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Abstract: The Canadian RADARSAT Constellation Mission (RCM) has passed its early operation
phase with the performance evaluation being currently active. This evaluation aims to confirm that
the innovative design of the mission’s synthetic aperture radar (SAR) meets the expectations of
intended users. In this study, we provide an overview of initial results obtained for three high-priority
applications; flood mapping, sea ice analysis, and wetland classification. In our study, the focus is
on results obtained using not only linear polarization, but also the adopted Compact Polarimetric
(CP) architecture in RCM. Our study shows a promising level of agreement between RCM and
RADARSAT-2 performance in flood mapping using dual-polarized HH-HV SAR data over Red
River, Manitoba, suggesting smooth continuity between the two satellite missions for operational
flood mapping. Visual analysis of coincident RCM CP and RADARSAT-2 dual-polarized HH-HV
SAR imagery over the Resolute Passage, Canadian Central Arctic, highlighted an improved contrast
between sea ice classes in dry ice winter conditions. A statistical analysis using selected sea ice
samples confirmed the increased contrast between thin and both rough and deformed ice in CP SAR.
This finding is expected to enhance Canadian Ice Service’s (CIS) operational visual analysis of sea
ice in RCM SAR imagery for ice chart production. Object-oriented classification of a wetland area in
Newfoundland and Labrador by fusion of RCM dual-polarized VV-VH data and Sentinel-2 optical
imagery revealed promising classification results, with an overall accuracy of 91.1% and a kappa
coefficient of 0.87. Marsh presented the highest user’s and producer’s accuracies (87.77% and 82.08%,
respectively) compared to fog, fen, and swamp.

Keywords: SAR; RCM; compact polarimetry; flood; sea ice; wetland

1. Introduction

The RADARSAT Constellation Mission (RCM) is the evolution of the Canadian
RADARSAT program, which started back in 1995 with the launch of RADARSAT-1. The
RCM is comprised of three satellites launched on 12 June 2019 into closely coordinated
orbits. The primary payload instrument on each satellite is a synthetic aperture radar (SAR).
RCM is a continuation of the RADARSAT-2 mission and provides multiple operational
polarization modes, all of which use the compact polarimetric (CP) architecture, a major
paradigm shift in Earth-observing orbital SARs. RCM also includes an experimental full po-
larimetric (FP) mode [1]. Radar polarimetry has proven to be a unique and valuable means
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of characterizing features from an orbital remote sensing SAR. To date, Earth-observing
polarimetric SAR satellites have used only linearly polarized systems for their operational
products. Those conventional FP radars have inherent technical characteristics (i.e., limited
swath coverage) that inhibit operational adoption of their otherwise valuable data products.
RCM is the first Earth-observing satellite-based SAR mission to use circular polarization for
transmission in its operational polarimetric modes. It enables space-based SAR polarimetry
that is nearly equivalent to that of traditional FP imaging radars while maintaining the
relative simplicity, coverage, and routine availability of a dual-polarized system.

The RCM innovative SAR system was designed to meet the expectations for opera-
tional SAR applications [2]. Such applications would require high-quality SAR information
with large area coverage. These requirements were the main drivers for the adaptation
of the CP radar architecture in RCM [3]. The RCM CP radar architecture transmits a
right-circular polarized SAR signal and coherently receives both the vertical and the hor-
izontal components of the backscattered signal. The CP option comes in addition to the
conventional linear vertical and horizontal polarization options. However, the CP option is
available operationally in all RCM imaging modes, except for the quad-pol [2]. Therefore,
the innovative SAR system onboard the RCM represents a significant SAR technology ad-
vancement beyond the conventional SAR systems. Currently, the RCM is the only C-band
SAR system providing CP SAR imagery in operational mode.

Prior to the launch of RCM, a number of studies were conducted in preparation for
the mission using a simulator of RCM data developed at the Canada Center for Mapping
and Earth Observation [4]. The RCM simulator was developed so that it takes into account
the RCM characteristics and system specifications, such as orbit information (for example,
satellite altitude, etc.) and planned imaging modes (for example, spatial resolution, swath
width, nominal noise floor, etc.). The availability of simulated RCM SAR imagery was
necessary to provide a preliminary evaluation of the mission and confirm its response to
the requirements and expectations of the intended users [4].

