Mapping Forest Disturbance Due to Selective Logging in the Congo Basin with RADARSAT-2 Time Series
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Site
2.2. SAR Data
2.3. Reference Data and Accuracy Assessment Approach
2.3.1. Accuracy Assessment Using Autochange Reference Map
2.3.2. Accuracy Assessment Using Visually Interpreted Plots
2.4. Method Development
- Find newly constructed roads to help choose SAR images covering areas of logging operations;
- Aggregate SAR scenes before and after the logging event;
- Calculate the log-ratio image between aggregated composites;
- Perform detection of selectively logged areas by linear contrast stretching followed by texture extraction and segmentation;
- Conduct morphological post-processing of detected areas
3. Experimental Results and Discussion
3.1. General Performance Evaluation
3.2. Comparison with Other Studies and Outlook
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGB | Above ground biomass |
AOI | Area of Interest |
ALOS | Advanced Land Observing Satellite |
DEM | Digital Elevation Model |
ETM | Enhanced Thematic Mapper |
GFOI | Global Forest Observation Initiative |
InSAR | Interferometric Synthetic Aperture Radar |
MF3W | Multilook Fine mode |
PALSAR | Phase Add-on L-band Synthetic Aperture Radar |
RADARSAT | Radar Satellite |
SAR | Synthetic Aperture Radar |
SLC | Single Look Complex |
SRTM | Shuttle Radar Topography Mission |
SWIR | Short Wave Infrared |
References
- Lund, H.G. What is a Degraded Forest? White paper on forest degradation definitions prepared for FAO; Forest Information Services: Gainesville, FL, USA, 2007. [Google Scholar]
- Simula, M. Towards Defining Forest Degradation: Comparative Analysis of Existing Definitions; Forest Resources Assessment Working Paper, No. 154; FAO: Rome, Italy, 2009; 57p. [Google Scholar]
- Asner, G.P.; Knapp, D.E.; Broadbent, E.N.; Oliveira, P.J.C.; Keller, M.; Silva, J.N. Selective logging in the Brazilian Amazon. Science 2005, 310, 480–482. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.; Veríssimo, A.; Alencar, A.; Nobre, C.; Lima, E.; Lefebvre, P.; Schlesinger, P.; Potter, C.; Moutinho, P.; Mendoza, E.; et al. Large-scale impoverishment of amazonian forests by logging and fire. Nature 1999, 398, 505–508. [Google Scholar] [CrossRef]
- Huang, M.; Asner, G.P. Long-term carbon loss and recovery following selective logging in Amazon forests. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef]
- Hame, T.; Kilpi, J.; Ahola, H.A.; Rauste, Y.; Antropov, O.; Rautiainen, M.; Sirro, L.; Bounpone, S. Improved mapping of tropical forests with optical and SAR imagery, Part I: Forest cover and accuracy assessment using multi-resolution data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 74–91. [Google Scholar] [CrossRef]
- GFOI. Integrating Remote-Sensing and Ground-Based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations Initiative; Group on Earth Observations: Geneva, Switzerland, 2014. [Google Scholar]
- Reiche, J.; Lucas, R.; Mitchell, A.; Verbesselt, J.; Hoekman, D.; Haarpaintner, J.; Kellndorfer, J.; Rosenqvist, A.; Lehmann, E.; Woodcock, C.; et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Chang. 2016, 6, 120–122. [Google Scholar] [CrossRef]
- Souza, C.M.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens. Environ. 2005, 98, 329–343. [Google Scholar] [CrossRef]
- Matricardi, E.A.; Skole, D.L.; Pedlowski, M.A.; Chomentowski, W.; Fernandes, L.C. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens. Environ. 2010, 114, 1117–1129. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ. 2012, 122, 75–91. [Google Scholar] [CrossRef]
