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Abstract: The class imbalance problem has been reported to exist in remote sensing and hinders
the classification performance of many machine learning algorithms. Several technologies, such
as data sampling methods, feature selection-based methods, and ensemble-based methods, have
been proposed to solve the class imbalance problem. However, these methods suffer from the loss
of useful information or from artificial noise, or result in overfitting. A novel double ensemble
algorithm is proposed to deal with the multi-class imbalance problem of the hyperspectral image
in this paper. This method first computes the feature importance values of the hyperspectral data
via an ensemble model, then produces several balanced data sets based on oversampling and
builds a number of classifiers. Finally, the classification results of these diversity classifiers are
combined according to a specific ensemble rule. In the experiment, different data-handling methods
and classification methods including random undersampling (RUS), random oversampling (ROS),
Adaboost, Bagging, and random forest are compared with the proposed double random forest
method. The experimental results on three imbalanced hyperspectral data sets demonstrate the
effectiveness of the proposed algorithm.

Keywords: classification; remote sensing; hyperspectral image; imbalance learning; data sampling

1. Introduction

Hyperspectral image (HSI) is one of the most important data types in the remote
sensing field [1]. These images could provide rich information and have obtained lots of
applications, including land use surveys, environmental monitoring, mineral development,
and so on [2,3]. Machine learning, which automates analytical model building to find
hidden insights, is a core sub-area of hyperspectral remote sensing research [4]. Generally
speaking, classification approaches can be divided into unsupervised and supervised
methods [5]. Unsupervised classification methods, such as K-means, graph-based methods,
do not require labeled samples [6]. The relationship between clusters and classes with too
little prior knowledge cannot be determined [7]. The supervised classification methods
generally present better performance but need the class labels of the training data. However,
many supervised classification methods suffer from the class imbalanced problem which
exists when some classes (minority classes) are underrepresented as compared to the
other classes (majority classes) [8–10]. For example, random forests (RF), which has been
employed in many applicative domains, become intractable when an imbalance problem
appears [10]. In addition, the “curse of dimensionality” makes imbalanced HSI processing
face more challenges concerning other data classification tasks [11,12].
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Dealing with imbalanced multi-class tasks is harder than dealing with binary
ones [10,13–16]. In binary problems, the roles of classes are easily defined: one is ma-
jority and the other one is minority [17]. When dealing with multiple classes, a given class
may be at the same time majority when compared to some, minority to others, and even in
a relative balance with the rest [4]. This makes designing any balancing algorithms highly
challenging, as they must take into account these various roles [17]. The purpose of multi-
class imbalance learning is to provide high classification accuracy for the minority classes
without heavily compromising the accuracy of the majority classes [10]. A larger number
of methods have been proposed to solve the class imbalance problem. They can be di-
vided into three categories: feature-level methods, data-level methods, and algorithm-level
methods. Ensemble methods, which combine several base models to produce one strong
predictive model [18–20], is one new method to deal with imbalanced data [10,21]. Different
from the feature selection, data sampling, and normal algorithms, ensemble-based methods
can combine multiple data sampling and classifier optimization algorithms, thus indirectly
alleviating the effect of the data imbalance problem. For example, Ribeiro et al. [22] propose
a multi-objective optimization design approach for imbalanced learning. This method has
four steps: multi-objective ensemble member generation, multi-objective ensemble member
selection, multi-objective ensemble member combination, and multi-objective ensemble
member selection and combination. Wang et al. [23] developed a multi-matrices entropy
discriminant ensemble learning method. This method introduced the multi-matrices ap-
proach and nearest entropy into the base classifier. Chen et al. [24] propose a method
by combining ensemble learning with the union of a margin-based undersampling and
diversity-enhancing oversampling. Wang et al. propose a hybrid ensemble learning strat-
egy named Sample and Feature Selection Hybrid Ensemble Learning [25]. Qin et al. [26]
combined the particle swarm optimization-based wrapper method and the dynamic over-
sampling approach with adaptive boosting to propose a hybrid multi-class imbalanced
learning method. The wrapper method is utilized to adaptively select the optimal fea-
ture subset, and DySBoost is applied to solve the multi-class class imbalanced problem.
Cmv et al. [27] designed a novel sequential ensemble learning framework. The method
can divide the majority instances into multiple small and disjoint subsets for training
multiple weak learners without compromising accuracy [27]. These researches prove that
the problem of class imbalance can be effectively solved by ensemble learning. However,
most of these methods do not consider the high dimension problems of imbalance learning.

According to the above presentation, hyperspectral data is commonly characterized
by high dimension and multi-class imbalanced nature. This requires dedicated algorithms
which use information about relationships among features and classes for multi-class
imbalanced data. Most existing state-of-the-art solutions are designed for the binary
problem and are not capable of processing multi-class data. This calls for developing
efficient algorithms for handling multi-class imbalanced problems. Hence, this paper
proposes a double random forest (DRF) method for multi-class imbalance learning by the
idea of hybrid ensemble theory. This method firstly computes the feature importance values
of the hyperspectral data, then produces several balanced data sets based on oversampling
and builds a number of classifiers. Finally, the classification results of these diversity
classifiers are combined according to a specific ensemble rule. In the experiment, different
data handling methods and classification methods including random undersampling (RUS),
random oversampling (ROS), Adaboost, Bagging, and random forest, are compared with
the proposed double random forest method.