Maritime surveillance applications are among the core applications of RCM. Such
applications include sea ice mapping, ocean target detection, wind speed estimation,
marine pollution monitoring, etc. The potential of simulated RCM SAR imagery for the
classification of first year ice (FYI), multiyear ice (MYI), and open water (OW) during the
spring season was firstly presented in [5]. The study focused on the assessment of three
RCM imaging modes—the ScanSAR medium resolution 50 m (SC50M), the ScanSAR low
resolution 100 m (SC100M), and the ScanSAR low noise (SCLN) imaging modes. These
modes were among the candidate RCM imaging modes most likely to be used operationally
for sea ice monitoring by the Canadian Ice Service (CIS). The assessment of these modes
was expanded in a more comprehensive study [6], where the mapping of different ice
types was investigated in all seasons. In a subsequence study [7], the higher nominal noise
floor of the RCM StripMap High Resolution 5 m (5M) imaging mode was the motivation
to investigate its performance for the classification of FYI and MYI. The results of these
studies indicated promising performance of RCM for the monitoring of sea ice.

In [8], both SC50M and SCLN imaging modes of RCM were investigated for the
detection and classification of ocean targets. In this study, simulated RCM dual-polarized
linear (HH-HV and VV-VH) and CP data were analyzed. Results of [8] were encouraging,
with a remarkable highlight of the expected enhanced performance of the CP option
compared to the conventional dual-polarized SAR data with regard to the detection and
discrimination accuracy of icebergs and ships. The wind retrieval potential of RCM was
first evaluated in [9]. Simulated CP SAR imagery from the three RCM modes SC50M,
SC100M, and SCLN, which are likely to be used by the CIS for operational wind information
retrieval, were evaluated. In [9], the simulated CP data were related to C-band geophysical
model function (CMOD) outputs, and their dependence on radar incidence angle, wind
speed, and wind direction was examined. This study was further extended in [10] with a
larger simulated RCM CP dataset. Results of [9,10] provided initial guidance to Canada’s
national SAR wind system for the potential of wind information retrieval using RCM. The
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expected potential of RCM for maritime pollution monitoring was examined in [11]. In this
study, simulated CP data of the StripMap medium resolution 16 m (16M), the ScanSAR
medium resolution 30 m (30M), and the SC50M were investigated for their capabilities
to discriminate mineral oil spills from lookalikes at different radar incidence angles. The
results of this study indicated the expected performance of each of the RCM medium
resolution imaging modes for detecting oil spills.

Ecosystem monitoring is also one of the core RCM applications. Wetlands are natural
land cover that facilitate the interaction between soils, water, plants, and animals, making
them one of the most productive ecosystems on earth. Wetlands provide several benefits, in-
cluding water storage and purification, flood mitigation, storm protection, erosion control,
shoreline stabilization, carbon dioxide sequestration, and climate regulation. Approxi-
mately 14% of Canada is covered by wetlands, which corresponds to approximately 25%
of the world’s wetlands. These dynamic landscapes also constitute a significant portion
of the country’s annual carbon budget. This indicates the great importance of wetland
preservation and restoration in Canada.

The first study to assess the expected performance of RCM for wetland monitoring was
presented in [12]. In this study, RCM CP data of the 5M imaging mode was simulated and
tested for pairwise change detection over wetlands. This study was further extended in [13]
by assessing the CP option from the RCM 16M imaging mode for multitemporal change
detection of wetlands. In [14], the expected performance of RCM for wetland mapping of
open water and flooded vegetation is evaluated. This study evaluated simulated CP data
from the three RCM imaging modes 5M, 16M, and SC30M, which are likely to be used for
wetland mapping. The results of these studies showed the expected potential monitoring
capabilities of RCM, highlighting the imaging modes likely to be requested for operational
wetland applications.