- Stone, T.A.; Lefebvre, P. Using multi-temporal satellite data to evaluate selective logging in Para, Brazil. Int. J. Remote Sens. 1998, 19, 2517–2526. [Google Scholar] [CrossRef]
- de Wasseige, C.; Defourny, P. Remote sensing of selective logging impact for tropical forest management. For. Ecol. Manag. 2004, 188, 161–173. [Google Scholar] [CrossRef]
- Joshi, N.; Mitchard, E.T.; Woo, N.; Torres, J.; Moll-Rocek, J.; Ehammer, A.; Collins, M.; Jepsen, M.R.; Fensholt, R. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data. Environ. Res. Lett. 2015, 10, 034014. [Google Scholar] [CrossRef] [Green Version]
- Hirschmugl, M.; Steinegger, M.; Gallaun, H.; Schardt, M. Mapping forest degradation due to selective logging by means of time series analysis: Case studies in Central Africa. Remote Sens. 2014, 6, 756–775. [Google Scholar] [CrossRef] [Green Version]
- Cremer, F.; Urbazaev, M.; Cortés, J.; Truckenbrodt, J.; Schmullius, C.; Thiel, C. Potential of recurrence metrics from Sentinel-1 time series for deforestation mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5233–5240. [Google Scholar] [CrossRef]
- Bouvet, A.; Mermoz, S.; Ballère, M.; Koleck, T.; Le Toan, T. Use of the SAR shadowing effect for deforestation detection with Sentinel-1 time series. Remote Sens. 2018, 10, 1250. [Google Scholar] [CrossRef] [Green Version]
- Tomppo, E.; Antropov, O.; Praks, J. Boreal forest snow damage mapping using multi-temporal Sentinel-1 data. Remote Sens. 2019, 11, 384. [Google Scholar] [CrossRef] [Green Version]
- Thiele, A.; Boldt, M.; Hinz, S. Automated detection of storm damage in forest areas by analyzing TerraSAR-X data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1672–1675. [Google Scholar]
- Rüetschi, M.; Small, D.; Waser, L.T. Rapid detection of windthrows using Sentinel-1 C-Band SAR data. Remote Sens. 2019, 11, 115. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.N.; Mitchard, E.T.A.; King, S. Assessing forest/non-forest separability using Sentinel-1 C-Band synthetic aperture radar. Remote Sens. 2020, 12, 1899. [Google Scholar] [CrossRef]
- Deutscher, J.; Perko, R.; Gutjahr, K.; Hirschmugl, M.; Schardt, M. Mapping tropical rainforest canopy disturbances in 3D by COSMO-SkyMed spotlight InSAR-stereo data to detect areas of forest degradation. Remote Sens. 2013, 5, 648–663. [Google Scholar] [CrossRef] [Green Version]
- Rauste, Y.; Antropov, O.; Hame, T.; Ramminger, G.; Gomez, S.; Seifert, F.M. Mapping selective logging in tropical forest with space-borne SAR data. In ESA Special Publication, Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013; ESA: Paris, France, 2013; Volume 722, p. 168. [Google Scholar]
- Antropov, O.; Rauste, Y.; Seifert, F.M.; Häme, T. Selective logging of tropical forests observed using L- and C-band SAR satellite data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3870–3873. [Google Scholar]
- Antropov, O.; Rauste, Y.; Väänänen, A.; Mutanen, T.; Häme, T. Mapping forest disturbance using long time series of Sentinel-1 data: Case studies over boreal and tropical forests. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3906–3909. [Google Scholar]
- Hethcoat, M.; Carreiras, J.; Edwards, D.; Bryant, R.; Quegan, S. Detecting tropical selective logging with SAR data requires a time series approach. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Hoekman, D.; Kooij, B.; Quiñones, M.; Vellekoop, S.; Carolita, I.; Budhiman, S.; Arief, R.; Roswintiarti, O. Wide-area near-real-time monitoring of tropical forest degradation and deforestation using Sentinel-1. Remote Sens. 2020, 12, 3263. [Google Scholar] [CrossRef]
