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Abstract: Global Navigation Satellite System (GNSS) Radio Occultation (RO) has provided high-
quality atmospheric data assimilated in Numerical Weather Prediction (NWP) models and climatol-
ogy studies for more than 20 years. In the satellite–satellite GNSS-RO geometry, the measurements
are susceptible to ionospheric scintillation depending on the solar and geomagnetic activity, seasons,
geographical location and local time. This study investigates the application of the Support Vector
Machine (SVM) algorithm in developing an automatic detection model of F-layer scintillation in
GNSS-RO measurements using power spectral density (PSD). The model is intended for future
analyses on the influence of space weather and solar activity on RO data products over long time
periods. A novel data set of occultations is used to train the SVM algorithm. The data set is composed
of events at low latitudes on 15–20 March 2015 (St. Patrick’s Day geomagnetic storm, high solar
flux) and 14–19 May 2018 (quiet period, low solar flux). A few conditional criteria were first applied
to a total of 5340 occultations to define a set of 858 scintillation candidates. Models were trained
with scintillation indices and PSDs as training features and were either linear or Gaussian kernel.
The investigations also show that besides the intensity PSD, the (excess) phase PSD has a positive
contribution in increasing the detection of true positives.

Keywords: remote sensing; radio occultation; ionosphere; scintillation; support vector machine

1. Introduction

The threats to Global Navigation Satellite System (GNSS) operation caused by the
ionosphere are widely known. The ionospheric plasma is composed of free electrons and
ions with non-homogeneous distribution. The gradient of electron density can cause rapid
fluctuations in the amplitude and phase of signals in the GHz scale, hereafter referred to
as scintillations [1,2]. The intensity and occurrence of this phenomenon are extensively
influenced by solar and geomagnetic activity, geographical location, seasons and local
time [3,4].

GNSS Radio Occultation (RO) is a remote sensing technique, which relies on satellite–
satellite trans-ionospheric propagation of GNSS signals, and measurements are performed
in L1 (1575.42 MHz) and L2 (1227.42 MHz) bands [5–7]. Given the dispersive character-
istic of the ionosphere, a linear combination of both measurements is used to correct the
phase shift (Doppler) caused by the ionospheric refractivity [8]. An undesirable residual
ionospheric error (RIE) is still observed in atmospheric data of the neutral atmosphere
(troposphere and lower stratosphere) after the correction. This issue is most concerning in
climatology studies [9,10]. Nevertheless, GNSS-RO operation also benefits research on the
ionosphere.
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Currently, total electron content (TEC), electron density profiles (EDPs) and, sub-
sequently, the F-layer peak density (NmF2), height (hmF2) and the respective critical
frequency are estimated from the occultations performed by different RO missions [6,11,12].
Hence, these data allow constant monitoring of the conditions in the ionosphere as well
as support investigations of different phenomena. TEC measurements performed by
the Challenging Minisatellite Payload (CHAMP) mission have been combined with GPS
ground-based receivers at high latitudes to create 3-D maps of electron density aided by a
tomographic algorithm, narrowing the differences to ionosondes measurements [13]. An
assimilation study of simulated RO ionospheric data has shown a reduction of RMS error
of TEC, F-layer density and height peak in ionospheric models [14]. Further comparison
of Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC)
data to incoherent scatter radars, ionosondes and the International Reference Ionosphere
(IRI-2001) model validated the quality of the measurements and substantially increased the
amount of RO ionospheric data available [15]. Despite the general assumption of spherical
symmetry taken in EDP retrieval [16], the profiles obtained from COSMIC-1 measurements
proved to have an accuracy similar to ionosondes and have been applied in solar activity
monitoring, especially at low- and mid-latitudes [17]. The current IRI model, version 2016,
provides a hmF2 model based on CHAMP, GRACE and COSMIC data [18].

RO data also plays an important role in monitoring the effect of space weather events
in the ionosphere, for example, geomagnetic storms. An increase in the electron density
during the main phase of the “Halloween” storm in November 2003 as well as a decrease
in ions upflow during the recovery phase have been observed in RO measurements [19].
During the same storm, the bias in the retrieved refractivity profiles observed in the
simulations was three times larger than in the days not affected by such anomaly [20].
During the geomagnetic storm in July 2012, larger areas with strong fluctuations in the
southern magnetic polar region and intensified north-south asymmetry in the upper
ionosphere were observed in TEC profiles provided by the COSMIC mission [21]. The RO
observations by the FengYun-3C (FY3C) satellite showed the variability of the occurrence
of scintillations during and after the St. Patrick’s Day storm in 2015 according to TEC
gradients. The data indicated the absence of scintillation during the main phase of the
storm in the African and Eastern Asian sector, whereas the incidence increased significantly
in the New Zealand sector. Furthermore, the RO measurements showed an overall lower
occurrence of scintillations during the initial recovery phase after the storm [22].

As one of the causes of radio signal scintillation, regions of ionospheric irregularities
in the F-layer, known as Equatorial Plasma Bubbles (EPB), have been investigated with
RO measurements, adding a limb-sounding perspective to ground-based measurements.
During March 2014 (around the equinox and at the maximum of the 24th solar cycle),
COSMIC data corroborated ground-based measurements and showed a higher occurrence
of EPBs at the magnetic equator after sunset, at about 450 km and descending to 300 km
around midnight [23]. A longer period of evaluation, between 2007 and 2017, showed a
similar interval of occurrence of EPBs with peak varying depending on the level of solar
activity. EPBs occurrences were determined exclusively by the scintillation index (S4).
The EPB distribution along the dip equator indicated dependencies of seasons, solar cycle
and longitudes [24]. A correlation between strong scintillation and the angle between the
occultation ray path and EPBs along magnetic field lines was also verified [25]. Further, RO
measurements were combined with ground-based receivers to investigate the occurrence
and to characterise scintillation caused by a sporadic E-layer during the daytime in the
magnetic dip-equator [26].