In this article, we present the first results of the RCM early operational phase. An
initial assessment performance of RCM for key environmental applications is demonstrated.
For this purpose, we select one case study application for each of the three core applications
of RCM, which are disaster management, maritime surveillance, and ecosystem moni-
toring. For disaster management, we select a flood mapping case study for Red River,
Manitoba, using linear dual-polarized HH-HV imagery from RCM. Sea ice analysis in
RCM CP SAR imagery over the Resolute Passage is conducted as a case study for the
maritime surveillance. Herein, the contrast of different sea ice classes in the RCM CP
data is compared against coincident dual-polarized HH-HV SAR data from RADARSAT-2.
Within the framework of assessing the RCM performance for core applications linked
to ecosystem monitoring, we perform an object-oriented classification of a wetland area
in Newfoundland and Labrador using data fusion of RCM dual-polarized VV-VH SAR
imagery and optical imagery from the Sentinel-2 satellite. The focus in this study is on
RCM data with high to medium spatial resolution. It is worth emphasizing that this study
is not intended to be a conclusive analysis of the performance of the RCM, as this requires
dedicated studies focused on specific applications. It rather highlights the initial RCM
performance results for selected top-priority SAR applications for Canada.

2. Mission Overview and Current Status

The RCM, launched in June 2019, represents a major shift in Earth observations
using spaceborne SAR technology. The RCM configuration consists of three identical
small satellites flying in a low-earth sun-synchronous polar orbit at an altitude of 600
km. The three satellites fly evenly at 120◦ on the same orbit, resulting in a time difference
of 30 min between the satellites [15]. Each satellite has an exact revisit time of 12 days,
which drops to 4 days considering the entire constellation. The rapid exact revisit of RCM
enhances interferometric SAR applications, especially those linked to disaster response
and management (for example, earthquakes). After the end of its commissioning phase
in December 2019, the RCM passed through an early operation phase providing SAR
imagery through a predefined standard coverage acquisition plan. The standard coverage
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plan is defined considering the needs and requirements of all Government of Canada
departments. Such a plan allows for consistent SAR imagery acquisitions at constant time
intervals, necessary to address critical SAR applications for Canada. Such a standard
coverage scenario was previously adopted in the Sentinel-1 Copernicus mission. It is
worth mentioning that ad hoc acquisition requests are still possible in RCM, but only
from Government of Canada users. Such acquisitions can be submitted under different
acquisition priorities, depending on the purpose of the acquisition (for example, research
and development, emergency, etc.). Presently, the RCM operates with ten imaging beam
modes. A summary of the characteristics of each mode is presented in Table 1 [15].

Table 1. Summary of the characteristics of the RCM imaging beam modes.

Imaging Beam Mode Nom. Res.
(m)

Swath Width
(km)

#Looks
(rng × az)

Noise Floor
(dB)

Low Resolution 100 m
(ScanSAR) 100 500 8 × 1 −22

Medium Resolution 50 m
(ScanSAR) 50 350 4 × 1 −22

Medium Resolution 30 m
(ScanSAR) 30 125 2 × 2 −24

Medium Resolution 16 m
(StripMap) 16 30 1 × 4 −25

High Resolution 5 m
(StripMap) 5 30 1 × 1 −19

Very High Resolution 3 m
(StripMap) 3 20 1 × 1 −17

Low Noise (ScanSAR) 100 350 4 × 2 −25
Ship Detection (ScanSAR) Variable 350 Variable Variable

Quad-Polarization
(StripMap) 9 20 1 × 1 −25

Spotlight 1 (az) × 3
(rng) 5 1 × 1 −17

As show in Table 1, RCM is characterized by a wide selection of imaging beam modes
with different spatial resolutions, swath widths, and nominal noise floors. This selection
aims to address various requirements of core SAR applications necessary for Canada.
The medium resolution 50 m imaging mode has two variants; the high pulse repetition
frequency (PRF) and the high incidence. The high PRF version is characterized by improved
azimuth ambiguities, but a higher data rate, while the high incidence version is intended to
address a CIS requirement to cover the North Pole, and comes with reduced swath width
(133 km) and a higher noise floor.