Thus, the contribution of this paper is to design a hybrid random forest framework
that generates an ensemble and is biased toward the minority class(es). The rest of this
paper is structured as follows. Section 2 briefly explains and reviews some of the related
state-of-the-art approaches developed to tackle the class imbalance problem. Section 3
describes the proposed approach, DRF. Section 4 presents various measures for evaluating
the DRF’s performance. Section 5 discusses the superior performance of the proposed work.
Finally, Section 6 summarizes this paper.
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2. Related Works
2.1. Feature-Level Methods

The main goal of the feature-level methods is to select a subset of K features from the
original feature space, to increase the distinction between majority and minority classes.
Then, redundancy and noisy information can be discarded; thus, this kind of method could
reduce the risk of overfitting and lead to better classification performance. Moreover, the
feature-level methods can be divided into embedded methods and filter methods. The
approach integrates feature selection and classifier learning into a single process.

K-nearest neighborhood (KNN) and Principal Component Analysis (PCA)-based ap-
proaches are two well-known feature selection methods. The KNN-based method is a
linear algorithm to evaluate the performance of feature subsets. Its shortcoming is that it
cannot keep the geometric structure of the data in the originally high-dimensional space,
when representing the data in a lower-dimensional space [28]. The PCA-based method is
a category of dimensionality reduction approaches in discriminating directions in a data
set and finding out the sensitive directions of maximal variance [28]. It is a linear transfor-
mation from a high-dimensional space to a lower-dimensional space, and is less effective
in nonlinear data with a certain type of topological manifold [28]. However, PCA cannot
reflect the true low-dimensional geometry of the manifold [28]. Hence, some nonlinear
algorithms are proposed to avoid the above problems. For example, Richhariya et al. [29]
propose a reduced Universum twin support vector machine (SVM) for class imbalance
learning. This method is applicable for large-scale imbalanced datasets. The filtering
methods compute the score or significance of each attribute for the purpose of ranking the
input variables. Shahee et al. [30] proposes an effective distance-based feature selection
method. This method employs a sophisticated distance measure to tackle the simultaneous
occurrence of between and within-class imbalance.

2.2. Data-Level Methods

The random oversampling (ROS) method is a common method to deal with the prob-
lem of class imbalance [4]. ROS randomly tries to balance class distribution by randomly
replicating minority class instances, thereby increasing the minority samples and creating
a more balanced dataset. However, since the samples are randomly selected, over-fitting
may be encountered in some cases. The random undersampling (RUS) method is the
simplest class-balancing method. While oversampling appends instances to the original
dataset, random undersampling eliminates instances from the original dataset. In the
majority class data Smaj, instances are randomly selected and removed arbitrarily to create
a balanced dataset. In this way, the number of total examples in Smaj is reduced by E,
and the class distribution balance of S is adjusted accordingly. Finally, a balanced data
set S

′
= S + Smaj + Smin − E is generated. The undersampling method could be used

in big data study. However, some rich and important instances of most classes may be
discarded [10].

In addition, Chennuru et al. [31] propose a Simulated Annealing-based Under Sam-
pling (SAUS) method. However, the method may remove potentially useful information.
Different from undersampling, oversampling achieves rational distribution of samples
by increasing the number of minority class samples of the imbalanced training set [4,32].
Chawla et al. [33] proposed the synthetic minority oversampling technique (SMOTE),
which is a powerful algorithm and has enjoyed great success in various applications [4,34].
Engelmann et al. present a conditional Wasserstein Generative Adversarial Network-based
oversampling method for imbalanced learning [35]. Xu et al. [36] proposed a cluster-based
oversampling algorithm by combining SMOTE and k-means. Although oversampling has
been proven effective for imbalanced data, most of these methods pay more attention to
the binary problem and are very difficult in dealing with the multi class problem.



Remote Sens. 2022, 14, 3765 4 of 20

2.3. Algorithm-Level Methods

The methods of the algorithm level aim to modify the existing classification algorithm
model appropriately according to the actual data distribution [4] Cost sensitive learning [37]
and active learning [38] are representative algorithms. The core of cost-sensitive learning is
to consider the classes with high misclassification costs. However, when dealing with data
sets in the real world, the cost matrix is unknown in most cases, so it is difficult to accurately
estimate the real error cost [39]. Although the active learning method could improve the
classification performance by choosing more valuable instances and discarding those with
less information, it is a large computation cost [40]. In addition, because algorithm-level
solutions work directly within the training procedure of the considered classifier, they
lack the flexibility offered by data-level approaches but compensate with a more direct
and powerful way of reducing the bias of the certain learning algorithm [17]. They also
require an in-depth understanding of how a given training procedure is conducted and
what specific part of it may lead to bias towards the majority class [17].

Decomposition-based approaches transform multi-class problems into a series of bi-
nary ones. Then those binary problems are solved separately and later aggregated. The
decomposition-based methods were developed from binary imbalanced classification.
Those methods are often simple and allow the re-use of well-developed binary imbalanced
algorithms [41]. The most popular algorithms rely on one-against-one (OAO) and one-
against-all (OAA) ensemble schemes [4,10]. Most decomposition-based approaches are com-
bined with data resampling techniques that modify the original dataset in a pre-processing
step before learning the classifier. For example, Abdi et al. propose a Mahalanobis-distance
oversampling (MDO) method [42]. SOUP integrates informed undersampling of majority
classes and oversampling of minority ones [43]. However, those class decomposition-based
schemes are not suitable when a large number of classes is considered [4]. In addition,
decomposition methods are sometimes not as effective as some dedicated approaches for
multi-class imbalanced data [41].

