 | 5.0–32.4 | 26.8 | 2332 | 727 | 0.46 | 0.33 | 0.93 | 0.43 | PLS/TLS |
7 | 3 | 3 | 22.4 | 35 | 50 | 3 | 6 | 6 | 38.3 | 6.8–62.0 | 32.9 | 286 | 567 | 0.52 | 0.40 | 0.99 | 1.15 | PLS/TLS |
8 | 1 | 1 | 10.5 | 82 | 10 | 1 | 0 | 5 | 18.7 | 5.0–50.7 | 32.9 | 1202 | 752 | 0.48 | 0.37 | 0.99 | 0.69 | PLS/TLS |
9 | 1 | 0 | 51.0 | 60 | 39 | 0 | 0 | 0 | 13.5 | 5.0–28.2 | 47.9 | 3350 | 1246 | 0.42 | 0.33 | 1.03 | 0.69 | PLS/TLS |
10 | 2 | 0 | 47.1 | 13 | 87 | 0 | 0 | 0 | 26.3 | 5.0–49.6 | 26.8 | 493 | 535 | 0.57 | 0.50 | 0.96 | 0.39 | PLS/TLS |
11 | 3 | 3 | 24.0 | 71 | 29 | 0 | 0 | 0 | 43.1 | 5.4–74.0 | 56.9 | 390 | 934 | 0.40 | 0.30 | 1.12 | 0.60 | PLS/TLS |
12 | 3 | 1 | 14.2 | 56 | 38 | 0 | 0 | 5 | 35.2 | 5.8–59.1 | 43.3 | 446 | 770 | 0.47 | 0.40 | 0.89 | 0.85 | PLS/TLS |
13 | 2 | 0 | 34.2 | 41 | 57 | 0 | 0 | 0 | 21.1 | 5.1–42.0 | 44.4 | 1265 | 966 | 0.68 | 0.48 | 0.84 | 0.78 | PLS/TLS |
14 | 2 | 0 | 41.4 | 35 | 56 | 1 | 6 | 1 | 32.0 | 6.6–55.4 | 43.7 | 541 | 806 | 0.43 | 0.39 | 0.98 | 0.98 | PLS/TLS |
15 | 2 | 0 | 25.7 | 43 | 45 | 0 | 0 | 0 | 20.2 | 5.1–43.7 | 42.3 | 1313 | 936 | 0.74 | 0.43 | 0.80 | 1.00 | PLS/TLS |
16 | 3 | 1 | 37.8 | 26 | 56 | 0 | 0 | 19 | 32.7 | 5.1–56.7 | 46.7 | 557 | 855 | 0.58 | 0.47 | 0.90 | 0.99 | PLS/TLS |
17 | 3 | 2 | 20.7 | 5 | 53 | 0 | 24 | 18 | 33.1 | 5.0–60.2 | 42.6 | 493 | 776 | 0.56 | 0.50 | 0.71 | 1.13 | PLS/TLS |
18 | 2 | 1 | 30.8 | 3 | 64 | 0 | 6 | 27 | 28.5 | 5.4–56.0 | 51.4 | 804 | 993 | 0.64 | 0.50 | 0.93 | 0.91 | PLS/TLS |
19 | 2 | 0 | 32.5 | 0 | 97 | 0 | 3 | 0 | 22.6 | 5.2–43.2 | 31.1 | 772 | 659 | 0.63 | 0.47 | 0.90 | 0.15 | PLS |
20 | 2 | 0 | 34.4 | 4 | 86 | 0 | 0 | 0 | 20.2 | 5.4–44.2 | 33.8 | 1050 | 748 | 0.59 | 0.46 | 0.79 | 0.57 | PLS |
Step No. | Step/Substep | Software | Package/Function | Parameters | ||
---|---|---|---|---|---|---|
1 | Registration of point cloud | GeoSLAM Hub | ||||
2 | Export in .las format | 100% of points time stamp: scan point color: none | ||||
3 | Co-registration of scans | FARO SCENE | ||||
4 | Export in .xyz format | |||||
5 | Import, transform, and export in .las format | R | data.table, rlas | fread(), write.las() | ||
6 | Import data | lidR | readLAS() | filter = "-keep_circle 0 0 21" | ||
7 | Classify into ground points and non-ground points | lasground() | csf(class_threshold = 0.05, cloth_resolution = 0.2, rigidness = 1) | |||
8 | Create DTM | grid_terrain() | res = 0.2, knnidw(k = 2000, p = 0.5) | |||
9 | Normalize relative to DTM | lasnormalize() | ||||
10 | Remove ground points | lasfilter() | Classification = 1 | |||
11 | Sample random point per voxel | TreeLS | tlsSample() | voxelize(spacing = 0.02) voxelize(spacing = 0.015) | ||
12a | Clustering 2D | calculate reachability of each point | dbscan | optics() | eps = 0.025 minPts = 90 | |
12b | DBSCAN clustering | extractDBSCAN() | eps_cl = 0.025 | |||
13 | Filter clusters | various functions in base | nr. of points ≥ 500 nr. of points ≥ 600 vertical extent ≥ 1.3 m | |||
14a | if(extension≥0.22 m²) Clustering 3D | calculate reachability of each point | dbscan | optics() | eps = 0.025 minPts = 20 | |
14b | DBSCAN clustering | extractDBSCAN() | eps_cl = 0.02 | |||
14a | if(extension<0.22 m²) Clustering 3D | calculate reachability of each point | dbscan | optics() | eps = 0.025 minPts = 18 | |
14b | DBSCAN clustering | extractDBSCAN() | eps_cl = 0.023 | |||
15 | Filter clusters | various functions in base | nr. of points ≥ 500 vertical extent ≥ 1.3 m 80% quantile intensity > 7900 | |||
16 | Stratification into 14 vertical layers | various functions in base | from 1 m to 2.625 m vertical extent = 0.15 m overlap = 0.025 m | |||
17a | Preparing layers for diameter estimation | edci | circMclust() | nx = 25 ny = 25 nr = 5 | ||
17b | l | conicfit | EllipseDirectFit() | |||
17c | if(diam. <0.3 m) add buffer | various functions in base | + 0.06 m | |||
17d | if(diam. ≥0.3 m) add buffer | various functions in base | + 0.09 m | |||
18a | diameter estimation | edci | circMclust() | nx = 25 ny = 25 nr = 5 | ||
18b | conicfit | EllipseDirectFit() | ||||
18c | conicfit | LMcircleFit() | ||||
18d | mgcv | gam() predict() | s(angle, bs="cc") | |||
spatstat | area.owin() | |||||
18e | mgcv | gam() predict() | te(angle, Z, bs=c("cc","tp")) Z = 1.3 m | |||