Ionospheric scintillation can be alternatively characterised by other statistical param-
eters, for example, detrended signal phase standard deviation, i.e., σφ, and the power
spectral density (PSD) [2]. Measurements by ground-based receivers had their power
spectra extensively used in the investigation of ionospheric irregularities. Power spectra of
VHF signals under weak scattering have shown roughly constant power density at low
frequencies with a well-defined break point followed by the spectrum decreasing asymptot-
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ically to a straight line on log–log scale. Such spectral characteristics added by small-scale
ionospheric irregularities in radio signals have been investigated and modelled by different
spectral density functions (SDF) [27–32]. The evaluation of signals with different carrier
frequencies and their respective intensity PSD showed that low-frequency signals are more
prone to strong scintillations causing broadening of the spectrum towards high frequencies,
given the larger decorrelation of the signal owing to the multiscattering [33]. Some cases
with high S4 index values (strong scattering) have shown different patterns: with mono-
tonic slope throughout the entire frequency range and with the absence of a clear break
point; or with two spectral slopes, one shallower slope given by long-scale irregularities
and a steeper slope related to short-scale irregularities [34–36].

Phase parameters are most commonly applied in high-latitude measurements, but
scintillations in phase also occur at low latitudes and its detection is highly related to
coexistent amplitude scintillations [37,38]. Intensity and phase PSD can show the same
power spectral slopes and, for some cases under weak scattering, the phase PSD can have
a clear minimum around the break point (Fresnel maximum) of the amplitude PSD. This
feature has supported the estimation of the scale length of the irregularities in equatorial
measurements [39]. Additionally, phase PSD has the advantage of not being affected by
Fresnel filtering. Thus, the scale length of irregularities larger than the Fresnel radius can be
estimated by combining the distance of the region of irregularities to the receiver and the
drift velocity to the phase PSD [40]. In the context of GNSS-RO, studies have considered to a
large extent TEC, electron density profiles, S4 index and other complementary geomagnetic
indices in analyses and modelling of the ionospheric conditions and regions of irregularities.
Few publications have investigated ionospheric scintillation by using intensity and phase
spectral analysis and phase scintillation index [41,42].

Machine Learning (ML) can be described as the use of mathematical and statistics tools
to create methods able to detect patterns in different sort of data and generalise decisions.
The ML algorithms evaluate input features and map them to known outputs (supervised
learning) or to an unknown set of outcomes (unsupervised learning). The problems are
either of classification, where data are assigned to a finite group of observations sharing
common characteristics (qualitative), or regression, in which the outputs of the method are
real scalars (quantitative) [43]. Considering the large amount of ionospheric data available,
Machine Learning has been applied in the development of detection and prediction models
of ionospheric events. The Support Vector Machine (SVM) algorithm [44,45] has been
used to develop a model of automatic detection of equatorial amplitude scintillation using
S4 and intensity PSD as training features [46]. The model achieved on average a true
positive rate (TPR) of 88.75 % with a false positive rate (FPR) of 2.75% when measurements
with moderate and strong scintillation were considered in the model training. A similar
approach has been used in the detection of phase scintillation at high latitudes using σφ and
phase PSD as training features [37]. Both models were trained and validated with L-band
measurements by ground-based receivers. An SVM-based model has also been developed
to predict ionospheric scintillation at high latitudes, using a large variety of training features
besides scintillation indices and spectral information, namely, geographical location, local
time, solar wind and particle precipitation data, and geomagnetic indices. The persistence
skill proved to be ineffective in predictions further than one hour [47]. Other machine
learning algorithms, for example, Decision Tree and Random Forest, have also been applied
in the detection of scintillation in ground-based measurements at the equator [48]. In the
context of RO, machine learning has been previously applied to the detection of reflected
signals [49,50].

The influence of the ionospheric scintillation in the F-layer on the bending angle
standard deviation and the simulation of the effects observed in a limited set of three
occultations when assuming a monotonic power law model has been previously investi-
gated [42]. In this study, a data set of low-latitude occultations performed by the GNSS
Receiver for Atmospheric Sounding (GRAS) on board of the Meteorological Operational
(MetOp) satellites is created to train an automatic detection model of F-layer scintillations.
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Given its previous application in the detection of ionospheric scintillation in GNSS sig-
nals [37,46], the performance of an SVM-based model to detect ionospheric scintillation in
RO measurements is investigated in this study. Different training features are evaluated,
such as amplitude and phase scintillation index and power spectral density, to define
the classifier with the best overall performance in terms of accuracy, precision, recall and
Receiver Operating Characteristic (ROC) curves. The main goal of the model is to auto-
matically detect occultations containing typical spectral features related to ionospheric
scintillation in the F-layer, i.e., with either monotonic or two-component power spectra in
combination with the scintillation indices [27–36].

The remaining parts of this manuscript are structured as follows: the features assumed
in the training of the classification model are detailed in Section 2. A description of the
data set of low-latitude occultations curated for this study is addressed in Section 3. A
brief description of the SVM algorithm as well as the different scenarios evaluated and
performance metrics considered during the model training are discussed in Section 4.
Finally, Sections 5 and 6 present the results and final remarks.

2. Ionospheric Characterisation

Given the geometry of occultation events, the GNSS signals are propagated through
the ionosphere and the neutral atmosphere. Along the propagation path, the signal is
refracted/bent as a response to the atmospheric refractivity. Assuming spherical symmetry,
the accumulated bending angle along the ray path can be calculated using the phase
component of the signal sampled in the LEO receiver, the occultation geometry and Snell’s
law [6,7]. Consequently, the refractivity at the ray tangent height can be retrieved from the
bending angle profile [51].

The effects of the ionospheric refractivity, including regions of irregularities, are
mostly observed within 30 km and the highest tangent altitude in RO measurements [52].
This range corresponds to the initial (final) and mostly flat segment of the setting (rising)
occultation, where the ray tangents have not travelled through sections of the neutral
atmosphere layer. Changes in the amplitude and phase of the GNSS signal in SLTA < 30 km
are mostly caused by neutral atmosphere refractivity.

In order to automatically limit the segment of the occultation, a truncation threshold
was set at 30 km straight-line tangent altitude (SLTA). The SNR segments were used to
calculate features related to the signal amplitude, i.e., S4 and intensity PSD. Similarly,
disturbances in the excess phase were characterised by σφ and phase PSD. The amplitude
and phase recorded by RO receivers, the same used in the retrieval of meteorological data,
are available at UCAR/CDAAC’s database in atmPhs files (level 1b).

