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Abstract: Satellite-based models have tremendous potential for monitoring crop production because
satellite data can provide temporally and spatially continuous crop growth information at large
scale. This study used a satellite-based vegetation production model (i.e., eddy covariance light use
efficiency, EC-LUE) to estimate national winter wheat gross primary production, and then combined
this model with the harvest index (ratio of aboveground biomass to yield) to convert the estimated
winter wheat production to yield. Specifically, considering the spatial differences of the harvest index,
we used a cross-validation method to invert the harvest index of winter wheat among counties,
municipalities and provinces. Using the field-surveyed and statistical yield data, we evaluated the
model performance, and found the model could explain more than 50% of the spatial variations of
the yield both in field-surveyed regions and most administrative units. Overall, the mean absolute
percentage errors of the yield are less than 20% in most counties, municipalities and provinces,
and the mean absolute percentage errors for the production of winter wheat at the national scale is
4.06%. This study demonstrates that a satellite-based model is an alternative method for crop yield
estimation on a larger scale.

Keywords: crop yield; light use efficiency; gross primary production; eddy covariance

1. Introduction

As one of the largest producers of wheat, China plays a dominant role in retain-
ing the global balance of demand and supply of wheat [1,2]. In 2018, China produced
131.44 million tons of wheat, which accounted for around 17.9% of the global wheat pro-
duction [3,4]. Winter wheat makes up approximately 95.6% of the wheat production
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in China according to the 2019 statistical data (https://data.stats.gov.cn, accessed on
16 October 2021). The growing season of winter wheat coincides with the dry season
(November to June), suggesting that there is a high possibility that wheat experiences
dry events [5]. Therefore, reliable estimations of winter wheat production in China on a
national scale are extremely important for governments when making decisions regarding
food security.

A variety of methods have been used for estimating crop yield: statistical models,
machine learning algorithms, crop growth modeling and light use efficiency (LUE)-based
models. Statistical models rely on the regressions between crop yield and various variables,
such as the normalized difference vegetation index (NDVI) [6,7], the enhanced vegetation
index (EVI) [8], and land surface temperature [9,10]. Statistical models usually show good
performance for crop yield estimation in a given study area, but can hardly be applied to
large areas owing to the limited spatial generalization [11,12]. Machine learning algorithms
do not require the presupposed relationships between yield and predictor variables [13,14],
and usually show good performance [15]. For example, a recent study highlighted that
machine learning algorithms could predict the yield at the county level about four months
prior to harvest [16]. However, the performance of machine learning algorithms usually
needs large volume of observations for model training, and the models are specific for a
given region and period and unavailable for direct support to other areas and phases [17,18].
Crop growth modeling was developed to represent the critical processes of crop growth
as well as the responses of crops to the environment [19–21]. Due to the complexity of
crop growth and existing knowledge gaps, there are still large challenges for large-scale
applications of crop growth modeling [22–24]. For example, crop growth modeling requires
a large set of model parameters to simulate the physiological and growth processes of
crops, which makes them difficult to implement for large-scale applications [25,26].

Satellite-based methods have been widely used to simulate crop production over
large areas, benefitting from temporally and spatially continuous crop growth information
derived from satellite data [27,28]. LUE models, which are based on satellite data, are a
powerful tool for quantifying crop yield on a large scale [29,30]. LUE models are designed
to simulate vegetation gross primary production (GPP) based on the assumption that
GPP is directly dependent on the absorbed photosynthetically active radiation (APAR)
through LUE [31,32]. Previous studies have validated the performance of the LUE model
in simulating GPP of major ecosystem types at regional and global scales [33–37]. Then,
LUE models were further developed to simulate crop yield by calculating the ratio of GPP
transferred to harvested crop organs [38]. Several studies have employed LUE models to
simulate the yield of various crops and their spatial and temporal variations at the regional
scale [27,28,39]. For example, He et al. [40] applied a LUE model to produce 30 m spatial
resolution GPP of seven crop types in Montana and estimate their yield, and indicated
that the estimated production was consistent with reported production at the county scale.
A recent study also showed that a satellite-based LUE model can capably simulate the
temporal and spatial patterns of winter wheat yield in Kansas [41], which can be used for
future crop yield estimation on a larger scale.