18f | spatstat | area.owin() | ||||
19a | Check criteria for diameters for 6 out of 14 layers | sd XY position ( and ) | various functions in base | ≤ 0.01 m | ||
19b | sd diameter ( and ) | ≤ 0.0185 m | ||||
20 | Calculate final position at 1.3 m (from or ) | base | lm() | |||
21 | Calculate final dbh at 1.3 m for all diameter fits | base | lm() | |||
22 | Affine transformation of tree positions | vec2dtransf | AffineTransform-ation() | |||
23 | Assign tree positions | spatstat | pppdist() | cutoff = 0.3 | ||
24 | Correct bias for dgam | base | lm() |
Appendix B
Radius | dbh | PLS | TLS | PLS | TLS | PLS | TLS |
---|---|---|---|---|---|---|---|
20 m | ≥5 cm | 95.99 | 78.46 | 1.13 | 2.41 | 94.83 | 76.38 |
20 m | ≥10 cm | 98.76 | 86.32 | 1.40 | 2.70 | 97.29 | 83.81 |
20 m | ≥15 cm | 99.36 | 90.07 | 1.69 | 3.19 | 97.58 | 87.04 |
15 m | ≥5 cm | 95.98 | 87.33 | 0.84 | 3.26 | 95.16 | 84.05 |
15 m | ≥10 cm | 98.95 | 93.81 | 1.06 | 3.68 | 97.86 | 89.96 |
15 m | ≥15 cm | 99.56 | 94.78 | 1.29 | 4.27 | 98.24 | 90.33 |
10 m | ≥5 cm | 97.33 | 92.22 | 0.66 | 1.98 | 96.67 | 90.15 |
10 m | ≥10 cm | 99.48 | 98.35 | 0.91 | 2.08 | 98.55 | 96.08 |
10 m | ≥15 cm | 99.18 | 98.64 | 1.08 | 2.47 | 98.05 | 95.93 |
5 m | ≥5 cm | 99.15 | 93.97 | 0.62 | 0.42 | 98.44 | 93.52 |
5 m | ≥10 cm | 100.00 | 98.82 | 1.00 | 0.59 | 98.75 | 98.17 |
5 m | ≥15 cm | 100.00 | 99.02 | 1.00 | 0.84 | 98.75 | 98.04 |
Plot | Time (min) PLS | Time (min) TLS | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 100.0 | 91.7 | 0.0 | 1.1 | 100.0 | 90.6 | 2.96 | 2.38 | 2.11 | −1.32 | −0.75 | −0.92 | 2.58 | 0.55 | 9.1 | 49.6 |
2 | 100.0 | 0.0 | 100.0 | 1.95 | 1.64 | −1.06 | 0.49 | 2.58 | 7.3 | |||||||
3 | 100.0 | 93.3 | 0.0 | 3.4 | 100.0 | 90.0 | 3.79 | 5.11 | 2.50 | −3.59 | −2.40 | −1.93 | 2.78 | 0.58 | 11.7 | 49.6 |
4 | 95.0 | 78.8 | 1.3 | 0.0 | 93.8 | 78.8 | 3.56 | 1.67 | 2.02 | −0.23 | −0.24 | 0.09 | 2.55 | 0.54 | 12.0 | 49.6 |
5 | 90.8 | 63.8 | 0.4 | 1.1 | 90.5 | 63.1 | 2.79 | 2.89 | 2.51 | 0.22 | −1.11 | −0.35 | 2.43 | 0.62 | 13.4 | 49.6 |
6 | 83.3 | 47.3 | 0.4 | 0.0 | 82.9 | 47.3 | 3.50 | 2.16 | 3.16 | 0.52 | −0.88 | 0.29 | 2.33 | 0.56 | 10.7 | 49.6 |
7 | 100.0 | 69.4 | 7.7 | 10.7 | 91.7 | 61.1 | 3.15 | 4.20 | 2.44 | −2.35 | −2.30 | −0.98 | 2.69 | 0.46 | 13.9 | 49.6 |
8 | 97.4 | 62.9 | 1.3 | 3.1 | 96.0 | 60.9 | 4.00 | 2.50 | 3.81 | 0.86 | −1.21 | 1.55 | 2.57 | 0.58 | 13.5 | 49.6 |
9 | 92.2 | 56.1 | 0.0 | 0.4 | 92.2 | 55.9 | 1.83 | 2.28 | 1.98 | 0.21 | −0.55 | 0.80 | 2.18 | 0.57 | 15.5 | 49.6 |
10 | 95.2 | 92.9 | 0.0 | 1.5 | 95.2 | 91.4 | 3.67 | 2.06 | 2.51 | −2.13 | 0.34 | −1.21 | 2.74 | 0.50 | 8.5 | 49.6 |
11 | 100.0 | 90.0 | 0.0 | 2.2 | 100.0 | 88.0 | 3.13 | 3.54 | 2.66 | −1.92 | −1.21 | 0.91 | 2.67 | 0.47 | 11.4 | 49.6 |
12 | 98.2 | 93.4 | 1.8 | 5.0 | 96.4 | 88.5 | 3.26 | 1.52 | 1.67 | −2.63 | −0.27 | −0.03 | 2.61 | 0.39 | 10.6 | 49.6 |
13 | 90.6 | 72.3 | 0.7 | 0.0 | 89.9 | 72.3 | 3.27 | 2.34 | 2.86 | −0.41 | −0.91 | 0.80 | 2.50 | 0.61 | 13.1 | 49.6 |
14 | 100.0 | 97.2 | 0.0 | 0.0 | 100.0 | 97.2 | 2.26 | 1.86 | 1.47 | −1.37 | −0.21 | 0.34 | 2.59 | 0.39 | 8.6 | 49.6 |
15 | 87.3 | 57.1 | 0.7 | 0.9 | 86.7 | 56.6 | 2.25 | 3.19 | 2.10 | −0.2 | −1.06 | 0.54 | 2.52 | 0.61 | 10.6 | 49.6 |
16 | 100.0 | 94.4 | 0.0 | 4.2 | 100.0 | 90.3 | 3.17 | 2.39 | 1.61 | −2.05 | −0.84 | 0.00 | 2.70 | 0.55 | 12.1 | 49.6 |
17 | 95.2 | 88.7 | 6.3 | 5.2 | 88.7 | 83.9 | 2.62 | 1.91 | 1.50 | −1.91 | −0.18 | 0.51 | 2.58 | 0.41 | 9.8 | 49.6 |
18 | 99.0 | 84.5 | 2.0 | 2.2 | 97.0 | 82.5 | 2.97 | 2.59 | 1.81 | −1.81 | −0.21 | −0.10 | 2.45 | 0.44 | 11.0 | 49.6 |
19 | 97.9 | 0.0 | 97.9 | 2.29 | 1.95 | −0.46 | 0.02 | 2.39 | 8.0 | |||||||
20 | 97.7 | 0.0 | 97.7 | 2.01 | 1.59 | −0.53 | −0.48 | 2.35 | 8.3 |
Appendix C
References
- Wendland, A.; Bawa, K.S. Tropical forestry: The costa rican experience in management of forest resources. J. Sustain. For. 1996, 3, 91–156. [Google Scholar] [CrossRef]
- Kershaw, J.A.; Ducey, M.J.; Beers, T.W.; Husch, B. Forest Mensuration; John Wiley & Sons, Ltd.: Chichester, UK, 2016; ISBN 9781118902028. [Google Scholar]
- Köhl, M.; Magnussen, S.; Marchetti, M. Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory; Tropical Forestry; Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; ISBN 978-3-540-32571-0. [Google Scholar]