Evaluation of the quality performance of RCM SAR imagery has shown improved real
noise floor values compared to the nominal (Table 1) for all modes. The implementation of
the stepped receive functionality in the RCM ScanSAR modes has contributed to improved
image quality performance by reducing the noise equivalent sigma zero (NESZ) and range
ambiguity [11,15].

The wide variety of polarization options is another RCM advancement. Its capability to
provide single, dual linear, compact, and full polarimetric SAR imagery makes it a unique
SAR mission. It is worth mentioning that the RCM is the only SAR mission currently
providing CP SAR imagery in operational mode. Furthermore, it will soon become the only
SAR mission providing calibrated CP SAR data for the non-circularity of the transmitted
radar signal. The RCM has a daily coverage capability of Canadian land and oceans, with
even potential for multiple acquisitions over the Canadian North. The efficient acquisition
capability of RCM allows for both, strong support of operational applications and the
emerging of new applications, especially in the field of SAR interferometry.
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3. Environmental Applications
3.1. Flood Response

RCM data were used by the emergency geomatics service (EGS) for the first time
to map flooding during the 2020 spring season on the Red River in southern Manitoba
through Minnesota and parts of South Dakota. While research had been conducted on the
use of CP to map open water and flooded vegetation in wetlands [14], 5 m spatial resolution
dual-polarization RCM data consisting of HH and HV were ordered over the Red River
instead of CP data for a number of reasons. First, while research was complete, operational
flood tools were not yet fully developed to ingest and process CP, while EGS has expertise
processing conventional dual-polarization data from years working with RADARSAT-2,
requiring only minor modifications to existing flood tools to work seamlessly with RCM
dual-polarization data. For the purpose of this application, 75 RCM frames acquired
on 16 dates at 5 m spatial resolution were processed to generate and publish 20 flood
maps spanning the duration of the flood event, from 14 April to 10 May 2020 (Table 2).
Furthermore, one RADARSAT-2 image was also processed to generate and publish a flood
map over the case study area. The RADARSAT-2 image was a fine-quad 6.25 m spatial
resolution image, acquired 12 h from an RCM image on the same date of 21 April, with
incidence angles between 30.55◦ and 33.67◦, compared to 33.63◦ and 35.93◦ incidence angles
for the coincident RCM image.

Table 2. Summary of the RCM acquisitions.

Spacecraft Number Date (UTC) Time (hhmmss) Imaging Beam Polarization

RCM-1 14/04/2020 002049 HR5M HH-HV
RCM-3 15/04/2020 123922 HR5M HH-HV
RCM-3 16/04/2020 124741 HR5M HH-HV
RCM-2 16/04/2020 000503 HR5M HH-HV
RCM-2 17/04/2020 001301 HR5M HH-HV
RCM-1 19/04/2020 123923 HR5M HH-HV
RCM-1 19/04/2020 123859 HR5M HH-HV
RCM-3 20/04/2020 000514 HR5M HH-HV
RCM-3 21/04/2020 001312 HR5M HH-HV
RCM-3 22/04/2020 002112 HR5M HH-HV
RCM-3 23/04/2020 002911 HR5M HH-HV
RCM-2 23/04/2020 123927 HR5M HH-HV
RCM-2 23/04/2020 123936 HR5M HH-HV
RCM-1 24/04/2020 000523 HR5M HH-HV
RCM-1 27/04/2020 002849 HR5M HH-HV
RCM-2 30/04/2020 002100 HR5M HH-HV
RCM-2 05/05/2020 123911 HR5M HH-HV
RCM-1 06/05/2020 000452 HR5M HH-HV
RCM-3 09/05/2020 123922 HR5M HH-HV
RCM-2 10/05/2020 000504 HR5M HH-HV