2.4. Ensemble-Based Imbalance Learning Methods
2.4.1. Adaboost

Boosting is one of the major ensemble learning methods. The term boosting refers to a
family of algorithms that can convert weak learners to strong learners. Adaboost [44] is the
most influential boosting algorithm, it is summarized in Algorithm 1 [45].

Algorithm 1 Adaboost
Input: Data set S = (x1, y1), (x2, y2, ), · · · , (xm, ym);
Base learning algorithm ζ;
Number of learning rounds T;
Initialization: D1(x) = 1/m.
Iterative process:
for t = 1 to T do
1. ht = ζ(S, Dt);
2. εt = Px∼Dt(ht(x) 6= y);
3. if εt > 0.5 then break
4. αt =

1
2 ln( 1−εt

εt
);

5. Update:

Dt+1(x) = Dt(x) · e−αtht(x)y

Zt
(1)

Zt is a normalization factor which enables Dt+1 to be a distribution
end
Output: H(x) = sign(∑T

t=1 αtht(x))



Remote Sens. 2022, 14, 3765 5 of 20

Adaboost.NC is the improved version of AdaBoost. Wang and Yao compared the
performances of Adaboost.NC and Adaboost combined with random oversampling with or
without using class decomposition for multi-class imbalanced data sets [46]. Their results in
the case of class decomposition show AdaBoost.NC and Adaboost have similar performance.

2.4.2. Bagging

The Bagging came from the abbreviation of Bootstrap AGGregatING [47]. The two key
ingredients of Bagging are bootstrap and aggregation [48]. Algorithm 2 summarizes the
Bagging procedure. A bootstrap sample is obtained by uniformly subsampling the training
data with replacement. To predict a test instance, Bagging feeds the sample to its base
classifiers and collects all of their outputs, and then uses the most popular strategies voting
to aggregate the outputs and takes the winner label as the prediction [48].

Algorithm 2 Bagging
Input: Data set S = (x1, y1), (x2, y2, ), · · · , (xm, ym);

Base learning algorithm ζ;
Number of learning rounds T;

Iterative process:
for t = 1 to T do
ht = ζ(S, Dbs);
end

Output: H(x) = sign(∑T
t=1 ht(x))

Bagging outperforms boosting over imbalanced data [49]. Moreover, Bagging tech-
niques are not only easy to develop but are also powerful when dealing with class imbalance
if they are properly combined [50]. Most related works in the literature indicate good per-
formance of Bagging extensions versus the other ensembles [51,52]. OverBagging [13] is a
method for the management of class imbalance that merges Bagging and data preprocess-
ing. It increases the cardinality of the minority class by replication of original examples
(random oversampling), while the examples in the majority class can be all considered in
each bag or can be resampled to increase the diversity. This method outperforms original
Bagging in dealing with binary imbalanced data problems [50].

2.4.3. Random Forest

Illuminated by the Bagging algorithm [47], the random forest (RF) algorithm is pro-
posed by Breiman [53]. A random forest is an ensemble of Classification and Regression
Trees (CART) trees. Each tree represents a base classifier and the trainings of the base
classifier are independent of each other. The core idea of RF is random sample selection and
random feature selection, and the classification process is implemented by taking a majority
vote. Let us suppose a dataset Sm with m instances. Firstly, n samples are randomly chosen
with replacement from the original data set Sm to build a subset of samples. Secondly, f
features are randomly selected from all the features of the selected instances. Then the best
features are iteratively chosen based on the criterion of Gini impurity or mean squared
error to construct a CART. Finally, the prediction results are obtained by repeating the
above operation and employing the majority voting rule.

2.4.4. Ensemble-Based Methods

According to the different ensemble models, imbalance learning algorithms could
contain boosting-based methods and Bagging/random forest-based methods [4].

Thanathamathee et al. proposed a class imbalance learning method by combining syn-
thetic boundary data generation and boosting procedures [54]. The method outperforms
KNN and AdaBoost.M1 but relies on boundary definition. Random balance boost [55]
is proposed by training each classifier with a data set obtained via random balance. The
random balance is designed by using both SMOTE and random undersampling to, re-
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spectively, increase or reduce the size of the classes to achieve the desired ratios. The
combination could lead to better performance when compared with other state-of-the-art
combined ensemble methods for binary-class imbalance problems [55]. However, most
boosting-based methods face the threat of noise as the original boosting method [55]. In
addition, most boosting-based imbalanced learning techniques only focus on two-class
imbalance problems and are difficult to extend to multi-class imbalance problems [4].

Bagging significantly outperforms boosting over noisy and imbalanced data [49].
Moreover, Bagging techniques are not only easy to develop but also powerful when
dealing with class imbalance if they are properly combined [4,50]. UnderBagging was
first proposed by Barandela et al. [56]. In this method, the number of the majority class
examples in each bootstrap sample is randomly reduced to the cardinality of the minority
class. Simple versions of undersampling combined with Bagging are proved to work better
than more complex solutions such as EasyEnsemble and BalanceCascade [51,57]. However,
the performance of UnderBagging was not tested for multi-class imbalance learning in
their work. OverBagging [13] is a famous class imbalance learning method that merges
Bagging and data preprocessing. This method has been demonstrated to be effective in
dealing with binary imbalanced data problems [50]. SMOTEBagging is the improved
version of OverBagging [13]. The reported results show that SMOTEBagging can obtain
better performance than OverBagging for both binary class problems [50,52].