Notably, it is still a huge challenge to estimate crop yield over large regions or at a na-
tional scale [42,43], because the crop yield is highly dependent on crop variety and manage-
ment practices [44,45], which show significant heterogeneity [46]. López-Lozano et al. [47]
found strong correlations between crop yield and accumulated fAPAR in Europe, but
these correlations largely differed with crop types. Based on MODIS-GPP production
(MOD17), Reeves et al. [48] revealed that the estimated GPP and reported wheat yield had
a weak correlation at county scale and climate district in the United States and emphasized
the importance of using spatial-specific harvest index. Therefore, it is still a challenge to
estimate crop yield with large spatial heterogeneity, especially on a national scale. Here,
this study aims to examine the ability of a satellite-based LUE model (i.e., EC-LUE) [49,50]
to quantify the yield and production of winter wheat in China. The overarching goals of
this study are to (1) examine the model performance for simulating crop GPP based on
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eddy covariance (EC) measurements, (2) assess the accuracy of EC-LUE for simulating
winter wheat yield at field, county, municipal and province scales, and (3) investigate the
ability to quantify the production of winter wheat at the national scale.

2. Materials and Methods
2.1. Study Area

The study area covers 11 provinces: Anhui (AH), Gansu (GS), Hebei (HB), Henan
(HN), Hubei (HuB), Jiangsu (JS), Shandong (SD), Shanxi (SAX), Shanxi (SX), Sichuan (SC)
and Xinjiang (XJ). This area includes 146 municipalities and 789 counties with statistical
yield information (Figure 1). The winter wheat planting area and production in our
study region account for 96% and 98% of the total planting area and production in China,
respectively (China Rural Statistical Yearbook 2020). Generally, winter wheat is sown in
early-mid October and harvested in early-mid June of the following year.
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Figure 1. The location of the study area.

2.2. Data
2.2.1. Model Forcing Data

In this study, we derived the NDVI for 2016–2020 from the Enhanced Thematic
Mapper Plus (ETM+) sensor onboard Landsat 7, the Operational Land Imager (OLI) sensor
onboard Landsat 8 (United States Geological Survey, https://www.usgs.gov/, accessed on
16 October 2021) and Multispectral Instrument (MSI) sensor onboard Sentinel 2 (European
Space Agency, https://github.com/senbox-org, accessed on 16 October 2021), which were
processed for atmospheric correction. In order to increase the observation frequency of
satellite as much as possible and reduce the impact of clouds, we firstly resampled the NDVI
of Sentinel 2 with a nearest neighbor method to 30 m to keep a consistent spatial resolution
with the Landsat image. Then, we obtained the NDVI values of all valid pixels within
16 days after cloud removal, and acquired the maximum value for 16 days synthetized with
a spatial resolution of 30 m. The above operations were run on the Google Earth Engine
platform. In addition, we used a linear interpolation method to fill the missing values.

https://www.usgs.gov/
https://github.com/senbox-org
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Furthermore, a Savitzky–Golay filter [51], which has the ability to retain the vegetation
signal information, was used to smooth the NDVI series.

The meteorological forcing data of the EC-LUE model, including photosynthetically
active radiation (PAR), air temperature (T) and vapor pressure deficit (VPD), were derived
from ERA-Interim of the European Centre for Medium-Range Weather Forecasts (ECMWF)
(https://cds.climate.copernicus.eu/, accessed on 16 October 2021). VPD was calculated
based on T and dew-point temperatures from Yuan et al. [50]. The original spatial resolution
of ECWMF was 0.1 × 0.1 degree, and in order to keep the same spatial resolution with
NDVI, the PAR, T and VPD were also resampled to 30 m based on the nearest neighbor
method and the corresponding 16-day mean values were also obtained.