- Imhoff, M.L. Radar backscatter and biomass saturation: Ramifications for global biomass inventory. IEEE Trans. Geosci. Remote Sens. 1995, 33, 511–518. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests —The potential of combined X- and L-band SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Quegan, S.; Le Toan, T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Quegan, S.; Yu, J.J. Filtering of multichannel SAR images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2373–2379. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Häme, T.; Praks, J. Polarimetric ALOS PALSAR time series in mapping biomass of boreal forests. Remote Sens. 2017, 9, 999. [Google Scholar] [CrossRef] [Green Version]
- De Grandi, E.C.; Mitchard, E.; Woodhouse, I.H.; De Grandi, G.D. Spatial wavelet statistics of SAR backscatter for characterizing degraded forest: A case study from Cameroon. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3572–3584. [Google Scholar] [CrossRef] [Green Version]
- Thiel, C.; Cartus, O.; Eckardt, R.; Richter, N.; Thiel, C.; Schmullius, C. Analysis of multi-temporal land observation at C-band. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 3, pp. III-318–III-321. [Google Scholar]
- Small, D. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Rauste, Y.; Lönnqvist, A.; Molinier, M.; Henry, J.B.; Häme, T. Ortho-rectification and terrain correction of polarimetric SAR data applied in the ALOS/PALSAR context. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, IGARSS 2007, Barcelona, Spain, 23–28 July 2007; pp. 1618–1621. [Google Scholar]
- Häme, T.; Sirro, L.; Kilpi, J.; Seitsonen, L.; Andersson, K.; Melkas, T. A hierarchical clustering method for land cover change detection and identification. Remote Sens. 2020, 12, 1751. [Google Scholar] [CrossRef]
- Grover, K.; Quegan, S.; da Costa Freitas, C. Quantitative estimation of tropical forest cover by SAR. IEEE Trans. Geosci. Remote Sens. 1999, 37, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Dekker, R.J. Speckle filtering in satellite SAR change detection imagery. Int. J. Remote Sens. 1998, 19, 1133–1146. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2963–2972. [Google Scholar] [CrossRef]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; EngineeringPro Collection; SciTech Publ.: Raleigh, NC, USA, 2004. [Google Scholar]
- Zhuang, H.; Tan, Z.; Deng, K.; Fan, H. It is a misunderstanding that log ratio outperforms ratio in change detection of SAR images. Eur. J. Remote Sens. 2019, 52, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Kooij, M. Forest logging alerts from RADARSAT-2 data. In Proceedings of the SENGEF—XI Seminário de Atualização em Sensoriamento Remoto e Sistemas de Informações Geográficas Aplicados à Engenharia Florestal, Curitiba, Brazil, 14–16 October 2014. [Google Scholar]
- Staples, G.; Green, G.; Chen, J.; Gravelle, S.; Goodenough, D. Detection and validation of forest distubances using RADARSAT-2 data. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5798–5801. [Google Scholar]
- Jacob, A.W.; Vicente-Guijalba, F.; Lopez-Martinez, C.; Lopez-Sanchez, J.M.; Litzinger, M.; Kristen, H.; Mestre-Quereda, A.; Ziółkowski, D.; Lavalle, M.; Notarnicola, C.; et al. Sentinel-1 InSAR coherence for land cover mapping: A comparison of multiple feature-based classifiers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Treuhaft, R.N.; Siqueira, P.R. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar. Radio Sci. 2000, 35, 141–177. [Google Scholar] [CrossRef] [Green Version]