- Kauffman, J.B.; Arifanti, V.B.; Basuki, I.; Kurnianto, S.; Novita, N.; Murdiyarso, D.; Donato, D.C.; Warren, M.W. Protocols for the Measurement, Monitoring, and Reporting of Structure, Biomass, Carbon Stocks and Greenhouse Gas Emissions in Tropical Peat Swamp Forests; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2017. [Google Scholar]
- Kramer, H.; Akça, A. Leitfaden zur Waldmesslehre; J. D. Sauerländers Verlag: Bad Orb, Germany, 2008. [Google Scholar]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppä, J.; Kaartinen, H.; Lehtomäki, M.; Pyörälä, J.; Pfeifer, N.; Holopainen, M.; Brolly, G.; Francesco, P.; Hackenberg, J.; et al. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS J. Photogramm. Remote Sens. 2018, 144, 137–179. [Google Scholar] [CrossRef]
- Ritter, T.; Schwarz, M.; Tockner, A.; Leisch, F.; Nothdurft, A. Automatic mapping of forest stands based on three-dimensional point clouds derived from terrestrial laser-scanning. Forests 2017, 8, 265. [Google Scholar] [CrossRef]
- Liang, X.; Kukko, A.; Hyyppä, J.; Lehtomäki, M.; Pyörälä, J.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Wang, Y. In-situ measurements from mobile platforms: An emerging approach to address the old challenges associated with forest inventories. ISPRS J. Photogramm. Remote Sens. 2018, 143, 97–107. [Google Scholar] [CrossRef]
- Watt, P.J.; Donoghue, D.N.M. Measuring forest structure with terrestrial laser scanning. Int. J. Remote Sens. 2005, 26, 1437–1446. [Google Scholar] [CrossRef]
- Maas, H.-G.; Bienert, A.; Scheller, S.; Keane, E. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Remote Sens. 2008, 29, 1579–1593. [Google Scholar] [CrossRef]
- Vonderach, C.; Vögtle, T.; Adler, P.; Norra, S. Terrestrial laser scanning for estimating urban tree volume and carbon content. Int. J. Remote Sens. 2012, 33, 6652–6667. [Google Scholar] [CrossRef]
- Liu, J.; Liang, X.; Hyyppä, J.; Yu, X.; Lehtomäki, M.; Pyörälä, J.; Zhu, L.; Wang, Y.; Chen, R. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Ritter, T.; Nothdurft, A. Automatic assessment of crown projection area on single trees and stand-level, based on three-dimensional point clouds derived from terrestrial laser-scanning. Forests 2018, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Henning, J.G.; Radtke, P.J. Detailed Stem Measurements of Standing Trees from Ground-Based Scanning Lidar. For. Sci. 2006, 52, 67–80. [Google Scholar] [CrossRef]
- Moorthy, I.; Miller, J.R.; Berni, J.A.J.; Zarco-Tejada, P.; Hu, B.; Chen, J. Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agric. For. Meteorol. 2011, 151, 204–214. [Google Scholar] [CrossRef]
- Strahler, A.H.; Jupp, D.L.; Woodcock, C.E.; Schaaf, C.B.; Yao, T.; Zhao, F.; Yang, X.; Lovell, J.; Culvenor, D.; Newnham, G.; et al. Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna ®). Can. J. Remote Sens. 2008, 34, S426–S440. [Google Scholar] [CrossRef] [Green Version]
- Moskal, L.M.; Zheng, G. Retrieving forest inventory variables with terrestrial laser scanning (TLS) in urban heterogeneous forest. Remote Sens. 2012, 4, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Schilling, A.; Schmidt, A.; Maas, H.-G. Tree Topology Representation from TLS Point Clouds Using Depth-First Search in Voxel Space. Photogramm. Eng. Remote Sens. 2012, 78, 383–392. [Google Scholar] [CrossRef]
- Gollob, C.; Ritter, T.; Wassermann, C.; Nothdurft, A. Influence of Scanner Position and Plot Size on the Accuracy of Tree Detection and Diameter Estimation Using Terrestrial Laser Scanning on Forest Inventory Plots. Remote Sens. 2019, 11, 1602. [Google Scholar] [CrossRef] [Green Version]
- Piermattei, L.; Karel, W.; Wang, D.; Wieser, M.; Mokroš, M.; Surový, P.; Koreň, M.; Tomaštík, J.; Pfeifer, N.; Hollaus, M. Terrestrial Structure from Motion Photogrammetry for Deriving Forest Inventory Data. Remote Sens. 2019, 11, 950. [Google Scholar] [CrossRef] [Green Version]
- Panagiotidis, D.; Surový, P.; Kuželka, K. Accuracy of Structure from Motion models in comparison with terrestrial laser scanner for the analysis of DBH and height influence on error behaviour. J. For. Sci. 2016, 62, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Mikita, T.; Janata, P.; Surový, P.; Hyyppä, J.; Liang, X.; Puttonen, E. Forest Stand Inventory Based on Combined Aerial and Terrestrial Close-Range Photogrammetry. Forests 2016. [Google Scholar] [CrossRef] [Green Version]