2.2.2. Eddy Covariance Measurement

Three eddy covariance (EC) measurements, located in Luancheng (LC, 114.6928◦ E,
37.8894◦ N) [52], Guantao (GT, 115.1274◦ E, 36.515◦ N) [53] and Shouxian (SX, 116.47◦ E,
32.36◦ N), were used to examine and calibrate the EC-LUE model (Figure 1). These ob-
served sites are croplands with a wheat-maize (LC and GT) and wheat-rice (SX) rotation.
In this study, the nighttime flux partitioning method [54] was applied to calculate the daily
average GPP of winter wheat in the whole growing season. Given the uniqueness of the
agroecosystem, we used the Markov chain Monte Carlo (MCMC) method to calibrate the
value of maximum light use efficiency (εmax) by comparing estimated GPP based on the
EC-LUE model to the calculated GPP from EC measurements. The details of this method
can be found in previous publications [55,56].

2.2.3. Winter-Wheat-Related Data

In this study, the 30 m winter wheat planting area maps in China between 2016 to 2018,
obtained from Dong et al. [57] (https://doi.org/10.6084/m9.figshare.12003990, accessed
on 16 October 2021), were used to estimate the yield of winter wheat. These maps were
acquired with a phenology-based planting area identification method, which can realize
the early winter wheat identification in April with an overall accuracy of 89.88%.

We collected field survey winter wheat yield data reported by farmers at 30 sites in
Henan, Hebei and Shandong provinces from 2019 to 2020 (yellow point in Figure 1), and
each site only had one year of data. We used these data to evaluate the performance of
the EC-LUE model at the surveyed fields. Specifically, we randomly selected 60% of the
surveyed yield data to calibrate the harvest index and then we used the calibrated HI to
estimate yield at the remaining sites. Moreover, to further evaluate the model performance
in estimating winter wheat yield at province, municipal, and county scales, we collected
the statistical winter wheat yield data from 2016 to 2018 from the Statistical Yearbook of
each province, and acquired statistical yield data of 11 provinces, 146 municipalities and
789 counties.

2.3. Method of Winter Wheat Yield Estimation

This study used a satellite-based light use efficiency (LUE) model (i.e., eddy covariance
light use efficiency, EC-LUE) to estimate the yield and production of winter wheat over the
study area. The method first estimates the vegetation gross primary production (GPP) and
then converts GPP estimates to crop yield based on the harvest index [38,41,58]:

Yield = GPP × AR × 1
1 + RS

× 1
1−MC

× HI (1)

where Yield is the estimated winter wheat yield. GPP represents the accumulated GPP
of winter wheat throughout the growing season. AR is the remaining component after
considering the consumption of autotrophic respiration, which is set to 0.66 for winter
wheat [52]. RS represents the ratio of root to aboveground biomass, with a value of 0.2 [58].
MC indicates the moisture content of grain, which is set to 0.11 for winter wheat [59]. HI

https://cds.climate.copernicus.eu/
https://doi.org/10.6084/m9.figshare.12003990
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refers to the harvest index, that is, the proportion of aboveground biomass converted into
crop yield [60,61].

The EC-LUE model, developed by Yuan et al. [49,50], was used to simulate the GPP
of winter wheat in this study area. An advantage of the EC-LUE model is its ability to
simulate GPP over large areas as the potential LUE is independent of various land cover
types [62]. The model is driven by the normalized difference vegetation index (NDVI),
photosynthetically active radiation (PAR), air temperature (T) and vapor pressure deficit
(VPD). The details are as follows:

GPP = PAR × fPAR × εmax ×min(T s, Ws) (2)

fPAR = 1.24 × NDVI− 0.168 (3)

TS =
(T − Tmin) × (T − T max)

(T − Tmin) × (T − Tmax) − (T − T opt)
2 (4)

WS =
VPDmax − VPD

VPDmax −VPDmin
(5)

where fPAR is the part of absorbed PAR. εmax indicates the potential light use efficiency
without environmental stress (2.14 g C m−2 MJ−1 APAR); min (Ts, Ws) refers to the mini-
mum value between Ts and Ws. The model assumes that the limiting factors (temperature
and moisture) follow Liebig’s law, that is, the LUE depends on the most limiting factor.
Tmin, Tmax and Topt are the minimum, maximum and optimum of air temperature (◦C) for
vegetation photosynthesis, and their values are 0 ◦C, 40 ◦C and 21 ◦C, respectively. If the air
temperature is lower than Tmin or higher than Tmax, Ts is set to 0 [49]. VPDmin and VPDmax
are the minimum and maximum of vapor pressure deficit (Pa), with values of 650 Pa and
4300 Pa, respectively. When VPD > VPDmax, Ws is 0, and when VPD < VPDmin, it is 1 [63].