2.1. Amplitude and Phase Indices

The amplitude scintillation is quantified by the S4 index, which corresponds to the
fourth moment of the received signal amplitude [2,53], normally computed as the standard
deviation of the normalised signal intensity,

S4 =

[
〈(I − 〈I〉)2〉
〈I〉 2

]1/2

, (1)

in which I is the intensity of the RO signal, 〈 〉 denotes the expectation operator and I is
the filtered version of the signal intensity used as a reference in the calculation. S4 index
ranges between 0 and 1 with extreme cases over 1, indicating strong scatter and focusing
phenomenon [33]. Different window lengths have been reported in the calculation of the
averaged intensity, varying up to 60 s for ground-based measurements [37,46,48]. Given
the shorter duration of RO measurements, a window length of 1 s (50 samples) was used in
our calculation [54]. Filtering of the intensity reference is required to remove other sources
of disturbances than ionospheric, i.e., the multipath effect, satellite motion, clock errors
and thermal noise. A low-pass sixth-order Butterworth filter with a cut-off frequency of
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0.1 Hz is commonly applied in this task [55]. The decision about the cut-off depends on the
system orbit, and it can be critical in high-latitude measurements [56].

The effect of ionospheric irregularities in the phase is accounted for by σφ, which is
the standard deviation of the detrended excess phase [55]. The phase scintillation index
is more frequently used in studies evaluating high-latitude measurements, given that the
influence of the phase is more pronounced than in the amplitude in these regions [37,38].
The detrended excess phase was obtained using the same filtering approach applied to the
S4 calculation.

A common practice on the topic of scintillation detection is to rely on the values of
amplitude and phase scintillation by defining threshold values as an initial indication
that fluctuations in the signal were caused by ionospheric irregularities. Typical threshold
values for S4 and σφ are 0.2–0.3 and 0.1–0.2 rad, respectively [24,37,38,47]. Despite the
low magnitude, the multipath is also quantified by the amplitude and phase scintillation
indices [57]. Therefore, the indices alone can leave some margin of uncertainty about
the source of the disturbance. Moreover, they provide insufficient information about the
characteristics of the irregularities.

2.2. Spectral Analysis

The power spectral density is given by Fourier transform of the autocorrelation
function of the signal intensity or phase [27,29]. Following the general formulation of the
two-component model, the phase spectral density function (SDF) is defined as [32]

P(µ) =
{

U1|µ|−p1, µ ≤ µ0
U2|µ|−p2, µ > µ0

, (2)

where p1,2 are the power spectral indices and µ0 is the normalised spectral break wavenum-
ber. The wavenumber normalisation is given by µ0 = q0ρ f , where q0 is the spectral
break wavenumber and ρ f the Fresnel scale. The universal scattering strength can be
represented as

U =

{
U1, µ0 ≥ 1
U2, µ0 < 1

, (3)

with U2 = U1µ
p2−p1
0 . The formulation of the phase SDF assuming the scattering strength

is convenient to define the two different scenarios of scatter, i.e., U � 1 weak and U � 1
strong scatter.

Assuming weak scatter and inverse monotonic power law with U = U1 = U2 and
p = p1 = p2, then

U = Csρ
(p−1)
f , (4)

and the phase PSD is reduced to

Φδφ(q) = Cs q−(p−1), (5)

which defines the monotonic power law, where Cs is the strength of the ionospheric
turbulence, p = 2ν, ν is the spectral slope and q is the wavenumber [30]. Under weak
scatter, the break scale wavenumber is often well defined in the intensity PSD. As a result
of Fresnel filtering [39], the spectra present in most cases a flatness at low frequencies
(long scale irregularities) and a roll-off starting at the maximum Fresnel frequency (break
scale point),
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fb =
Vs√
2λds

, (6)

in which Vs is the effective scan velocity of the irregularities, (2λds)1/2 is the Fresnel radius,
λ is the radio signal wavelength and ds is the mean distance from the receiver to the region
of irregularities according to the geometry of the system performing the measurements [34].
The PSD frequency scale ( f ) can be converted to wavelength scale, i.e., scale-length of the
irregularities [35],

λs =
Vs

f
. (7)

Given the geometry of the occultation events, determining the location of the region of
irregularities along the ray path, i.e., ds, is not a straightforward task [58]. Additionally, the
scan velocity (Vs), related to the drift of the irregularities and to the orbit of the satellites,
cannot be determined solely by occultations. Without complementary measurement of
co-located systems, the intensity and phase power spectra can provide an estimation of the
Fresnel frequency (under weak scatter) as well as an indication of strong scatter, following
the occurrence of a two-component power law spectrum [32,40].

Figure 1 shows some examples of intensity and phase PSDs calculated from RO
measurements. The PSDs were computed using Welch’s method, assuming a Hamming
window of 512 samples and 50% overlap, to obtain the averaged periodogram [36].

In Figure 1a,b, the disturbances in SNR shown in the left-most panels (blue curves)
correspond to strong scintillation without saturation (0.5 < S4 < 1.0). Disturbances are
also observed in the excess phase (see detrended phase, central column). Vertical lines in
the right-most panels show the estimated Fresnel maximum (spectral break), marking a
clear transition between the flatness at the low-frequency end ( f < fb) and the asymptotic
roll-off ( f > fb) in the intensity PSDs. Further, Figure 1b shows a phase PSD minimum
around the possible Fresnel frequency ( fb), as described in [39]. Figure 1c shows similar
characteristics even with most of the fluctuations observed in the first half of the signal
amplitude and phase.

A case with saturated scintillation (S4 > 1), likely related to focusing and strong
scatter, is depicted in Figure 1d. The intensity PSD has an apparent two-component power
law [32,35], in which the shallower slope (p1) is related to the large-scale irregularities
(outer scale, µ < µ0), and the steeper slope (p2) is related to small-scale irregularities
(inner scale, µ > µ0). The phase PSD does not follow the same trend (departure at high-
frequency end) and most of the disturbance is observed after 15 s in the detrended phase.
Figure 1e has fluctuations in SNR with a similar pattern to cases affected by a sporadic
E-layer [59], with short duration and low intensity in this particular case. The intensity
and phase PSD do not present the same characteristics as depicted in (a–d). The detrended
phase is significantly different from the other cases, showing a large- rather than short-scale
fluctuation pattern. Finally, Figure 1f corresponds to an occultation without signatures of
disturbances, as observed in the SNR and detrended phase, and without the characteristics
given in (a–d). Moreover, the occultations (e,f) are classified as low scintillation cases
according to their scintillation indices (S4 ≤ 0.2).
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Figure 1. SNR, detrended excess phase, and intensity and phase PSDs. Blue and red curves are related to SNR, excess phase
and their power spectra, respectively. MetOp measurements (a) MTPB.2015.079.03.41.G29, (b) MTPB.2015.079.01.58.G13
and (c) MTPB.2015.079.01.51.G19 show a monotonic power law in intensity and phase PSDs; (d) MTPB.2015.079.03.49.G23
depicts an apparent two-component power law in the intensity PSD, with phase PSD following a different trend at the
high-frequency end; and (e) MTPA.2015.076.11.31.G07 and (f) MTPA.2015.077.03.17.G01 correspond to inconclusive cases
or measurements not affected by disturbances in the SNR and detrended phase. Vertical lines show possible spectral
breaks ( fb).
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3. Data Set
3.1. Ionospheric Conditions