- Mokroš, M.; Liang, X.; Surový, P.; Valent, P.; Nava, J.; Chudý, F.; Tunák, D.; SaloňSaloˇSaloň, Š.; Merganič, J. Geo-Information Evaluation of Close-Range Photogrammetry Image Collection Methods for Estimating Tree Diameters. ISPRS Int. J. Geo-Inf. 2018. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Feng, Z.; Yang, L.; Mannan, A.; Khan, T.U.; Zhao, Z.; Cheng, Z. Extraction of sample plot parameters from 3D point cloud reconstruction based on combined RTK and CCD continuous photography. Remote Sens. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Jaakkola, A.; Wang, Y.; Hyyppä, J.; Honkavaara, E.; Liu, J.; Kaartinen, H. Remote sensing The Use of a Hand-Held Camera for Individual Tree 3D Mapping in Forest Sample Plots. Remote Sens. 2014, 6, 6587–6603. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wang, Y.; Jaakkola, A.; Kukko, A.; Kaartinen, H.; Hyyppa, J.; Honkavaara, E.; Liu, J. Forest Data Collection Using Terrestrial Image-Based Point Clouds From a Handheld Camera Compared to Terrestrial and Personal Laser Scanning. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5117–5132. [Google Scholar] [CrossRef]
- Maltamo, M.; Næsset, E.; Manag, J.V.-C. Concepts and Case Studies. In Forestry Applications of Airborne Laser Scanning; Springer: Berlin, Germany, 2014. [Google Scholar]
- Lindberg, E.; Hollaus, M. Comparison of methods for estimation of stem volume, stem number and basal area from airborne laser scanning data in a hemi-boreal forest. Remote Sens. 2012, 4, 1004–1023. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, L.; Vauhkonen, J.; Virolainen, A.; Hovi, A.; Korpela, I. Estimation of tree crown volume from airborne lidar data using computational geometry. Int. J. Remote Sens. 2013, 34, 7236–7248. [Google Scholar] [CrossRef]
- Vauhkonen, J.; Næsset, E.; Gobakken, T. Deriving airborne laser scanning based computational canopy volume for forest biomass and allometry studies. ISPRS J. Photogramm. Remote Sens. 2014, 96, 57–66. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Kaartinen, H.; Maltamo, M. Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sens. Environ. 2004, 90, 451–462. [Google Scholar] [CrossRef]
- Brede, B.; Calders, K.; Lau, A.; Raumonen, P.; Bartholomeus, H.M.; Herold, M.; Kooistra, L. Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR. Remote Sens. Environ. 2019, 233. [Google Scholar] [CrossRef]
- Puliti, S.; Dash, J.P.; Watt, M.S.; Breidenbach, J.; Pearse, G.D. A comparison of UAV laser scanning, photogrammetry and airborne laser scanning for precision inventory of small-forest properties. For. An Int. J. For. Res. 2019. [Google Scholar] [CrossRef]
- Brede, B.; Lau, A.; Bartholomeus, H.; Kooistra, L. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR. Sensors 2017, 17, 2371. [Google Scholar] [CrossRef]
- Li, J.; Yang, B.; Cong, Y.; Cao, L.; Fu, X.; Dong, Z. 3D forest mapping using a low-cost UAV laser scanning system: Investigation and comparison. Remote Sens. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Bruggisser, M.; Hollaus, M.; Kükenbrink, D.; Pfeifer, N. Comparison of Forest Structure Metrics Derived from Uav Lidar and Als Data. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus GmbH, Bergamo, Italy, 6–8 February 2019; Volume 4, pp. 325–332. [Google Scholar]
- Cao, L.; Liu, H.; Fu, X.; Zhang, Z.; Shen, X.; Ruan, H. Comparison of UAV LiDAR and Digital Aerial Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests. Forests 2019, 10, 145. [Google Scholar] [CrossRef] [Green Version]
- Puliti, S.; Solberg, S.; Granhus, A. Use of UAV Photogrammetric Data for Estimation of Biophysical Properties in Forest Stands Under Regeneration. Remote Sens. 2019, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- Krause, S.; Sanders, T.G.M.; Mund, J.-P.; Greve, K. UAV-Based Photogrammetric Tree Height Measurement for Intensive Forest Monitoring. Remote Sens. 2019, 11, 758. [Google Scholar] [CrossRef] [Green Version]