Since the random forest is an improved version of Bagging, in theory, all class im-
balance algorithms based on Bagging can be extended to the random forest. In addition,
because the random forest has higher accuracy than Bagging, the imbalanced learning
algorithm based on random forest should also have better performance in theory.

3. Proposed Method

This section presents the double random forest (DRF) which is a simple and effective
method for high-dimensional data. DRF is motivated by the idea of combing the oversam-
pling of the data level and ensemble random forest of the algorithm level. In other words,
instead of increasing the minority instances in the data set before the classification, the
proposed algorithm aims to oversample for all the ensemble models. In addition, before the
class balancing operation, DRF employs the random forest to select the informative features
for the imbalance classification. The overall structure of the DRF is shown in Algorithm 3.
First, the random forest is adapted to identify the useful features of the data sets. Second,
random oversampling, which contains all the majority instances, is operated to increase the
number of the minority instances, then the bootstrap constructs several diversity training
sets and generates a series of standard random forests. Third, the final results are obtained
by combing all the outputs of separate random forests according to the major vote rule.

3.1. Feature Importance Determining Based on Random Forest

The random forest provides the measurement of feature importance. Let us note
V as being the number of decision trees to induce. Rows of X, figuring the training
instances, are sampled with replacement. This is equivalent to the left multiplication of
a matrix Sv of size V×(#I) where each row contains only one component equal to 1 and
its location in the row is evenly drawn from {1, . . . , (#I)}. The assigned labels are also
transformed into SvY . Moreover, a random G-sized subset of the X-columns is selected.
This is equivalent to the right multiplication of Fv of size (10D)×G defined as the identity
matrix deprived of a random set of 10D − G columns. The labels remain unmodified.
Finally, (SvXFv, SvY) is used to train a decision tree using the Classification and Regression
Trees methodology (CART). The trained decision tree hv maps any row-vector of size #I
into an integer c ∈ {1, . . . , C}; C is the number of classes. The above tasks are repeated V
times, and the predictions of V decision trees are fused according to the majority rule.

h(x) = argmax
c∈{1,...,C}

V

∑
v=1

1(hv(x) = c) (2)
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where x is a row vector, and 1(“statement”) is equal to one when “statement” is true and
zero if not.

Let us consider the v-indexed decision tree trained with (SvXFv, SvY) and denote Nv
the number of the internal nodes of the decision tree. If we assume a node indexed of the
tree with n, then there are a set of samples and labels which are rows of SvXFv and SvY .
We demote the set of these row indexes by Kv,n and denote the components of SvXFv and
SvY as xv

k and yv
k . At this node, samples are split with the feature fv,n ∈ {1, . . . , 10D} and a

cutting point sn.

K−v,n =
{

k ∈ Kv,n| xv
k, fv,n

≤ sv,n

}
K+

v,n =
{

k ∈ Kv,n| xv
k, fv,n

> sn

} (3)

Splitting modifies the class distribution pv,n,c into p−v,n,c and p+v,n,c. These class distribu-
tions are associated, respectively, to Kv,n, K−v,n and K+

v,n.

pv,n,c =
1

#Kn
∑k∈Kn 1(yv

k = c)

p−v,n,c =
1

#K−n
∑k∈K−n 1(yv

k = c)

p+v,n,c =
1

#K+
n

∑k∈K−n 1(yv
k = c)

(4)

The importance value of a feature fv,n of the training set in node n is the amount by
which splitting reduces entropy.

Θ( f ) =1( f = fv,n)(
C

∑
c=1

pv,n,clog2
1

pv,n,c

−
C

∑
c=1

p−v,n,clog2
1

p−v,n,c
−

C

∑
c=1

p+v,n,clog2
1

p+v,n,c
)

(5)

When averaging Θv,n, the relative amount of samples dealt by each node is the
weight value.

pv,n =
#Kv,n

#Kv
(6)

Thus, the measures of feature importance of random forest could be defined as

Θ( f ) =
1
Θ

V

∑
v=1

Nv

∑
n=1

pv,nΘv,n( f ) (7)

where Θ is a normalization factor and can be defined as

Θ = max
f∈{1,...,10D}

V

∑
v=1

Nv

∑
n=1

pv,nΘv,n( f ) (8)

Feature selection is used to avoid the curse of dimensionality and improve the per-
formance of the random forest in the case of the class imbalance. The feature importance
analysis results of the experiments are shown in Figure 1. The figure shows that the
difference of the feature importance values for each band of each data is very obvious.
This phenomenon is particularly evident on Indian Pines AVRIS and Salinas. Hence, the
proposed method could filter out useless features, thereby reducing the impact of noise,
which in turn reduces computational complexity of the learning model and improves the
final classification accuracy.
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Figure 1. Feature importance values of the hyperspectral data Indian, University and Salinas.
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Algorithm 3 Oversampling-based double random forest methods.
Inputs:

1. Training set S = (x1, y1), (x2, y2, ), · · · , (xn, yn);
2. Number of classes L;
3. Ni is the number of training instances of ith class N1 6 Ni 6 NL (1 =

smallest class, L = largest class);
4. N is the number of feature which will be selected from the original feature set;
5. Ensemble creation algorithm ζ;
6. Number of classifiers T;
7. E = ∅: an ensemble.