Ionospheric irregularities present distinct characteristics in different geographical
regions, for example, low- and high-latitude, and they are also influenced by local time,
season, solar and geomagnetic activity [4,40]. Measurements performed by ground-based
receivers are limited in terms of geographic location but consist of hour-long recordings.
GNSS-RO operates with global coverage, which offers the chance to record scintillations
with more diversity regarding location by covering regions over sea and land. Despite
the relatively short segment in which one occultation sounds mostly ionospheric effects,
spectral analysis of RO measurements can be used to indicate the occurrence of ionospheric
scintillation, as shown in Figure 1. Moreover, different GNSS-RO missions have been
operating for more than 20 years. Therefore, the influence of different solar cycles and
geomagnetic events and their influence in the ionosphere and in the RO data product can be
investigated [17,21,22,24].

In order to develop a supervised detection model of F-layer scintillation in RO mea-
surements, a data set of labelled observations is required. Given the different character-
istics of scintillation regarding latitude, only measurements in the low-latitude region
(±30◦ latitude) were selected in this study. High-latitude scintillations are known to af-
fect the phase largely and, on occasion, exclusively, whereas amplitude is simultaneously
affected at low latitudes [37] (and references therein). The occultations performed by
MetOp-A and B satellites covered two different periods of the 24th solar cycle. The first
interval consisted of occultations close to the solar cycle peak from 15 March (DOY 74) to
20 March (DOY 79) covering the St. Patrick’s Day geomagnetic storm [22]. The second
period corresponded to 14–19 May 2018 (DOY 134–139), around the minimum of the solar
cycle. Besides the difference in the solar activity, the first period included days classified as
disturbed regarding the level of geomagnetic activity owing to the St. Patrick’s Day storm,
whereas the second period corresponded to quiet days, according to Kp index. Figure 2
depicts the two intervals composing the data set during the 24th solar cycle and their
respective levels of geomagnetic activity.

Figure 2. (a) Solar radio flux (F10.7) during the 24th solar cycle, which correlates to sunspot number. Red dots denote the
periods considered in the data set. (b,c) Kp index with geomagnetic activity defined as low (green), medium (yellow) and
high (red). The time series in 2015 shows medium and high Kp index values as a consequence of the St. Patrick’s Storm.
During 14–19 May 2018, days were classified as quiet (low activity) according to Kp index.

Complementary to the Kp index, the effects of the geomagnetic storm can also be ob-
served through the values of the symmetric portion of the horizontal component magnetic
field (SYM-H index), given in 1-minute resolution, and the interplanetary magnetic field
(IMF) components, i.e., Bx, By and Bz (oriented along the poles). Figure 3 shows the indices
recorded during the two periods considered in this study. In Figure 3a, the disturbances
caused by the arrival of the solar winds during the early hours of 17 March turned the
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SYM-H index negative and kept the same trend until around midnight on March 18th,
reaching −226 nT as the minimum value. From this point, the SYM-H index indicated
the start of the recovering phase, which continued until the last day in this interval. The
disturbances were also registered by multiple flip points between positive and negative
values in the IMF components. Figure 3g shows the IMF Bz with a southward trend during
most of March 17th, except for an abrupt northward turn between 06:00 UT and noon.
The southward orientation indicates the coupling of the Earth’s magnetosphere with the
interplanetary magnetic field. In contrast to the effects of the St. Patrick Day’s geomagnetic
storm, Figure 3b,d,f,g show rather stable conditions during 14–19 May 2018, in which IMF
components stayed within ±10 nT.

Figure 3. Geomagnetic records of (a,b) SYM-H indices, (c,d) IMF Bx, (e,f) IMF By and (g,h) IMF Bz during 14–20 March
2015 and 14–19 May 2018. Unit: nano-Tesla (nT).

3.2. Data Processing and Labelling

Some conditional checks were conducted to avoid measurements with anomalies
and/or not of interest in the data set used in this study. As the first step, measurements
without paired atmPhs and atmPr f files were not considered. The calculation of scintil-
lation indices and power spectra requires amplitude and excess phase, given in atmPhs
files. Moreover, the bending angle and refractivity profiles, given in atmPr f , are needed
to investigate the effect of moderate and strong scintillation in RO data product in future
studies. Next, occultations with signatures of scintillation caused by a sporadic E-layer,
which creates U-shaped fades in the signal SNR with short duration, were not considered
in this data set. E-layer scintillations were detected according to the procedure described in
Zeng and Sokolovskiy [59].

Finally, a search for a maximum of three sections of the signal SNR with abrupt
changes in the standard deviation was performed [60]. The standard deviation of the
intervals, with a minimum length of 4 km, were computed, and occultations were removed
whenever one of the sections had the standard deviation at least three times smaller
than the interval with the greatest variation. This procedure eliminates occultations that
were also potentially affected by sporadic E-layer scintillation but did not contain a deep
fade in SNR and disturbances that are not present throughout the whole segment of the
measurement [52]. The quasi-regular variations may correspond to a short interval in the
occultation, insufficient to obtain statistical properties of ionospheric irregularities. The
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steps detecting U-shaped fades and quasi-regular variations were overruled whenever
S4 > 0.2 corresponded to more than 50% of the occultation segments.

Features used in the characterisation of occultations were computed in the plateau
region of each measurement, which were automatically truncated at 30 km SLTA. Below
this tangent altitude, the neutral atmosphere contribution accounts for most of the effect
observed in the signal [52]. The occultations with truncated segments shorter than 10 s
(500 points) were also not considered in the study. Figure 4 shows some examples of
measurements removed from the data set. Figure 4a represents one occultation with U-
shaped fade related to sporadic E-layer scintillation, (b–e) correspond to different cases of
quasi-regular disturbances and (f) represents a case with a plateau region shorter than 10 s.