- Surový, P.; Almeida Ribeiro, N.; Panagiotidis, D. Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems. Int. J. Remote Sens. 2018, 39, 4786–4800. [Google Scholar] [CrossRef]
- Liang, X.; Kukko, A.; Kaartinen, H.; Hyyppä, J.; Yu, X.; Jaakkola, A.; Wang, Y. Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services. Sensors 2014, 14, 1228–1248. [Google Scholar] [CrossRef]
- Maltamo, M.; Bollandsas, O.M.; Naesset, E.; Gobakken, T.; Packalen, P. Different plot selection strategies for field training data in ALS-assisted forest inventory. Forestry 2011, 84, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Holopainen, M.; Kankare, V.; Vastaranta, M.; Liang, X.; Lin, Y.; Vaaja, M.; Yu, X.; Hyyppä, J.; Hyyppä, H.; Kaartinen, H.; et al. Tree mapping using airborne, terrestrial and mobile laser scanning—A case study in a heterogeneous urban forest. Urban For. Urban Green. 2013, 12, 546–553. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppa, J.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Yu, X. The Use of a Mobile Laser Scanning System for Mapping Large Forest Plots. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1504–1508. [Google Scholar] [CrossRef]
- Ryding, J.; Williams, E.; Smith, M.; Eichhorn, M. Assessing Handheld Mobile Laser Scanners for Forest Surveys. Remote Sens. 2015, 7, 1095–1111. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Liu, H.; Feng, Z.; Shen, C.; Chen, P. Applicability of personal laser scanning in forestry inventory. PLoS ONE 2019, 14, e0211392. [Google Scholar] [CrossRef] [PubMed]
- Pueschel, P.; Newnham, G.; Rock, G.; Udelhoven, T.; Werner, W.; Hill, J. The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS J. Photogramm. Remote Sens. 2013, 77, 44–56. [Google Scholar] [CrossRef]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Bienert, A.; Georgi, L.; Kunz, M.; Maas, H.G.; von Oheimb, G. Comparison and combination of mobile and terrestrial laser scanning for natural forest inventories. Forests 2018, 8, 395. [Google Scholar] [CrossRef] [Green Version]
- Rönnholm, P.; Liang, X.; Kukko, A.; Jaakkola, A.; Hyyppä, J. Quality Analysis and correction of mobile backpack laser scanning data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III–1, 41–47. [Google Scholar] [CrossRef]
- Tjernqvist, M. Backpack-based Inertial Navigation and LiDAR Mapping in Forest Environments; Umeå University: Umeå, Sweden, 2017. [Google Scholar]
- Oveland, I.; Hauglin, M.; Giannetti, F.; Kjørsvik, N.S.; Gobakken, T. Comparing three different ground based laser scanning methods for tree stem detection. Remote Sens. 2018, 10, 538. [Google Scholar] [CrossRef] [Green Version]
- Cabo, C.; Del Pozo, S.; Rodríguez-Gonzálvez, P.; Ordóñez, C.; González-Aguilera, D. Comparing terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level. Remote Sens. 2018, 10, 540. [Google Scholar] [CrossRef] [Green Version]
- Del Perugia, B.; Giannetti, F.; Chirici, G.; Travaglini, D. Influence of Scan Density on the Estimation of Single-Tree Attributes by Hand-Held Mobile Laser Scanning. Forests 2019, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Giannetti, F.; Puletti, N.; Quatrini, V.; Travaglini, D.; Bottalico, F.; Corona, P.; Chirici, G. Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands. Eur. J. Remote Sens. 2018, 51, 795–807. [Google Scholar] [CrossRef] [Green Version]
- Vatandaşlar, C.; Zeybek, M. Application of handheld laser scanning technology for forest inventory purposes in the NE Turkey. Turkish J. Agric. For. 2020. [Google Scholar] [CrossRef]
- Zhou, S.; Kang, F.; Li, W.; Kan, J.; Zheng, Y.; He, G. Extracting Diameter at Breast Height with a Handheld Mobile LiDAR System in an Outdoor Environment. Sensors 2019, 19, 3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukko, A.; Kaijaluoto, R.; Kaartinen, H.; Lehtola, V.V.; Jaakkola, A.; Hyyppä, J. Graph SLAM correction for single scanner MLS forest data under boreal forest canopy. ISPRS J. Photogramm. Remote Sens. 2017, 132, 199–209. [Google Scholar] [CrossRef]
- Thrun, S.; Montemerlo, M. The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures. Int. J. Robot. Res. 2006. [Google Scholar] [CrossRef]
- ZEB Revo—GeoSLAM. Available online: https://geoslam.com/solutions/zeb-revo/ (accessed on 12 January 2020).