Process:
1. Calculate the features importance values Θ of the data sets S via a random forest

model.
2. Order the features of S according to Θ in descending order.
3. Select the first best N features of S.
4. For t = 1 to T do

(a) Keep all the NL instances of the majority class L.
(b) Get a subset St of size NL by performing a boostrap from minority classes

samples Nc of the training set Sc.
(c) Construct a new balanced data set St by combining the NL biggest class training

instances with St (c = 1, ..., L− 1).
(d) Train a random forest classifier ht = ζ(St).
(e) E← E ∪ ht.

End

Output: The ensemble E

3.2. Over-Sampling Based Double Ensemble Methods

Let us denote S = {X, Y} = {xi, yi}n
i=1 as training samples. The first step of the

proposed random forest method uses random oversampling to balance the class of the
training set. Suppose L is the number of classes, then Ni is the number of training instances
of the ith class. NL is the training size of the biggest class L, and N1 is the training size of the
smallest class 1. For each class c, the resampling operation is used to increase the number
of small class instances to contract a balanced data set. All the instances of the biggest
class are kept. In the second phase, the bootstrap is employed to generate several diverse
balanced training subsets. Random forest is as the base classifier. A series of classifiers are
trained by the diverse datasets, and the ensemble results are obtained by a majority vote
rule. The description of the proposal is presented in Algorithm 3. The flowchart of the
double ensemble-based multi-class imbalanced data learning method is shown in Figure 2.
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Figure 2. Flowchart of the double ensemble-based multi-class imbalanced data learning method.

4. Experimental Study

To evaluate the performance of DRF, described in the previous section, Adaboost, Bag-
ging, RF, data preprocessing involving random undersampling and random oversampling
combined Adaboost, Bagging, and random forest are utilized in the comparative analysis.
All ensembles are implemented with 100 trees. Other parameters of Adaboost, Bagging RF
are kept to their default values in R-project packages, “randomForest” and “adabag”. All
the presented results are averaged over 10 independent runs of the algorithm.

4.1. Evaluative Performance Metrics

Accuracy is commonly used as a performance metric for measuring the performance
of a classifier model. However, overall accuracy has proven not suitable in class imbal-
ance research. Therefore, we adopt accuracy per class, overall accuracy, average accuracy,
F—measure and G—mean as performance measures in our experiments [4].

• Overall accuracy(OA) measures the true prediction rate.

OverallAccuracy = ∑L
i=1 Recalli
sum(S)

(9)

where L stands for the number of classes and sum(S) is the number of the training set.
Recall is per class accuracy and can be defined as (10).

Recalli =
nii

∑L
j=1 nij

(10)

• Average accuracy(AA) gives the same weight to each of the classes of the problem. It
can be calculated according to the following equation:

AverageAccuracy = ∑L
i=1 Recalli

L
(11)
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• F-Measure is one of the most popular methods to evaluate the performance of a
classifier for imbalance data. It can be calculated according to the following equation.

F-measure = 2
L

∑L
i=1 Recalli ∑L

i=1 Precisioni

∑L
i=1 Recalli+∑L

i=1 Precisioni
(12)

where Precisioni can be computed by nii
∑L

j=1 nji
.

• G-mean is another method to evaluate the performance of a classifier for imbal-
ance data.

G-mean = ∏L
i=1 Recall1/L

i (13)

4.2. Data Information

The proposed DRF is evaluated on three standard hyperspectral images, Indian Pines
AVRIS, University of Pavia ROSIS, and Salinas.

(1) Indian Pines AVRIS is highly imbalanced and composed of 145 × 145 pixels, with
a spatial resolution of 20 m/pixel and 200 spectral bands. The reference data with
16 classes are composed of 10,249 samples.

(2) University of Pavia ROSIS consists of 610 × 340 pixels, and 103 spectral bands. The
spatial resolution of this data is 1.3 m/pixel. The reference data is with 9 classes and is
composed of 42,776 instances.

(3) Salinas consists of 512 × 217 pixels with a spatial resolution of 3.7 m/pixel. The data
has 224 spectral bands. The reference data is with 16 classes and is composed of
54,129 instances.

The reference data of all images are presented in Figures 3–5.
The data sampling is used to divide the reference data set into two non-overlapping

parts: the training set and the test set. A total of 5% of their instances are selected randomly
from original reference data to construct training sets. All the unselected instances are test
sets. More details of the data information are presented in Table 1.

Table 1. Data information.