Figure 4. Removed RO measurements. (a) MTPA.2018.139.20.04.G01 shows a U-shaped scintillation signature;
(b) MTPB.2015.076.05.01.G30, (c) MTPA.2018.134.20.08.G01, (d) MTPA.2018.134.21.50.G14 and (e) MTPA.2015.076.06.59.G12
depict cases with quasi-regular fluctuations (S-type) and (f) MTPB.2015.075.15.04.G31 depicts a case with plateau region
shorter than 10 s.

Among 5340 low-latitude occultations, 436 measurements have been removed ac-
cording to the conditional checks. The remaining 4904 occultations had their respective
scintillation indices and power spectra computed based on their L1 C/A SNR and ex-
cess phase. Figure 5 shows the length of the occultation segment used in the analysis.
The average of the segment length in MetOp-A/B measurement is 22.2 s, much shorter
than the blocks evaluated in studies using measurements recorded by ground-based
receivers [37,46].

Figure 5. Length of the evaluated occultation segments. The average plateau length is around 22 s.

Amplitude scintillation was used as an initial step to sort out the data set as low
(S4 ≤ 0.2), moderate (0.2 < S4 ≤ 0.5) and strong scintillation (S4 > 0.5) [46]. The scin-
tillation index provides an indication of disturbance related to ionosphere irregularities, which
are more frequent during post-sunset hours and night-time [23,39]. Figures 6 and 7 show the
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distribution of the different levels of scintillation observed in the data set in terms of local
time (LT), according to the maximum S4 index calculated in the occultation segment.

Figure 6. Local time distribution of S4 index on MetOp-A,B occultations during the first period with high solar activity, i.e.,
15 March (DOY 74) to 20 March (DOY 79) in 2015. “Low” corresponds to S4 ≤ 0.2, “Mid” to 0.2 < S4 ≤ 0.5 and “High” to
S4 > 0.5. Strong scintillations were observed mostly during evenings.

Figure 7. Local time distribution of S4 index on MetOp-A,B occultations during the second period with low solar activity,
i.e., 14 May (DOY 134) to 19 May (DOY 139) in 2018. “Low” corresponds to S4 ≤ 0.2, “Mid” to 0.2 < S4 ≤ 0.5 and “High” to
S4 > 0.5. The occurrence of strong scintillations is lower than in the period evaluated in 2015.

The distribution of occultations shows their occurrence concentrated in two inter-
vals according to local time. This is expected at the ±30◦ latitude band given the sun-
synchronous orbit of MetOp satellites, crossing the equator around 0930LT and 2130LT.
Furthermore, the local minima at 0900LT and 2100LT bins are related to the absence of
measurements at low latitudes [61].

In Figure 6, the computed scintillation indices covering the first period show a higher
number of strong scintillations according to the S4 index during 1800–0000 LT compared
with 0600–1200 LT. Overall, less strong scintillations were found during the two days
following the peak of the storm, i.e., March 18th and 19th. The same pattern was reported
in the RO measurements performed by the FY3C mission [22] and by the ESA MONITOR
Ionospheric Network, which described an increase of the TEC values during days 75 and
76 at low latitudes followed by a minimum on days 77 and 78 [62].

In Figure 7, strong scintillation occurrence was significantly reduced when compared
to Figure 6, while more moderate cases were observed throughout the period. The reduc-
tion is likely related to the different level of solar activity registered during both periods
composing this data set (see Figure 2) [4]. Common to both time-spans is the predominance
of cases with low scintillation levels. About 83.03% and 82.01% of the occultations corre-
sponded to S4 ≤ 0.2 during the periods evaluated in 2015 and 2018, respectively. Moderate



Remote Sens. 2021, 13, 1690 12 of 25

scintillations corresponded to 9.35% (2015) and 14.46% (2018) and strong disturbance levels
were observed in 7.63% (2015) and 3.53% (2018) of the inspected occultations.

In this study, occultations with low scintillation have not been part of the data set
used to train and test the automatic detection model. Low scintillation cases are mostly
related to undisturbed and quiet ionospheric conditions and to the contributions of other
sources of perturbation [46]. Moderate and strong scintillation cases had their intensity
and phase power spectra visually inspected. Given exclusively low latitudes were con-
sidered, occultations were labelled as potential cases of ionospheric scintillation (label 1)
whenever the intensity PSD showed a roll-off, which could be described by a single- or
dual-slope power law. Phase PSDs were used as complementary information, confirming
the indication of a typical disturbance caused by ionospheric irregularities when its slope
followed closely the intensity PSD. Cases not reaching those criteria were labelled as occul-
tations in which the disturbance was potentially not caused by ionospheric irregularities
or were inconclusive (label 0, other disturbances). Accordingly, the occultations shown in
Figure 1a–d correspond to label 1 cases.

The detection of cases labelled as “1” are relevant for the task of characterising the
regions of irregularities and to eventually replicate the effects in GNSS signals in simula-
tions by estimating the parameters defining the power law observed in the power spectral
analysis. The relation between such parameters and the influence on the RO product is
also a potential aspect to be further investigated.

Figures 8 and 9 show the distribution of labelled cases according to local time during
the periods in 2015 and 2018. The two intervals correspond to 858 measurements, with
413 label 1 cases and 445 label 0. This corresponds to a ratio of 1:1.08 between classes and,
therefore, the data set is balanced. A comparison indicates that label 1 cases were more
frequent during the period covering different phases of the St. Patrick’s Day storm, also
corresponding to an interval around the maximum of the solar cycle. Apart from DOY 77
and 78, a significantly higher amount of label 1 cases was found than label 0. Regarding
the interval in 2018, there was a majority of label 0 cases throughout the days evaluated.
Label 0 corresponded to 38.52% (2015) and 63.80% (2018), whereas label 1 corresponded to
61.48% (2015) and 36.20% (2018) of the observations.

Figure 8. Local time distribution of labelled occultations between March 15th (DOY 74) and March 20th (DOY 79) in 2015.
Label 1 observations correspond to the majority of the observations composing the data set in this period, likely related to
the solar cycle period.
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Figure 9. Local time distribution of labelled occultations between 14 May (DOY 134) and 19 May (DOY 139) in 2018. Label 0
observations are the majority of the observations in this period, alternating the trend observed in March 2015.