- ZEB Revo RT—GeoSLAM. Available online: https://geoslam.com/solutions/zeb-revo-rt/ (accessed on 12 January 2020).
- Abegg, M.; Kükenbrink, D.; Zell, J.; Schaepman, M.; Morsdorf, F.; Abegg, M.; Kükenbrink, D.; Zell, J.; Schaepman, M.E.; Morsdorf, F. Terrestrial Laser Scanning for Forest Inventories—Tree Diameter Distribution and Scanner Location Impact on Occlusion. Forests 2017, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- ZEB Horizon—GeoSLAM. Available online: https://geoslam.com/solutions/zeb-horizon/ (accessed on 13 January 2020).
- Schodterer, H. Einrichtung eines Permanenten Stichprobennetzes im Lehrforst; University of Natural Resources and Life Sciences: Wien, Austria, 1987. [Google Scholar]
- Bitterlich, W. Die Winkelzählprobe. Allgemeine forst-und holzwirtschaftliche Zeitung 1948, 59, 4–5. [Google Scholar] [CrossRef]
- Bitterlich, W. Die Winkelzählprobe. Forstwiss. Cent. 1952, 71, 215–225. [Google Scholar] [CrossRef]
- Bitterlich, W. The Relascope Idea. Relative Measurements in Forestry; Commonwealth Agricultural Bureau: Oxfordshire, UK, 1984; ISBN 0851985394. [Google Scholar]
- Reineke, L.H. Perfecting a stand-density index for evenage forests. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Fueldner, K. Strukturbeschreibung von Buchen-Edellaubholz-Mischwäldern; Georg-August-Universitaet Goettingen: Göttingen, Germany, 1995. [Google Scholar]
- Clark, P.J.; Evans, F.C. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- PuckTM|Velodyne Lidar. Available online: https://velodynelidar.com/products/puck/ (accessed on 13 January 2020).
- Hub—GeoSLAM. Available online: https://geoslam.com/solutions/geoslam-hub/ (accessed on 13 January 2020).
- LAS (LASer) File Format, Version 1. Available online: https://www.loc.gov/preservation/digital/formats/fdd/fdd000418.shtml (accessed on 20 February 2020).
- FARO SCENE|FARO Technologies. Available online: https://www.faro.com/products/construction-bim-cim/faro-scene/ (accessed on 23 February 2019).
- Tan, K.; Zhang, W.; Shen, F.; Cheng, X. Investigation of TLS Intensity Data and Distance Measurement Errors from Target Specular Reflections. Remote Sens. 2018, 10, 1077. [Google Scholar] [CrossRef] [Green Version]
- Kashani, A.; Olsen, M.; Parrish, C.; Wilson, N. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration. Sensors 2015, 15, 28099–28128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, K.; Cheng, X. Correction of Incidence Angle and Distance Effects on TLS Intensity Data Based on Reference Targets. Remote Sens. 2016, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Pfeifer, N.; Briese, C. Laser scanning—Principles and applications. In Proceedings of the GeoSiberia 2007—International Exhibition and Scientific Congress, Novosibirsk, Russia, 25 April 2007; EAGE Publications BV: Houten, The Netherlands, 2014. [Google Scholar]
- FARO Laser Scanner Focus3D X 330 Features, Benefits & Technical Specifications. Available online: https://faro.app.box.com/s/8ilpeyxcuitnczqgsrgp5rx4a9lb3skq/file/441668110322 (accessed on 29 April 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Version 3.5.1; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Dowle, M.; Srinivasan, A.; Gorecki, J.; Chirico, M.; Stetsenko, P.; Short, T.; Lianoglou, S.; Antonyan, E.; Bonsch, M.; Parsonage, H.; et al. Data.Table: Extension of “Data.Frame”, version 1.12.8. CRAN 2019.