EGS flood mapping methods, first used to map the major spring 2017 flooding event in
Eastern Canada [16], were used during the 2020 Red River flood event. EGS flood mapping
methods rely on a fully automated workflow that employs machine learning trained using
scene-specific signatures representing multiple land and open water classes present in the
scene, followed by region growing to map flooded vegetation and manual quality control
editing. RCM data are first calibrated to sigma-naught, median filtered, orthorectified,
and linearly scaled to 16-bit from a defined range (HH: 0 to 1, HV and VH: 0 to 0.15 and
VV: 0 to 0.5) to 0–65,535 based on polarization to reduce file size. To map open water,
dual-polarization signatures are sampled by overlaying the RCM image on an inundation
frequency product generated from historical Landsat data [17] that depicts permanent land,
represented by 0% frequency where water has never been observed, to 100% frequency
representing permanent open water. Areas greater than 0% but less than 100% frequency
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are not sampled, since they represent ephemeral water where flooding might or might
not be present on a given date. Once sampled, land and water signatures are used to
train a random forest (RF) machine learning classifier to map the entire scene. Machine
learning is used because it is a non-parametric classifier that makes no assumptions about
the distribution of training data signatures. It is also able to learn from a large number of
training data samples, eliminating the need to sub-sample a scene and ensuring that all
classes and surface conditions are adequately represented in the training data. Further,
as was demonstrated in [16], machine learning is generally robust to errors in training
data [18,19]. Through simulation by introducing error into training data, [16] showed
that the RF classification algorithm exhibits only a small performance penalty with up
to approximately 30% error in training data in a binary land-versus-water classification.
Therefore, any rare events that exceed historical flood extents present in the inundation
frequency product by less than 30% will be mapped with similar quality. Lastly, machine
learning is relatively time-efficient, enabling EGS to map and disseminate flood products
within the required 4 h time period from data reception.

In addition to fully automated machine learning, manual dark-object thresholding
of the HV channel was conducted on some scenes [20] where the automated results were
determined to be suboptimal. As with other radar image data such as RADARSAT-2, this
can occur when permanent water represents a small percentage of the overall image area,
sometimes in combination with a dark return from snow or wet soil on land or specular
reflection off of open water. Manual thresholding is sometimes performed in these cases
where machine-learning fails, as it enables the analyst to control errors in the amount and
configuration of the mapped flood water that can be added to or removed in subsequent
steps.

Flooded vegetation is mapped next, if present as determined by the image analyst,
which is the case along the Red River in 2020. Double-bounce off flooded vegetation causes
a high-intensity return to the sensor, producing a bright signal in radar imagery, particularly
in like-polarization channels [21]. The flooded vegetation algorithm region grows into these
bright areas adjacent to open water, mapped previously using a high intensity threshold
value in HH. This value lies somewhere between 10,000 and 12,000 DN in scaled 16-bit units,
and is determined by examining the image in bright, double-bounce areas known to contain
flooded vegetation based on cover type and elevation. The algorithm applies the threshold
value to the entire image and selects objects adjacent to a mapped open water body that
are brighter than this value. Open water and flooded vegetation maps are combined, and
morphological operators, including sieving and infilling, are applied to remove small,
false-positive water bodies and infill the interior of water bodies that were initially missed.
This step is followed by manual editing, mainly to remove commission errors based on
the analyst’s knowledge of the area, previous flood maps, and any additional information
submitted in near real time from EGS’s Citizen Geographic Information (CGI) mobile
application [16].