Figure 10 shows the daily averaged PSDs for label 1, with blue curves corresponding to
the intensity PSD and red to the phase spectra. The power spectral indices for different days
were estimated with least squares fit in the logarithmic domain. The frequency interval
was set manually for each day with the lower bound being the spectral break limiting the
flat part ( f < fb) and the upper bound being either the highest frequency of the spectra
or the noise floor (flatness in high-frequency end). The averaged spectral indices were
within 2.77 and 3.37 with the phase spectra followed closely by the intensity asymptote.
Observations with monotonic power laws were the majority in comparison to the number
of occultations with an apparent two-component power law, which explains only single
slopes being observed in the averaged PSDs. The power spectral indices agreed with the
values expected for scenarios of scintillation, with values tending to three as expected for
the F-layer scintillation in low-latitude [27,33,39,55].

Figure 10. Daily averaged PSDs for label 1 observations. Blue curves correspond to intensity, red corresponds to the phase,
and shaded regions to the 95% confidence interval. Spectral slopes estimated by least squares fit within 2.77 and 3.37, with
phase slopes closely following the trend. The S4 index corresponds to the average among label 1 cases in each day.

Figure 11 shows the daily averages for label 0 observations, with shallower slopes
compared to label 1 occultations. This aspect was expected since the absence of a clear
asymptote, for example, disturbance potentially not caused by the ionospheric irregularities,
or coarse power spectra would result in shallower spectral indices compared to label 1
daily averages. Moreover, the phase spectra showed a similar pattern among different
days, i.e., a shallow curve at the high-frequency end. Such a pattern escapes from the
common asymptote observed in intensity and phase in Figure 10. In addition, Label 0 cases
are expected to be most frequently associated with lower S4 indices than label 1 cases. The
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presence of an outer scale given p < 3 should not lead to saturation (S4 > 1) [30–32]. The
daily average S4 indices show overall higher values in label 1 than in label 0 occultations.

Figure 11. Daily averaged PSDs for label 0 observations. Blue curves correspond to intensity, red corresponds to phase,
and shaded regions to the 95% confidence interval. Spectral slopes are in general shallower than the ones observed
in the averaged intensity PSDs of label 1 measurements. Phase PSDs do not follow closely the intensity slopes at the
high–frequency end. The S4 index corresponds to the average among label 0 cases in each day.

Figure 12 shows the distribution of maximum S4 and σφavg for label 0 and label 1
combining occultations in 2015 and 2018. Label 0 is predominant regarding the S4 index
within 0.2 < S4 < 0.4 and 0 < σφavg < 0.4 rad. The left-most column presents the bending
angle standard deviation (STDV) of observations performed between 0930–2130 LT and
2130–0930 LT. This parameter is computed within a 60–80 km impact height and, among
different sources of disturbance, quantifies the small-scale ionospheric irregularities [63].
The STDV mean values in label 1 observations were higher than in label 0.

An overview of the criteria used in the preparation of the data set is presented in
Table 1, including the withdrawal conditions and the two classes considered in this study.

Table 1. Conditional checks and classes assumed during data set labelling.

Criteria Description Label

S4max ≤ 0.2 Low-scintillation cases (Removed)

Sporadic E-layer [59] Occultations with U-shaped fade and S4 ≤ 0.2 corresponding
to less than 50% of the plateau (Removed)

S-type disturbances [52] Occultation with quasi-regular disturbances and S4 ≤ 0.2
corresponding to less than 50% of the plateau (Removed)

Others PSD without clear trend of monotonic or double-slope
inverse power law or inconclusive PSD 0

PSD with trend of monotonic or double-slope inverse
power law 1
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Figure 12. Distribution of (a) maximum S4 index and (b) σφ avg (2015 and 2018 accumulated): Label 1 occultations are
predominant in moderate and high scintillation indices; STDV distribution between (c) 0930–2130 LT and (d) 2130–0930
LT: Mean STDV values are significantly higher in label 1 observations than in label 0 in both day periods. Label 0 and 1
correspond to blue and red lines, respectively. Occultations with STDV > 10 µ rad were not considered in the figure.

4. Support Vector Machine

The data set of occultations was used in the training of the Support Vector Machine
(SVM) algorithm [44] to perform automatic classification between the two predefined
classes: occultation with characteristics of ionospheric scintillation (label 1) and other dis-
turbances (label 0). The same algorithm has been applied to create detection models of low-
and high-latitude ionospheric scintillation trained on data sets composed by ground-based
measurements [37,46,47]. In short, the supervised algorithm attempts to find common char-
acteristics between the training observations (labelled) and new occultations (unlabelled).

The SVM algorithm finds the hyperplane function, which separates the occultation
between the two classes by minimising the cost function

min θ C
m

∑
i=1

[
y(i) cost1

(
θT k(i)

)
+
(

1− y(i)
)

cost0

(
θTk(i)

)]
+

1
2

n

∑
j=1

θ2
j , (8)

where k(i) is the value of the kernel function for the i-th vector of training features, y(i)

is the labelled class corresponding to the xi, θj are the j-th coefficient of the hyperplane
function, and C is the penalty or box constraint parameter. Functions cost1,0 are defined as

cost1 = − log
(

hθ

(
k(i)
))

, (9)

cost0 = − log
(

1− hθ

(
k(i)
))

, (10)
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with h(x) = 1/(1 + exp (−θTx)), the Sigmoid function. The optimised coefficients define
the hyperplane function

g(x) = θTx + b

{
label 1, if g(x) ≥ 1
label 0, if g(x) ≤ −1

, (11)

with maximum margin to the closest training points. The tolerance of this margin is
controlled by the hyperparameter C. A thorough definition of the method is given in [46].

The standard definition of the SVM algorithm is given, assuming that the classes are
separable by a linear function (kernel). Thus,

k = [x(1) x(2) . . . x(n)], (12)

where each element in the vector corresponds to one feature. Alternatively to the linear
kernel form, SVM has as an advantage the possibility of using different kernel functions,
especially in problems with high complexity [45]. The kernel function is equivalent to map-
ping the problem to a higher dimensional feature space while still defining the hyperplane
function in the original low-dimensional space [46]. A common function, also evaluated in
this study, is the radial basis function (RBF) or Gaussian kernel,

k(i) = exp

(
−||x− x(i)||2

2γ2

)
, (13)

in which γ is equivalent to the width of the Gaussian kernel, i.e., the standard deviation [64].

4.1. Feature Selection

Among the parameters extracted from MetOp-A/B measurements, the performance
of the amplitude and phase features was evaluated separately to have a clear indication of
the contribution of the gradual addition of features to the training vector. The scenarios
involving amplitude features were:

• Maximum S4 during the occultation segment (1 feature);
• Maximum and mean S4 during the occultation segment (2 features);
• Intensity PSD (257 features);
• Maximum and mean S4, and intensity PSD (259 features).