In this study, we first estimated GPP at the 30-m spatial resolution based on the newest
planting area map of winter wheat by Dong et al. [57] (Section 2.2.3). Considering the
temporal and spatial heterogeneity, we calculated the HI of each province, municipality,
and county based on statistical yield data and estimated GPP. We used statistical data over
a 3-year period (2016–2018) and employed the cross-validation method to invert the HI
and validate model performance. Specifically, we used the two years of statistical data and
estimated GPP to invert the HI in each province, municipality, and county, and used the
inverted HI to estimate the yield based on Equation (1) for the remaining year to examine
model performance. This procedure was repeated three times and each year was used as
an independent validation.

In order to estimate the production of winter wheat at the national scale, we first
estimated the winter wheat yield in each province base on the accumulated GPP in the
growing season and the inverted harvest index at a province level. Second, we computed
the planting area of winter wheat in each province according to the winter wheat map.
Finally, we multiplied the estimated yield by planting area to obtain the total production of
all provinces in the corresponding year, according to:

Prod =∑n
i=1(Yield i × Areai

)
(6)

where Prod represents the total production of all provinces, i refers to the number of
provinces (i = 1, 2, 3 . . . 11), Yield is the estimated yield and Area is the planting area of
winter wheat in the corresponding province.

2.4. Model Evaluation

We evaluated the performance of our method for reproducing GPP, yield and pro-
duction based on four metrics: the coefficient of determination (R2), root mean square
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error (RMSE), mean absolute percentage error (MAPE) and the refined Willmott’s index
of agreement (dr).

RMSE =

√
1
n ∑ n

i=1(Pi −Oi)
2 (7)

MAPE =
1
n

n

∑
i=1
|Oi − Pi

Oi
| × 100 (8)

dr =


1− ∑n

i=1|Pi−Oi |
c ∑n

i=1|Oi−O| , when ∑n
i=1|Pi −Oi| ≤ c ∑n

i=1
∣∣Oi −O

∣∣
c ∑n

i=1|Oi−O|
∑n

i=1|Pi−Oi |
− 1, when ∑n

i=1|Pi −Oi| > c ∑n
i=1
∣∣Oi −O

∣∣ (9)

where n is the number of administrative areas, Pi and Oi are the estimated and statistical
yield at the ith administrative area, respectively. O is the mean of the statistical yield over
all administrative areas, and c equals 2, dr ranges from −1 to 1, the greater value indicating
better model performance [64].

3. Results
3.1. GPP Simulation

We calibrated the model parameter (i.e., maximum light use efficiency, εmax) at the
LC, GT and SX sites by the MCMC method, with the values equal to 3.43 g C MJ−1,
3.36 g C MJ−1 and 3.38 g C MJ−1, respectively. Specifically, we used the εmax of SX to vali-
date the model performance for simulating GPP at other two sites. Overall, the simulated
GPP from the EC-LUE model agrees well with the calculated GPP based on EC measure-
ments (Figure 2), suggesting that the model is capable of capturing the temporal variations
and magnitude of tower-based GPP. For example, at the LC site, which has the longest
observations from 2008 to 2016, the coefficient of determination (R2) is 0.84 (Figure 2d). In
addition, the dr are 0.78, 0.8 and 0.85 at the LC, GT and SX sites, respectively.
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3.2. Yield and Production Estimation