Indian Pines AVRIS University of Pavia ROSIS Salinas

Train. Test Train. Test Train. Test

1 Alfalfa 23 23 Asphalt 331 6300 Brocoli_green_weeds_1 100 1909
2 Corn-notill 428 1000 Meadows 932 17,717 Brocoli_green_weeds_2 186 3540
3 Corn-mintill 249 581 Gravel 104 1995 Fallow 98 1878
4 Corn 71 166 Trees 153 2911 Fallow_rough_plow 69 1325
5 Grass-pasture 144 339 Painted metal

sheets
67 1278 Fallow_smooth 133 2545

6 Grass-trees 219 511 Bare Soil 251 4778 Stubble 197 3762
7 Grass-pasture-

mowed
14 14 Bitumen 66 1264 Celery 178 3401

8 Hay-windrowed 143 335 Self-Blocking
Bricks

184 3498 Grapes_untrained 563 10,708

9 Oats 10 10 Shadows 47 900 Soil_vinyard_develop 310 5893

10 Soybean-notill 291 681 Corn_senesced 163 3115green_weeds
11 Soybean-mintill 736 1719 Lettuce_romaine_4wk 53 1015
12 Soybean-clean 177 416 Lettuce_romaine_5wk 96 1831
13 Wheat 61 144 Lettuce_romaine_6wk 45 871
14 Woods 379 886 Lettuce_romaine_7wk 53 1017

15 Buildings-Grass 115 271 Vinyard 363 6905Trees-Drives untrained
16 Stone-Steel-

Towers
46 47 Vinyard_vertical_trellis 90 1717

Total 3106 7143 2135 40,641 2697 51,432
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4.3. Results and Analysis

This section shows the performance of the proposed DRF method. The objective of
this section is as follows:

1 Present the performance of DRF in dealing with the hyperspectral datasets.
2 Compare the performance of DRF with data sampling methods.
3 Analyze the parameter sensitivity of the proposed DRF methods.

Tables 2–4 present the AA, OA, F-measure, and Gmean results of the Adaboost,
Bagging, traditional RF, two data sampling combined Adaboost, Bagging, and RF methods,
as well as the proposed DRF on the hyperspectral images Indian Pines AVRIS, University of
Pavia ROSIS and Salinas, respectively. The best results in all tables are highlighted in bold
font. The experimental results in those tables show that Adaboost could obtain better results
than the Bagging and the traditional RF. Both Bagging and RF biases in the classification of
majority classes. In addition, resampling methods are useful to improve the performances
of the ensemble models, especially Adaboost and Bagging, for the hyperspectral remote
sensing data classification. Oversampling tends to outperform the undersampling reference
strategies, which manifested in the average ranks concerning all of the performance metrics
for oversampling-based methods. The undersampling can discard potentially useful data.
Furthermore, The proposed DRF algorithm achieved a statistically significantly better
performance than all the reference methods. In other means, DRF could obtain better
results in dealing with high-dimensional imbalanced data than simple data sampling
methods. The feature importance is helpful to improve the performance of the ensemble-
based imbalance learning method. On the data set University of Pavia ROSIS, with respect
to Adaboost, Bagging, RF, RUS-RF and ROS-RF, the best increases in AA are over 6%, 24%,
7%, 10%, 6%, and the best increases in OA are over 4%, 13% 6%, 22%, 4%. Moreover, the
results of the F-measure and Gmean of three reference data also demonstrate the better
performance of DRF when compared with other methods.

Table 2. Classification results (%) of the Indian image, respectively, obtained by Adaboost, Bagging,
RF, RUS + Adaboost, ROS + Adaboost, RUS + Bagging, ROS + Bagging, RUS-RF, ROS-RF, and the
proposed DRF.

Adaboost Bagging RF RUS ROS RUS ROS RUS ROS DRFAdaboost Adaboost Bagging Bagging RF RF

1 0 0 69.57 63.48 58.26 76.52 69.57 73.04 53.91 76.81
2 48.42 43.36 75.68 25.98 31.7 30.04 4.24 34.56 75.84 82.67
3 30.81 27.57 60.9 32.05 38 32.84 25.78 35.32 66.85 71.2
4 0 0 56.87 33.37 48.55 24.58 46.02 38.8 65.9 86.75
5 76.52 70.44 90.91 71.86 81.12 70.62 70.86 77.23 92.8 95.38
6 97.77 98 96.59 68.49 89.16 71.94 79.65 76.16 96.28 98.17
7 0 0 55.71 72.86 68.57 81.43 74.29 80 65.71 78.57
8 94.39 94.39 98.57 61.73 78.27 57.97 70.63 72.24 97.55 100
9 0 0 52 52 60 50 50 60 46 56.67

10 29.72 23.79 79.41 36.53 60.68 33.86 23.55 49.84 85.52 89.38
11 83.22 83.08 89.85 38.55 58.06 48.11 75.64 41.47 82.13 88.37
12 25.82 26.88 68.7 20.96 48.99 16.39 38.12 34.23 76.39 93.35
13 92.08 92.22 90.14 91.67 90.83 93.61 90.28 92.5 89.03 95.14
14 92.19 92.82 0 80.16 83.93 73.07 81.47 71.74 95.58 97.07
15 17.79 12.77 53.65 22.51 35.06 23.1 34.1 29.89 57.42 75.4
16 58.72 50.64 91.49 94.04 94.89 92.34 90.64 93.62 96.6 100

AA 46.72 44.75 76.65 54.14 64.13 54.78 57.8 60.04 77.72 86.56
OA 63.05 61.11 82.72 45.89 59.77 47.34 53.06 50.83 82.65 88.8
F-

measure 48.47 47.05 81.37 47.09 59 48.44 52.8 53.4 79.32 88.47

G-mean 0 0 74.75 46.47 60.69 46.47 10.4 55.27 75.78 85.63
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Table 3. Classification results (%) of the University of Pavia ROSIS image, respectively, obtained by
Adaboost, Bagging, RF, RUS + Adaboost, ROS + Adaboost, RUS + Bagging, ROS + Bagging, RUS-RF,
ROS-RF, and the proposed DRF.