Rapidly changing flood extents and lack of available coincident ground-truth data
make it difficult to quantitatively assess the accuracy of RCM flood maps; however, valida-
tion of the method applied to optical data for surface water extraction, prior knowledge of
flooding in the region, visual image interpretation, and user feedback all confirm high flood
mapping quality. Surface water maps generated from Landsat imagery using the EGS flood
mapping methodology were validated against 30 m water fractions scaled from 1 m water
masks and determined to be over 97% accurate in [22], which is nearly identical to the 96.9%
overall accuracy obtained using manual thresholding of Landsat 5′s SWIR channel in [23].
In [16], we reported a 97.6% overall agreement and a kappa of 0.865 between 11 coincident
Landsat and RADARSAT flood maps, including flooded vegetation, which suggests that
the method applied to optical and radar imagery produces nearly identical maps, and
therefore accuracy.
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A user survey is distributed post flood season to Canadian federal and provincial
stakeholders who use maps for a range of purposes, from near-real-time situational aware-
ness for decision making, to distribution of financial aid during a flood crisis. Of the
limited sample of 11 respondents in 2020, all rated EGS product accuracy as either good or
excellent. For comparison, a user survey in 2019 had 26 respondents from activations in
Manitoba, New Brunswick, southern Ontario, and Quebec. In total, 55 flood products were
delivered this season, most of which were generated from RADARSAT-2 imagery. Of the
26 respondents, 23 rated EGS flood products as either having good or excellent accuracy,
while 3 stated that accuracy was fair. Consecutive RCM and RADARSAT-2 products gener-
ated from data acquired 12 h apart on 21 April 2020 over the Red River show an overall
agreement of 97.5% in the overlap region, which is substantial based on a kappa statistic of
0.76, and suggests good flood map continuity between the two satellite missions, despite
changing floodwater extents in the 12 h period between acquisitions. Figure 1 presents an
example of the obtained flood mapping using RCM on 21 April 2020.
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3.2. Sea Ice Analysis

Marine surveillance applications are one of the core RCM applications. Such appli-
cations include sea ice monitoring, which is one of the top priorities for Canada. This
application has been highlighted because of the impact of climate change, which causes a
decrease in ice thickness and extent in the Arctic. Continuation of this trend will facilitate
new navigation opportunities via the Canadian Arctic Archipelago. The RCM is expected
to fulfill the need for operational monitoring of sea ice by the CIS. The CIS is among the
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largest users of SAR imagery in the Canadian federal government [4]. Operational analysis
of sea ice by the CIS pursues visual interpretation of SAR imagery in linear polarization,
supported by ancillary information from several sources to map ice information in the
form of daily ice charts. These charts compile information on ice types and open water, ice
concentration, and surface topography features. For operational sea ice monitoring, CP
SAR imagery is an attractive polarization option, given its similar spatial coverage to linear
polarization, yet with increased radar target information [5,7].

In Figure 2, coincident RADARSAT-2 linear polarizations (HH and HV) and RCM com-
pact polarization (RH and RV) images were acquired over the Resolute Passage, Canadian
Central Arctic. The RADARSAT-2 SAR image from ScanSAR mode was acquired on 19
March 2020 while the RCM CP image from the ScanSAR medium resolution 30 m (SC30M)
mode was acquired on 29 March 2020. A summary of the characteristics of the acquired
imagery is shown in Table 3. The acquired SAR images have similar spatial resolution
and number of looks. Furthermore, the difference between the radar incidence angles
at the center of the two images (2.3◦) is negligible. Weather information available from
the resolute weather station located in Cornwallis Island (Figure 2) showed that the daily
average temperature during the month of March 2020 was always <−20 ◦C. During this
period, the ice concentration reaches its peak value and the ice cover usually shows stable
conditions that do not affect the observed backscatter from radar sensors.
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Table 3. Metadata of the RADARSAT-2 and RCM Acquisitions.

RADARSAT-2 RCM

Product ScanSAR Georeferenced Fine
Resolution (SGF)

SC30M Ground Range
Detected (GRD)

Acquisition Date 19 March 2020 29 March 2020
Orbit Direction Descending Ascending

Polarization HH, HV RH, RV
Number of Looks 1 × 4 2 × 2

Incidence Angle Near range = 19.5◦,
Far range = 31.2◦

Near range = 17.2◦,
Far range = 28.9◦

Spatial Resolution 30 m 30 m

Figure 3 shows the calibrated sigma naught backscattering images from both satellite
missions. The combined knowledge of an ice expert and a CIS ice chart revealed the major
ice types in the overlap area between the RADARSAT-2 and RCM images. As shown in
Figure 3, the area consisted of different types of fast FYI, such as smooth thin ice, rough ice,
and deformed ice. In comparison to HH (Figure 3a) and HV (Figure 3b), sea ice types appear
to reveal higher contrast in RH (Figure 3c) and RV (Figure 3d). For example, the difference
between thin and rough FYI is visually more pronounced in RH and RV compared to HH
and HV (Figure 3). Analytically, the contrast between thin ice at locations 1 and 2 and
the surrounding rough ice at locations 1 and 2 is enhanced in RH and RV. This contrast
is reduced in HH and HV. This is also the case at location 3 of thin ice and location 3 of
rough ice (Figure 3). Similarly, the contrast between deformed ice and the surrounding
thin ice at locations 2 and 3 appears higher in RH and RV when compared to HH and HV.
These findings could be linked to the contribution of both linear cross- and co-polarization
in RH (= 1√