We first evaluated the model performance in estimating the yield at the site scale, based
on field-surveyed yield data at the 30 sites of the Henan, Hebei and Shandong provinces.
Specifically, we first calibrated the harvest index (HI, 0.48) and then used the calibrated
HI to estimate yield and examined the model performance (Section 2.2.3). The results
show that the model is able to explain 51% of the spatial variations in investigated yield
(Figure 3). The RMSE, MAPE and dr are 28.93 g C m−2 yr−1, 5.85% and 0.64, respectively.
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In addition, we examined the model performance for estimating winter wheat yield at
municipal and county scales based on the statistical dataset. At the municipal scale, the
model can simulate the spatial variations of yield over all 11 provinces (Figure 4). The
R2 between statistical and estimated yield ranges from 0.47 at HB and XJ to 0.8 at SAX
(Figures 4 and 5b), and all slopes of the linear regression are larger than 0.81 (Figure 5a),
indicating no obvious systematic estimates errors at the municipal scale. The RMSE ranges
from 19.9 g C m−2 yr−1 to 45.06 g C m−2 yr−1, the MAPE values are less than 20% and dr
values are greater than 0.5 in most of the investigated provinces (Figure 5c–e), implying a
smaller deviation between the statistical and estimated yield. However, there still exists
some differences between statistical and estimated yield in several provinces. For example,
poor performance is observed in HB, JS and XJ, although the MAPE values are smaller
than 20% (Figure 5d), and the R2 and dr are both less than 0.5 (Figure 5b,e).

Overall, at the county scale, the model estimations can simulate the spatial variations
of the statistical yield in most provinces (Figure 6), with the R2 between statistical and
estimated yield varying from 0.37 to 0.82 (Figures 5b and 6), and the RMSE ranging from
23.73 g C m−2 yr−1 to 46.65 g C m−2 yr−1 (Figure 5c) (except for the AH, GS and XJ
provinces). Moreover, the MAPE values are lower than 20% and dr values are higher than
0.5 in most provinces (Figure 5d,e), which also shows a lower deviation between statistical
and estimated county yield. Although the model produces praiseworthy performance at
the county scale, there are large uncertainties over several provinces. For example, in the
HB, JS and XJ provinces, both R2 and dr are less than 0.5 (Figure 5b,e).
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We also calculate the estimated and statistical mean winter wheat yield from 2016
to 2018 in each province, municipality and county, and the spatial distribution of esti-
mated and statistical mean winter wheat yield has a good consistency over all three scales
(Figure 7). Overall, the estimated and statistical mean winter wheat yield are higher in
the SD, HN and HB than in other provinces, which also shows at municipal and county
scales (Figure 7). Otherwise, in HuB, SC and GS, the mean yield has lower values at all
three scales. Moreover, the difference between estimated and statistical mean yield is only
obvious at the county scale in XJ (Figure 7(c1,c2)). In addition, at the province scale, the
model explains 81% of the variation in yield with a slope of 0.99, and the RMSE, MAPE
and dr are 23.2 g C m−2 yr−1, 8.8% and 0.8, respectively, which reveals that the estimated
yield is consistent with the statistical yield in the corresponding province (Figure 8a). The
estimated total production of all investigated 11 provinces is also in good agreement with
the statistical value from 2016 to 2018 (Figure 8b). This is especially true in 2016 and
2017, in which the deviations of the estimated and statistical total production are only
approximately 3% and 2%, respectively. All of these results demonstrate the reliability of
our method in estimating the winter wheat yield.