Despite the most common application for quantifying scintillation in high-latitude
measurements [37], scenarios involving the following (excess) phase features were also in-
vestigated:

• Maximum σφ during the occultation segment (1 features);
• Maximum and mean σφ during the occultation segment (2 features);
• Phase PSD (257 features);
• Maximum and mean σφ, and phase PSD (259 features).

Additionally, scenarios combining the amplitude and phase features were also evalu-
ated. The step of feature selection was performed using linear and Gaussian kernels.

4.2. Performance Evaluation

In order to evaluate the classification performance of the trained models (hypothesis),
a portion of the data set not used during the training step was fed into the classifier. The
accuracy achieved during tests (cross-validation) is defined as

Accuracy =
TN + TP

TN + FP + FN + TP
, (14)

where TN is the number of occultations correctly labelled as “0”, FP is the number of false
positives, FN corresponds to the number of false negatives, and TP stands for the number
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of occultations correctly classified as “1”. Figure 13 shows the confusion matrix, which is
composed of the described terms.

TN FP

FN TP

0

1

0 1

T
r
u
e

C
l
a
s
s

Assigned Class
Figure 13. Confusion (contingency) matrix.

An F-score has been used as a complementary metric to accuracy, and it can be
described as a harmonic mean of precision and recall,

F-score =
2(Precision · Recall)
Precision + Recall

. (15)

Precision quantifies the accuracy of the classifier in marking potential cases of scin-
tillation as label 1, and it is given by the ratio between the number of correctly assigned
labels and the total number of occultations in such class,

Precision =
TP

TP + FP
. (16)

Recall indicates the ability of the classifier to distinguish the two classes. In the context
of this study, it indicates the number of occultations potentially affected by ionospheric
scintillation misclassified as label 0,

Recall =
TP

TP + FN
. (17)

Ideally, the classifier should reach high precision and recall. Thus, the F-score should
capture the poor performance of the trained classifier either in one or in both tasks. Fur-
thermore, Receiver Operating Characteristics (ROC) curve has also been considered to
compare the true positive rate (TPR) or recall and false positive rate (FPR) among the
different scenarios evaluated during the selection of the classifier [65]. FPR, also known as
fall-out, is defined as

FPR =
FP
N

=
FP

FP + TN
, (18)

where N is the total number of label 0 observations.
Given the relative small number of occultations composing the data set, k-fold cross-

validation was performed to train and evaluate the classification performance of each of
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the scenarios under investigation. In the cross-validation, the full data set was split into 10
stratified folds (k = 10), i.e., with an equal ratio of classes in each fold (stratified). Thus,
nine infolds were used to train the SVM algorithm and one outfold was used to test the
performance of the model. This procedure was repeated 10 times, with a permutation
of the outfold in every training iteration. Figure 14 shows an overview of the steps
carried out during the evaluation of the supervised detection model including occultation
preprocessing, labelling, and training and testing of the SVM algorithm.

Low-latitude
Conditional

checks

Low-scintillation
Sporadic E-layer

Quasi-regular (S-type)

SVM
Labelled Data

(DOY 74-79, 2015; DOY 134-139, 2018)

Classifier
Model

Training

R
e
m
o
v
e

...

...

.
.
.

...

... k

1

2

3

k-fold

atmPhs atmPrf

(858 occultations)

Measurements
(5340 occultations)

Figure 14. Overview of preprocessing, labelling, and training and testing steps.

5. Results

The hyperparameters C and γ were optimised with Bayesian optimisation. The search
spaces (in log-scale) were limited to [1× 10−5, 1× 105] for both hyperparameters. The same
seed was used to select the different observations composing the folds for all scenarios
evaluated. The metrics and the ROC curves are presented as the averages of the test folds.

Feature Selection

Figure 15 show the ROC curves obtained with the different sets of training features,
with amplitude and phase features investigated separately. The dots correspond to the
operating points, which were defined by assuming the same penalty between classes.

Figure 15. ROC curves obtained with a linear kernel for scenarios assuming (a) amplitude and (b) phase features. Shaded
regions correspond to the 95% confidence interval.
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Amplitude and phase scintillation indices showed the worst performance when as-
sumed as the only training features. Amplitude scintillation index outperformed σφ in
all metrics. The models trained only with the phase index have performed slightly better
than random classification. In Figure 15a, the intensity PSD contributed to the significant
increase in the level of true positives. In Figure 15b, the classifiers trained with phase PSD
features achieved similar levels of TPR to the best amplitude scenarios with smaller FPR,
besides less variation between folds. In general, S4 and σφ had marginal contributions to
the PSDs in the overall performance. Table 2 summarises the performance of the models
obtained with linear kernel.

Table 2. Performance overview with optimised linear kernel.

Training Vector Accuracy Precision Recall F-Score TPR FPR

S4max 0.767± 0.017 0.849± 0.029 0.629± 0.037 0.721± 0.025 0.724 0.152
S4max, S4 0.770± 0.019 0.901± 0.023 0.588± 0.044 0.710± 0.033 0.711 0.130
intPSD 0.878± 0.026 0.897± 0.026 0.842± 0.051 0.868± 0.032 0.892 0.130

S4max, S4, intPSD 0.881± 0.025 0.899± 0.026 0.850± 0.048 0.872± 0.030 0.881 0.109

σφmax 0.623± 0.023 0.710± 0.065 0.385± 0.049 0.494± 0.039 0.623 0.326
σφmax, σφ 0.712± 0.038 0.766± 0.060 0.584± 0.053 0.660± 0.047 0.593 0.174
phsPSD 0.885± 0.019 0.890± 0.025 0.870± 0.030 0.879± 0.020 0.865 0.087

σφmax, σφ, phs PSD 0.885± 0.019 0.886± 0.028 0.874± 0.026 0.879± 0.020 0.853 0.087

Figure 16 shows the ROC curves for models trained with Gaussian kernel and the
same set of training vectors evaluated with the linear kernel.

Figure 16. ROC curves obtained with Gaussian kernel for scenarios assuming (a) amplitude and (b) phase features. Shaded
regions correspond to the 95% confidence interval.

The most noticeable contribution of the Gaussian kernel is observed in terms of recall
and, consequently, F-score when only scintillation indices were used as training features,
especially σφ. However, there was no improvement in the scenarios considering PSD.
Table 3 summarises the performance with the Gaussian kernel.
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Table 3. Performance overview with optimised Gaussian kernel.