Adaboost Bagging RF RUS ROS RUS ROS RUS ROS DRFAdaboost Adaboost Bagging Bagging RF RF

1 90.27 93.55 92.17 72.44 82.5 66.47 61.09 72.29 89.71 95.11
2 96.1 97.29 97.09 67.04 82.76 56.64 30.4 61.21 92.1 95.82
3 59.93 20.82 58.64 56.92 63.77 57.26 68.6 70.24 61.83 75.51
4 86.42 81.31 86.83 92.09 92.97 87 96.95 95.59 91.41 94.53
5 98.37 95.62 98.62 98.72 98.72 98.72 98.44 99.09 99.01 99.79
6 71.76 28.66 58.07 68.61 80.56 65.39 88.89 72.36 72.8 90.25
7 75.74 0 78.54 88.67 86.65 83.61 86.61 87.37 78.89 81.86
8 86.52 89.08 85.4 80.22 83.76 73.58 69.19 73.7 85.23 88.16
9 97.62 98.89 99.07 97.27 98.91 99.16 99.56 100 100 100

AA 84.75 67.25 83.82 80.22 85.62 76.42 77.75 81.32 85.66 91.22
OA 88.51 79.99 87.63 72.83 83.33 65.96 57.43 71.08 87.32 93.09
F-

measure 86.2 70.68 86.09 76.29 83.27 71.96 72.96 77.06 85.84 91.83

G-mean 83.75 0 82.3 78.88 84.98 74.57 73.68 80.07 84.78 90.88

Table 4. Classification results (%) of the Salinas image, respectively, obtained by Adaboost, Bagging,
RF, RUS + Adaboost, ROS + Adaboost, RUS + Bagging, ROS + Bagging, RUS-RF, ROS-RF, and the
proposed DRF.

Adaboost Bagging RF RUS ROS RUS ROS RUS ROS DRFAdaboost Adaboost Bagging Bagging RF RF

1 99.47 97.48 99.46 98.16 99.58 98.02 97.62 98.96 99.47 99.76
2 99.77 98.61 99.79 98.52 99.6 98.31 98.43 97.97 99.84 99.84
3 95.08 87.24 95.27 91.95 95.86 85.31 86.42 95.41 97.8 97.8
4 97.89 91.56 99.58 95.55 98.61 97.87 99.7 99.14 99.68 99.7
5 96.82 94.92 96.86 96.01 96.44 94.92 96.2 96.79 97.38 98.72
6 99.82 99.14 99.71 99.69 99.84 99.18 99.15 99.43 99.78 99.82
7 99.66 98.94 99.22 98.48 99.65 97.55 98.89 97.92 99.43 99.72
8 84.52 77.4 84.49 65.94 78.87 54.19 58.83 65.09 76.36 91.57
9 99.21 97.74 99.06 99.02 99.05 97.95 97.25 98.68 99.15 99.79

10 89.97 72.35 89.66 85.92 89.84 77.68 77.93 85.16 90.56 94.85
11 90.29 86.01 91.9 90.07 91.05 89.6 88.45 89.93 89.64 95.17
12 98.44 94.77 98.86 97.33 98.5 95.75 96.69 98.03 98.98 100
13 95.59 95.09 96.12 96.46 95.2 95.2 94.81 95.27 94.58 95.94
14 97.17 94.69 96.83 96.18 96.79 95.38 94.75 96.62 97.09 97.97
15 67.93 53.96 61.96 59.86 71.09 68.34 65.47 62.96 68.09 64.63
16 97.48 95.17 97.51 95.55 97.83 96.26 95.57 95.76 97.69 99.17

AA 94.32 89.69 94.14 91.54 94.24 90.09 90.39 92.07 94.1 95.9
OA 90.85 85.11 90.07 85.08 90.11 82.72 83.43 85.44 89.36 92.72
F-

measure 94.22 89.24 94 90.25 93.79 88.51 88.84 90.66 93.62 95.93

G-mean 93.92 88.72 93.58 90.66 93.86 89 89.42 91.22 93.6 95.44

For a more intuitive comparison of the proposed DRF algorithm and the other nine
reference methods, the categorization map is adopted in our experiment. Figures 3–5,
respectively, exhibit the classification maps obtained by ten classification methods for Indian
Pines AVRIS, University of Pavia ROSIS, and Salinas images. Those figures show that DRF
could result in more accurate cartography with respect to Adaboost, Bagging, RF, and other
improved ensemble methods. According to the map results, we find that the proposed
algorithm can improve the classification accuracy of small class samples while maintaining
the overall accuracy. This effect is especially pronounced in Indian data. This conclusion is
consistent with the descriptions for the above tables.
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(a) Ground truth (b) Adaboost

(c) Bagging (d) RF (e) RUS-Boost

(f) ROS-Boost (g) RUS-Bag (h) ROS-Bag

(i) RUS-RF (j) ROS-RF (k) DRF

Figure 3. Ground truth, classification maps of Adaboost, Bagging, random forest, random undersam-
pling combined, random oversampling combined Adaboost, Bagging, and random forest, and the
proposed double random forest DRF, on the hyperspectral data Salinas.
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(a) Ground truth (b) Adaboost