3.3. Harvest Index Distribution

Using the statistical yield data from 2016 to 2018, we inverted the harvest index
with any two years of statistical data and estimated the GPP, and validated the model
performance in estimating the yield of the remaining year. We repeated this procedure
three times and each year was used as an independent validation. The mean HI values of
each province, municipality and county from 2016 to 2018 are shown in Figure 9, which
displays a large spatial heterogeneity. Specifically, at the province scale, the HI values
of most provinces are in the range of 0.2–0.3 and 0.3–0.4, both totals account for 72.72%,
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followed by 0.4–0.5 and 0.5–0.6, with a proportion of 18.18% and 9.09%, respectively
(Figure 9a). The HI values of most municipalities also lie in the range of 0.2–0.3 and
0.3–0.4, which corresponds to a proportion of 64.38%, followed by 0.4–0.5 and 0.5–0.6, with
a proportion of 23.97% and 10.27%, respectively (Figure 9b). In addition, there exists a
very low percentage (<0.7%) of municipalities with HI values less than 0.2 or greater than
0.6 (Figure 9b). The distribution of HI at the county scale is quite similar to that at the
municipal scale (Figure 9c). The notable proportion of HI is in the range of 0.3–0.4 and
0.4–0.5, which accounts for 58.8%, followed by 0.2–0.3 and 0.5–0.6, with a proportion of
20.6% and 12.81%, respectively (Figure 9c). The HI values less than 0.2 or greater than
0.6 only account for 4.65% and 3.14%, respectively (Figure 9c).
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4. Discussion

As one of the largest producers of wheat, China plays an important role in determining
the global supplies of winter wheat and retaining national and global food security [65,66].
However, there are few methods for estimating yield and quantifying production of winter
wheat at the national scale. This study developed a new method based on a satellite-based
light use efficiency model (i.e., EC-LUE), and demonstrated its credible performance for
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simulating the spatial variations of winter wheat yield over 11 provinces, which accounted
for more than 98% of the production of winter wheat in China. Furthermore, our estimates
are performed at a 30-m spatial resolution based on Landsat and Sentinel images and
provide an opportunity to investigate the spatial variations at a fine resolution.

The EC-LUE model has been successfully applied to simulate crop GPP and yield at
36 EC crop sites [38]. Moreover, a recent study showed that the EC-LUE model had the
ability to simulate the spatial and temporal variabilities of winter wheat yield at a state
scale in US [41]. Here, our study further confirmed the feasibility of the model in estimating
winter wheat yield and production at a national scale. Thus, it is promising to apply the
EC-LUE model to predict the spatial and temporal variabilities of other crop yield on a
large scale.

This study used a specific harvest index for each province, municipality and county to
convert the estimated GPP by EC-LUE to crop yield. The validation shows that our method
can simulate the spatial variations of yield and production. The harvest index has been
long established as an essential parameter for estimating crop yield [60,67,68]. Prevailing
crop growth models, for example AQUACROP [69], also use the harvest index to estimate
crop yield. However, the harvest index is affected by crop varieties, growing conditions
and tillage practices [70–73], which poses a great challenge to the identification of the
harvest index on a large spatial scale [74,75]. Numerous studies have made great efforts to
estimate the harvest index at the regional scale [71,74,76]. Previous studies also found a
strong correlation between the harvest index and the fraction of crop transpiration after
anthesis [77–80]. Subsequently, several efforts have been made to estimate the harvest index
by calculating the fraction of crop transpiration after anthesis [75]. However, there are large
uncertainties in crop transpiration that further result in estimation errors of the harvest
index. Another method for estimating the harvest index is to use parameter inversion
by calculating the ratio of statistical crop yield to predicted crop biomass as the mean of
the harvest index at the regional scale [81]. A recent study used winter wheat yield data
and estimated GPP to invert the harvest index in Kansas, USA [41]. This study also used
the method to invert the harvest index of winter wheat at each province, municipality
and county and used it to estimate the corresponding yield and production. The inverted
harvest index mainly varies from 0.2 to 0.6 at all administrative units, which is comparable
to field measurements. For example, Hay [61] found that the harvest index of modern
wheat ranged from 0.3 to 0.6; Shearman et al. [82] recorded a harvest index of 0.48 to 0.5 for
the best winter wheat in the UK. For dryland wheat in Australia, the harvest index varied
from 0.08 to 0.56 [83], and for the semiarid areas in China, the harvest index varied from
0.28 to 0.56 [84]. In addition, He et al. [40] summarized that the range of HI values for
winter wheat was from 0.33 to 0.53; these values were derived from converting biomass,
gross and net primary product to crop yield. In addition, in this study, the inverted harvest
index less than 0.2 or greater than 0.6 occurs in some administrative units. The regions with
a harvest index less than 0.2 are mainly concentrated in HuB, SAX, SC and the southern
region of GS (Figure 9), which is consistent with the spatial distribution of statistical yield
(Figure 7). The statistical winter wheat yield in these areas ranges from 2×103 kg/ha to
4×103 kg/ha, which is significantly lower than the yield of 6×103 kg/ha to 8×103 kg/ha
in the main production provinces (HN and SD). The areas with a harvest index greater
than 0.6 are mainly distributed in XJ and the northern region of GS.