Training Vector Accuracy Precision Recall F-Score TPR FPR

S4max 0.782± 0.019 0.837± 0.035 0.683± 0.029 0.751± 0.021 0.724 0.152
S4max, S4 0.783± 0.013 0.852± 0.026 0.688± 0.032 0.747± 0.019 0.719 0.130
intPSD 0.883± 0.022 0.888± 0.038 0.872± 0.038 0.878± 0.024 0.879 0.109

S4max, S4, intPSD 0.881± 0.020 0.891± 0.024 0.860± 0.042 0.874± 0.024 0.833 0.065

σφmax 0.646± 0.023 0.645± 0.039 0.605± 0.035 0.682± 0.018 0.632 0.326
σφmax, σφ 0.716± 0.039 0.718± 0.049 0.680± 0.047 0.697± 0.040 0.634 0.196
phsPSD 0.883± 0.020 0.887± 0.028 0.869± 0.025 0.878± 0.021 0.872 0.109

σφmax, σφ, phs PSD 0.883± 0.018 0.884± 0.029 0.874± 0.026 0.878± 0.019 0.853 0.087

Lastly, the combination of amplitude and phase training features were also evaluated
with linear and Gaussian kernels. The assessment of intensity and PSD was compared with
the addition of S4 maximum and mean and, finally, σφ maximum and mean. Figure 17
shows the ROC curves for these scenarios.

Figure 17. ROC curves for the combination of amplitude and phase training features obtained with (a) linear and (b) Gaus-
sian kernel. Shaded regions correspond to the 95% confidence interval.

The combination of intensity and phase power spectra improved accuracy, precision
and recall, while it reduced the number of observations wrongly classified (lower FPR). The
addition of amplitude and phase scintillation indices had no contribution to performance.
Regarding the kernel functions, the results are quite similar. Therefore, the model trained
with the combination of amplitude PSDs and linear kernel is the most reasonable choice. The
threshold value at the operating point was 0.595. Table 4 summarises the results of combining
the amplitude and phase features and the respective optimised hyperparameters.

Figure 18 shows the confusion matrices for the test folds trained with amplitude and
phase PSDs and assuming a linear kernel. The matrices were used in the calculation of the
performance metrics.
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Table 4. Performance overview combining amplitude and phase features.

Training Vector C γ Accuracy Precision Recall F-Score TPR FPR

PSDs 0.005 - 0.910± 0.019 0.920± 0.026 0.895± 0.040 0.905± 0.021 0.880 0.065
S4, PSDs 0.006 - 0.913± 0.018 0.922± 0.021 0.896± 0.039 0.906± 0.022 0.880 0.065

S4, σφ, PSDs 0.006 - 0.910± 0.019 0.920± 0.026 0.894± 0.040 0.905± 0.021 0.888 0.065

PSDs 72 693 4 314 0.910± 0.021 0.915± 0.026 0.896± 0.038 0.904± 0.024 0.882 0.065
S4, PSDs 2 597 1 019 0.910± 0.020 0.916± 0.030 0.898± 0.039 0.906± 0.022 0.887 0.065

S4, σφ, PSDs 47 637 3 560 0.909± 0.020 0.917± 0.026 0.894± 0.038 0.904± 0.023 0.903 0.087

Figure 18. Confusion matrices for test folds: intensity and phase PSDs as training features and linear kernel.

6. Conclusions

In this study, GNSS-RO measurements performed by MetOp-A/B at low latitudes
during two intervals of the 24th solar cycle have been analysed. The first interval corre-
sponded to the days before, during and after the St. Patrick’s Day geomagnetic storm in
2015. The second interval, during May 2018, corresponded to days with low geomagnetic
activity in addition to low solar activity.

The distinctions between these two intervals were chosen to create a labelled data set
of measurements with and without indication of ionospheric scintillation in the F-layer
according to the characteristics observed in each measurement. The data set was charac-
terised in terms of S4, σφ, intensity and (excess) phase power spectral density. Occultations
pre-classified as moderate or strong scintillation (according to maximum S4) were then
visually inspected and labelled between two classes: “label 1”—disturbances with typical
characteristics related to F-layer scintillation, and “label 0”—other disturbances.

The labelled data set was used to train an SVM algorithm with the goal to develop a
model of automatic detection of ionospheric scintillation in low-latitude RO measurements.
Different features were considered during the training of the classifier, including features
exclusively related to the signal amplitude or phase and their combination. Furthermore,
the selection of the most suitable kernel function of the SVM algorithm has also been
evaluated.

Comparison between our results and a similar study not using RO measurements
shows common outcomes and also distinctions [46]. In agreement, our results indicated
that the S4 index does not improve the performance of the SVM-model to correctly detect
potential cases of ionospheric scintillation in low-latitude RO measurements. Our results
also show the poor performance obtained when σφ was considered as the only training



Remote Sens. 2021, 13, 1690 22 of 25

feature. Regarding the kernel functions, the Gaussian kernel has not contributed to an
increase in the performance of the classifier in comparison to the linear kernel. Finally,
similar TPR were obtained in our study than when moderate and strong scintillations were
used in the model training.

As a distinction, our model had to include information of the (excess) phase to achieve
equivalent true positive alarm rates but at a higher rate of false positives. The different
sorts of measurements considered in the SVM training, i.e., ground-based receiver [46],
are likely related to the different performances observed. GNSS-RO measurements are
significantly shorter, a fact that could have eventually influenced the labelling procedure
in cases where a longer segment would be beneficial. The impact of this aspect should be
assessed with the upcoming second generation of MetOp satellites (MetOp–SG), which will
extend the plateau segment of the occultation towards higher SLTA points. Additionally,
the current version of the data set of RO measurements is relatively small and it could be
further extended and validated.

Nevertheless, the SVM-model described in this study sets a baseline for the use of
machine learning algorithms in the detection of F-layer scintillation in RO measurements.
The classifier has the potential to collect a large number of occultations with such character-
istics and, consequently, to enable large-scale analysis of their influence on bending angle
standard deviation, RIE and other atmospheric parameters over long time periods, for
example, a solar cycle. In addition to MetOp, measurements from other RO missions may
also be classified using the SVM-based model given the occultation geometry and data
distribution (amplitude and excess phase) are equivalent. A detection model including
classification of mid-, high-latitude and sporadic E-layer scintillation could also be assessed
in future studies.
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