(c) Bagging (d) RF (e) RUS-Boost

(f) ROS-Boost (g) RUS-Bag (h) ROS-Bag

(i) RUS-RF (j) ROS-RF (k) DRF

Figure 4. Ground truth, classification maps of Adaboost, Bagging, random forest, random undersam-
pling combined, random oversampling combined Adaboost, Bagging, and random forest, and the
proposed double random forest DRF, on the hyperspectral data University.
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(a) Ground truth (b) Adaboost

(c) Bagging (d) RF (e) RUS-Boost

(f) ROS-Boost (g) RUS-Bag (h) ROS-Bag

(i) RUS-RF (j) ROS-RF (k) DRF

Figure 5. Ground truth, classification maps of Adaboost, Bagging, random forest, random undersam-
pling combined, random oversampling combined Adaboost, Bagging, and random forest, and the
proposed double random forest DRF, on the hyperspectral data Salinas.
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The computational complexity of our proposal arises mainly from two sources: the
feature importance calculation and the building of the double ensemble model. The com-
putational cost of building a decision tree is O(N× log(N)×D) where N is the number of
the training set and D is the number of the features. The complexity of random forests with
T base classifiers is O(N× log(N)×D× T). In the feature importance calculation process,
only one random forest is built. Hence, the complexity of this step is O(N× log(N)×D× T).
In double ensemble model building, because the individual classifiers are trained simulta-
neously, the computational complexity will be similar to that of a random forest. However,
only N(N < N) features are used. Then the computational complexity of the second step is
O(N × log(N) × N× T2). In our proposal, because all of the positive patterns are used
for training in each balanced individual training set, N is approximate twice the size of
the positive samples. Therefore, the overall computational complexity of our proposal is
O(N× log(N)×N× T× (T + 1) + N). Although the training complexity of the framework
is a little higher than the random forest, it is normal in dealing with the imbalanced data. In
addition, because the produced training set is with low dimension, the proposed method has
lower computational complexity than the reference imbalance learning method.

4.4. Parameter Analysis

In order to study the influence of feature size, we present in Figure 1b,c the evaluation
of the average accuracy, overall accuracy, G-mean, and F-measure for the proposed method
on the University of Pavia ROSIS and Salinas. In this experiment, the size T of the ensemble
is still set to 100 and the tested number of feature set is set as (20, 40, 60, 80, 100) and (20,
40, 60, 80, 100, 120, 140, 160, 180, 200, 220). Figure 6 shows that DRF results in the best
result when the feature size is 40 for University of Pavia ROSIS and 60 for Salinas. In other
words, the proposed DRF could show superior performance with a small feature set, thus
reducing the computation complexity obviously.

2 0 4 0 6 0 8 0 1 0 0
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

N u m b e r o f f e a t u r e s
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(a) University
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G - m e a n

(b) Salinas

Figure 6. Performances of the proposed method measured by OA, AA, F—measure and G—mean
with respect to the number of features on hyperspectral data sets University and Salinas.

5. Discussion

1 The proposed algorithm is effective for multi-class imbalanced hyperspectral remote
sensing data. It could increase the robustness of the ensemble method to skewed
distributions. Out of the examined methods, the proposed ensemble method, when
combined with different information about instance-level difficulties, offers the best
performance regardless of the used metric. The standard version of random forest is
considered unsuitable for class imbalanced hyperspectral remote sensing data, as it
underperformed when compared with random resampling methods.
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2 By analyzing the behaviors of single random undersampling or oversampling, we are
able to identify the weak spot of the data level methods. As data in each base classifier
is selected randomly, resampling performs locally correct oversampling that does not
translate to the global characteristics of data. This could lead to increased overlapping
among classes. Our proposed method used both feature selection and data sampling.
This eliminated the drawbacks of single data resampling in the high dimensional data
processing.

3 The analysis of instance-level difficulties in multi-class imbalanced data allowed for
a better understanding of each considered classification problem [17]. This paper
adopts two popular data resampling methods and focuses on enhancing the presence
of the most difficult instances. Although this could lead to improvements for the
traditional random forest algorithm, the operation is unsuitable for hyperspectral
remote sensing data.

4 In our experiments, we analyzed the effect of feature parameters with the double
ensemble algorithm. The results show that the proposed method is insensitive to the
number of features. That means the proposed method has a good generalization ability.

6. Conclusions

In this paper, we proposed a novel double ensemble method to deal with multi-class
imbalanced datasets. The proposed DRF method consists of two key steps: the feature
importance measure of a balanced training dataset, and oversampling-based ensemble
random forest model. The proposed DRF method aims to improve the classification per-
formance in the case of high-dimensional multi-class imbalance problems. Experiments
are conducted using two popular multi-class imbalanced hyperspectral datasets. The
performance obtained by the proposed method is compared with five state-of-the-art
techniques Experimental results demonstrated that the proposed DRF outperforms the
other techniques in the multi-class imbalanced datasets and could decrease the computa-
tion complexity. The proposed method provides a direction for the big class imbalanced
data learning.

Compared with random forest, the algorithm in this paper has slightly higher com-
putational complexity. Therefore, in future work, we plan to optimize the structure of the
algorithm to reduce the training time of the model.
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