Several potential causes may result in uncertainties in the GPP and yield estimation.
First, we used Landsat7, Landsat8 and Sentinel 2 to synthesize NDVI data. Although these
products have been processed for atmospheric correction, the differences of vegetation
index resulting from different sensors would affect the quality of NDVI data, and alleviating
the influence from this difference remains a challenge [40,57]. Then, the quantity of cloud-
free satellite data largely impacts the estimation accuracy of GPP throughout the growing
season of winter wheat. This study used the composited images from the Sentinel and
Landsat datasets in order to achieve a large fraction of effective satellite data. However,
there are large differences in the available satellite images among investigated periods
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and various provinces and there is a very low fraction of cloud-free images in 2016 and
in South China [85]. A recent study has highlighted that the low quantity of effective
satellite data largely reduces the accuracy of identifying the planting areas of crops [86].
Here, the model accuracy for simulating yield at the county scale is worse than that at the
municipality scale. One potential cause is that the accuracy of identification maps of winter
wheat at the county scale is lower when compared to the municipality scale [57].

Although field management, such as irrigation and fertilization, may impact crop
photosynthetic capacity, satellite-based vegetation index can usefully indicate the impacts
of field management [87]. A previous study demonstrated that the satellite-based LUE
model had the capacity to simulate GPP across different field management practices and
various crops [38]. However, there are still some uncertainties around several parameters
for converting GPP estimations to crop yield, including the ratio of root to aboveground
biomass (RS), autotrophic respiration (AR) and moisture content (MC). We inverted the har-
vest index for counties, municipalities and provinces, but kept the other three parameters
constant (i.e., RS = 0.2, AR = 0.66, MC = 0.11). These three parameters may vary with envi-
ronmental conditions [88]. For example, the ratio of root to aboveground biomass varies
with soil moisture [89], soil nutrient [90] and crop variety [91]. Moreover, the regulation of
assimilated carbon allocation among crop organs is still poorly understood [92–95]. Many
efforts have been made to investigate how the assimilates are partitioned among plant
organs [96–98]. However, there is still no validated theory available, and the ratio of root
to aboveground biomass is one of the weakest features of current crop growth models [99].
The same issue exists in terms of autotrophic respiration fraction, which usually varies with
temperature and growth stages [100–102]. However, there are no satisfying methods to
simulate the spatial and temporal variations of the fraction of autotrophic respiration [103].
In the future, a higher availability of effective satellite data, a better accuracy of crop
planting areas identification and developing methods for describing carbon allocation and
autotrophic respiration will help to improve the crop yield and production estimation.

5. Conclusions

This study used the EC-LUE model to estimate vegetation gross primary production
(GPP) at a 30 m spatial resolution and convert it to yield by combining with the harvest
index and then quantifying the annual winter wheat production at the national scale. To
examine the model performance, we first assessed the accuracy of the EC-LUE model to
simulate temporal and spatial variations of GPP based on eddy covariance measurements at
three winter wheat fields, and then compared the estimated yield with field-surveyed yield
and statistical yield at the province, municipal and county scales. The results demonstrate
that our method can simulate more than 80% of the spatial variation of GPP at flux sites and
more than 50% of the yield spatial variation both in surveyed fields and most administrative
units. This is especially true when the model is combined with the region-specific harvest
index, and makes it possible to effectively estimate winter wheat yield from county to
nation scale. Therefore, our study provides a robust method for converting satellite-based
GPP estimates to crop yield on a large spatial scale and would be beneficial for national
winter wheat production monitoring.
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