- Roussel, J.-R.; De Boissieu, F. rlas: Read and Write “las” and “laz” Binary File Formats Used for Remote Sensing Data 2019; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Roussel, J.-R.; Auty, D.; Romain, J.-R.; Auty, D.; De Boissieu, F.; Meador Sánchez, A. lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications 2019; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.P.; Sander, J. OPTICS: Ordering Points to Identify the Clustering Structure. ACM Sigmod Record 1999, 28, 49–60. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the KDD’96: Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996. [Google Scholar]
- Ferrara, R.; Virdis, S.G.P.; Ventura, A.; Ghisu, T.; Duce, P.; Pellizzaro, G. An automated approach for wood-leaf separation from terrestrial LIDAR point clouds using the density based clustering algorithm DBSCAN. Agric. For. Meteorol. 2018, 262, 434–444. [Google Scholar] [CrossRef]
- Birant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Eisenkeil, F.; Schafhitzel, T.; Kühne, U.; Deussen, O. Clustering and visualization of non-classified points from LiDAR Data for Helicopter Navigation. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXIII. International Society for Optics and Photonics, Baltimore, MD, USA, 5–8 May 2014; p. 90910V. [Google Scholar]
- De Conto, T. TreeLS: Terrestrial Point Cloud Processing of Forest Data 2019; The Comprehensive R Archive Network: Wien, Austria, 2019. [Google Scholar]
- Müller, C.H.; Garlipp, T. Simple consistent cluster methods based on redescending M-estimators with an application to edge identification in images. J. Multivar. Anal. 2005, 92, 359–385. [Google Scholar] [CrossRef] [Green Version]
- Garlipp, T. edci: Edge Detection and Clustering in Images, R package version 1.1-3. 2018. Available online: https://CRAN.R-project.org/package=edci (accessed on 23 February 2019).
- Fitzgibbon, A.W.; Pilu, M.; Fisher, R.B. Direct least squares fitting of ellipses. In Proceedings of the International Conference on Pattern Recognition, Vienna, Austria, 25–29 August 1996; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 1996; Volume 1, pp. 253–257. [Google Scholar]
- Gama, J.; Chernov, N. conicfit: Algorithms for Fitting Circles, Ellipses and Conics Based on the Work by Prof. Nikolai Chernov 2015; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Chernov, N. Circular and Linear Regression; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 2011, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N.; Pya, N.; Säfken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc. 2016, 111, 1548–1575. [Google Scholar] [CrossRef]
- Wood, S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 2004, 99, 673–686. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wood, S.N. Thin-plate regression splines. J. R. Stat. Soc. 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Baddeley, A.; Turner, R. {spatstat}: An {R} Package for Analyzing Spatial Point Patterns. J. Stat. Softw. 2005, 12, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Girardeau-Montaut, D.C. 3D Point Cloud and Mesh Processing Software; Telecom ParisTechs: Palaiseau, France, 2017. [Google Scholar]
- CRAN—Package vec2dtransf. Available online: https://cran.r-project.org/web/packages/vec2dtransf/index.html (accessed on 8 May 2020).
- Wezyk, P.; Koziol, K.; Glista, M.; Pierzchalski, M. Terrestrial laser scanning versus traditional forest inventory first results from the polish forests. In Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; Volume 36, pp. 424–429. [Google Scholar]
- Pfeifer, N.; Winterhalder, D. Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 36, 76–81. [Google Scholar]
- Fasiolo, M.; Wood, S.N.; Zaffran, M.; Nedellec, R.; Goude, Y. Fast Calibrated Additive Quantile Regression. J. Am. Stat. Assoc. 2020. [Google Scholar] [CrossRef] [Green Version]
- Brolly, G.; Király, G. Algorithms for Stem Mapping by Means of Terrestrial Laser Scanning. Acta Silv. Lignaria Hung. 2009, 5, 119–130. [Google Scholar]