- Olesk, A.; Praks, J.; Antropov, O.; Zalite, K.; Arumäe, T.; Voormansik, K. Interferometric SAR coherence models for characterization of hemiboreal forests using TanDEM-X data. Remote Sens. 2016, 8, 700. [Google Scholar] [CrossRef] [Green Version]
ID | Acq. Date | Image Mode | Polariz. | IncidenceAngle (°) | Precip. (mm) | Conditions |
---|---|---|---|---|---|---|
R1 | 27 Nov 2012 | Multilook Fine | HH | 40.85 | 0.0 | Thunderstorm, 2 days since rain |
R2 | 21 Dec 2012 | Multilook Fine | HH | 40.85 | 0.0 | Clear, 2(3) days since hail (rain) |
R3 | 14 Jan 2013 | Multilook Fine | HH | 40.85 | 0.0 | Clear, 8 days since rain |
R4 | 7 Feb 2013 | Multilook Fine | HH | 40.85 | 0.0 | Clear, 1 days since rain |
R5 | 20 Apr 2013 | Multilook Fine | HH | 40.85 | 0.0 | Fog, 1 day since rain |
R6 | 14 May 2013 | Multilook Fine | HH | 40.85 | 0.8 | Rain, thunderstorm |
R7 | 25 Jul 2013 | Multilook Fine | HH | 40.85 | 0.0 | Clear, 2 days since rain |
R8 | 18 Aug 2013 | Multilook Fine | HH | 40.85 | 0.0 | Clear, 4 days since rain |
R9 | 11 Sep 2013 | Multilook Fine | HH | 40.85 | 4.1 | Rain, thunderstorm |
R10 | 5 Oct 2013 | Multilook Fine | HH | 40.85 | 0.0 | Thunderstorm, 1 day since rain |
R11 | 29 Oct 2013 | Multilook Fine | HH | 40.85 | 52.0 | Rain, thunderstorm |
R12 | 22 Nov 2013 | Multilook Fine | HH | 40.85 | 0.0 | Thunderstorm, 4 days since rain |
R13 | 16 Dec 2013 | Multilook Fine | HH | 40.85 | 0.0 | Clear, 2 days since rain |
Whole Study Area | Reference Autochange Map | ||||
Intact Forest | Disturbed Forest | Total | User’s accuracy | ||
RADARSAT-2 | Intact forest | 483 | 181 | 664 | 72.7% |
Disturbed forest | 17 | 319 | 336 | 94.9% | |
Total | 500 | 500 | 1000 | ||
Producer’s accuracy | 96.6% | 63.8% | 80.2% | ||
Central Part Removed | Reference Autochange Map | ||||
Intact forest | Disturbed forest | Total | User’s accuracy | ||
RADARSAT-2 | Intact forest | 493 | 161 | 654 | 75.4% |
Disturbed forest | 7 | 339 | 346 | 98.0% | |
Total | 500 | 500 | 1000 | ||
Producer’s accuracy | 98.6% | 67.8% | 83.2% |
1st Region (predominantly disturbed forest area) | Reference Landsat 8 Scene | ||||
Intact Forest | Disturbed Forest | Total | User’s accuracy | ||
RADARSAT-2 | Intact forest | 31 | 26 | 57 | 54.4% |
Disturbed forest | 10 | 33 | 43 | 76.7% | |
Total | 41 | 59 | 100 | ||
Producer’s accuracy | 75.6% | 55.9% | 64% | ||
2nd Region (predominantly intact forest area) | Reference Landsat 8 scene | ||||
Intact forest | Disturbed forest | Total | User’s accuracy | ||
RADARSAT-2 | Intact forest | 96 | 0 | 96 | 100% |
Disturbed forest | 4 | 0 | 4 | 0% | |
Total | 100 | 0 | 100 | ||
Producer’s accuracy | 96.0% | NA | 96% | ||
Both Regions | Reference Landsat 8 scene | ||||
Intact forest | Disturbed forest | Total | User’s accuracy | ||
RADARSAT-2 | Intact forest | 127 | 26 | 153 | 83% |
Disturbed forest | 14 | 33 | 47 | 70% | |
Total | 141 | 59 | 200 | ||
Producer’s accuracy | 90.1% | 55.9% | 80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antropov, O.; Rauste, Y.; Praks, J.; Seifert, F.M.; Häme, T. Mapping Forest Disturbance Due to Selective Logging in the Congo Basin with RADARSAT-2 Time Series. Remote Sens. 2021, 13, 740. https://doi.org/10.3390/rs13040740
Antropov O, Rauste Y, Praks J, Seifert FM, Häme T. Mapping Forest Disturbance Due to Selective Logging in the Congo Basin with RADARSAT-2 Time Series. Remote Sensing. 2021; 13(4):740. https://doi.org/10.3390/rs13040740
Chicago/Turabian StyleAntropov, Oleg, Yrjö Rauste, Jaan Praks, Frank Martin Seifert, and Tuomas Häme. 2021. "Mapping Forest Disturbance Due to Selective Logging in the Congo Basin with RADARSAT-2 Time Series" Remote Sensing 13, no. 4: 740. https://doi.org/10.3390/rs13040740