- Luoma, V.; Saarinen, N.; Wulder, M.; White, J.; Vastaranta, M.; Holopainen, M.; Hyyppä, J. Assessing Precision in Conventional Field Measurements of Individual Tree Attributes. Forests 2017, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Gollob, C.; Ritter, T.; Nothdurft, A. LAUT—Terrestrial and Personal laser scanner data from Austrian forest Inventory plots. Zenodo 2020. [Google Scholar] [CrossRef]
# of sample plots | 20 | ||||||||
# of trees | 2466 | ||||||||
# of trees/sample plot | 123.3 | ||||||||
dbh range (cm) | 5.0–74.0 | ||||||||
Mean | SD | Min | Max | q(0.05) | q(0.25) | q(0.5) | q(0.75) | q(0.95) | |
(%) | 29.4 | 10.2 | 10.5 | 51.0 | 14.0 | 22.4 | 29.1 | 34.3 | 47.3 |
(cm) | 27.0 | 9.1 | 12.1 | 43.1 | 13.4 | 20.2 | 27.2 | 32.8 | 41.9 |
(m2/ha) | 39.6 | 8.0 | 26.8 | 56.9 | 26.8 | 32.9 | 39.8 | 43.9 | 51.7 |
(trees/ha) | 981 | 807 | 239 | 3350 | 284 | 483 | 689 | 1218 | 2383 |
(trees/ha) | 802 | 174 | 535 | 1246 | 545 | 717 | 772 | 935 | 1009 |
0.53 | 0.13 | 0.25 | 0.74 | 0.34 | 0.45 | 0.54 | 0.63 | 0.71 | |
0.41 | 0.08 | 0.20 | 0.52 | 0.29 | 0.35 | 0.40 | 0.47 | 0.50 | |
0.93 | 0.12 | 0.71 | 1.14 | 0.79 | 0.85 | 0.93 | 0.99 | 1.13 | |
0.79 | 0.28 | 0.15 | 1.20 | 0.38 | 0.61 | 0.81 | 0.98 | 1.15 |
Shape | Material | Diameter (cm) | |
---|---|---|---|
Object 1 | cylinder | plastic | 49.8 |
Object 2 | cylinder | metal | 40.0 |
Object 3 | cylinder | cardboard | 36.1 |
Object 4 | cylinder | plastic | 25.5 |
Object 5 | sphere | plastic | 20.2 |
Object 6 | cylinder | plastic | 15.9 |
Object 7 | cylinder | plastic | 11.0 |
Object 8 | cylinder | plastic | 5.0 |
Object | Reference Diameter (cm) | PLS Scan 1 | PLS Scan 2 | TLS Scan 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scan Time: 2 min | Scan Time: 1 min | Scan Time: 27 min | |||||||||||
Aver-Age Inten-Sity | Aver-Age Inten-Sity | Aver-Age Inten-Sity | |||||||||||
Object 1 | 49.80 | −2.59 | −2.53 | 1.58 | 9370 | −2.16 | −2.16 | 1.45 | 9117 | −0.71 | −0.66 | 0.10 | 57,674 |
Object 2 | 40.00 | −2.16 | −2.19 | 1.51 | 1859 | −0.92 | −1.03 | 1.49 | 1942 | 0.33 | 0.32 | 0.07 | 49,439 |
Object 3 | 36.10 | −1.85 | −1.84 | 1.39 | 12,718 | −1.78 | −1.77 | 1.26 | 12,726 | 0.32 | 0.3 | 0.03 | 55,410 |
Object 4 | 25.50 | −7.84 | −7.83 | 2.53 | 313 | −7.53 | −7.60 | 2.51 | 296 | 0.05 | 0.04 | 0.11 | 31,136 |
Object 5 | 20.20 | −4.31 | −4.29 | 1.45 | 21,177 | −3.37 | −3.44 | 1.18 | 22,179 | −1.14 | −1.13 | 0.2 | 61,644 |
Object 6 | 15.90 | −4.01 | −4.00 | 1.74 | 10,789 | −4.66 | −4.67 | 1.65 | 11,153 | −2.30 | −2.29 | 0.28 | 56,127 |
Object 7 | 11.00 | −2.03 | −2.03 | 1.48 | 3404 | −1.22 | −1.31 | 1.27 | 3562 | 0.19 | 0.18 | 0.07 | 46.442 |
Object 8 | 5.00 | −0.50 | −0.52 | 1.22 | 3011 | −0.34 | −0.36 | 1.23 | 2717 | 0.17 | 0.16 | 0.09 | 46,714 |
Covariate | Coef. | Est. | SE | t Value | p Value |
---|---|---|---|---|---|
−9.770 | 3.355 | −2.912 | 0.004 | ||
−1.851 | 0.752 | −6.727 | <0.001 | ||
0.001 | <0.001 | 3.371 | <0.001 | ||
689.9 | 138.9 | 4.996 | <0.001 | ||
−0.045 | 0.010 | −4.336 | <0.001 | ||
0.353 |
Reference | Method | Scanner | TLS Scanner- Positions | Detection Rate (%) | Commis-sion Rate (%) | Overall Accuracy (%) | RMSE (cm) | Bias (cm) |
---|---|---|---|---|---|---|---|---|
This study | PLS | GeoSLAM ZEB HORIZON | 96 | 1.1 | 94.9 | 2.32 | 0.21 | |
TLS | FARO Focus3D X330 | 4 | 78.5 | 2.4 | 76.1 | 2.55 | −0.74 | |
Bauwens et al. [49] | PLS | GeoSLAM ZEB1 | 90 | 31 | 59 | 1.11 | −0.08 | |
TLS | FARO Focus 3D 120 | 5 | 93 | 22 | 71 | 1.30 | −0.17 | |
TLS | FARO Focus 3D 120 | 1 | 78 | 21 | 57 | 3.73 | −0.08 | |
Oveland et al. [53] | PLS | GeoSLAM ZEB1 | 74.0 | 4.8 | 69.2 | 3.1 | 0.30 | |
TLS | FARO Focus3D X130 | 1 | 61.8 | 5.4 | 56.4 | 6.2 | −2.00 | |
Chen et al. [47] | PLS | GeoSLAM ZEB-REVO-RT | 93.3 | 6.1 | 87.2 | 1.58 | −1.26 | |
Ryding et al. [46] | PLS | GeoSLAM ZEB1 | * | * | * | 2.90 | −0.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gollob, C.; Ritter, T.; Nothdurft, A. Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote Sens. 2020, 12, 1509. https://doi.org/10.3390/rs12091509
Gollob C, Ritter T, Nothdurft A. Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote Sensing. 2020; 12(9):1509. https://doi.org/10.3390/rs12091509
Chicago/Turabian StyleGollob, Christoph, Tim Ritter, and Arne Nothdurft. 2020. "Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology" Remote Sensing 12, no. 9: 1509. https://doi.org/10.3390/rs12091509