2
(HH− iHV)) and RV (= 1√

2
(VH− iVV)). The contrast between rough and

deformed ice is visually less pronounced in both linear (RADARSAT-2) and circular (RCM)
polarization when compared to the contrast between thin and rough as well as deformed
ice (Figure 3).
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It is worth noting that, unlike HH and HV, RH and RV in this specific case study appear
to provide similar information content, with minor differences (Figure 3c,d). Although
multiyear ice is not part of the ice cover composition, Figure 3 indicates that the CP
SAR option produces visually appealing images, which holds a promise to improve the
identification of ice types through the visual interpretation of CP SAR imagery.

We supported our visual analysis of the sea ice types in Figure 3 with the calculation
of statistics of the different ice types in both RCM and RADARSAT-2 images. Table 4
presents the mean and the standard deviation of thin, rough, and deformed ice, calculated
from selected samples of ice types presented in Figure 3d. We note from Table 4 that
the mean backscattering of the three ice types is quite close, with just small differences
between RH and RV. Thin ice has an absolute difference between RH and RV equal to
0.12 dB. For rough and deformed ice types, the absolute difference between the mean
backscattering in RH and RV is 0.01 and 0.06 dB, respectively. This confirms our previous
visual analysis, which revealed similar information content of RH and RV for the selected
case study. Only one combination (RH or RV) would be enough in this case. However,
as expected, this is not the case for HH and HV. Herein, the absolute difference between
HH and HV is 10.28 dB for thin ice, while for rough and deformed ice, the absolute
difference is 9.81 and 10.40 dB, respectively. We note in Table 4 that RH backscattering is
slightly higher than RV backscattering for all ice types. In the case of linear polarization,
the co-polarization HH is consistently higher than the cross-polarization HV for all three
ice types.

Table 5 presents the contrast between the three ice types in the RCM and RADARSAT-2
imagery (Figure 3) expressed in terms of the difference in radar backscattering (Table 4) of
the three ice types for different polarizations. As shown in Table 5, the absolute difference
between thin and rough ice in RH and RV is 1.96 and 2.07 dB, respectively. This difference
drops to 0.09 and 0.56 dB for HH and HV, respectively. For thin and deformed ice, the
absolute difference in RH and RV is 3.34 and 3.40 dB, respectively. HH and HV reveal
an absolute difference of 2.04 and 1.92 dB between thin and deformed ice, respectively.
Interestingly, the contrast between rough and deformed ice appears to be slightly higher
in HH and HV compared to RH and RV. This is because the absolute difference between
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these two ice types in HH and HV is 1.95 and 1.36 dB, while in RH and RV this difference
slightly drops to 1.38 and 1.33 dB, respectively.

Table 4. Mean and Standard Deviation of Sea Ice Types in RCM and RADARSAT-2 Images.

RH (dB) RV (dB)

Thin Ice Rough Ice Deformed Ice Thin Ice Rough Ice Deformed Ice

Mean −9.71 −7.75 −6.37 −9.83 −7.76 −6.43

Stdev 1.19 1.16 1.25 1.10 1.17 1.27

HH (dB) HV (dB)

Thin Ice Rough Ice Deformed Ice Thin Ice Rough Ice Deformed Ice

Mean −16.55 −16.46 −14.51 −26.83 −26.27 −24.91

Stdev 2.17 2.13 2.19 1.56 1.65 2.13

Table 5. Contrast of Sea Ice Types in RCM and RADARSAT-2 Images Expressed in Absolute Mean
Backscattering Difference.

RH (dB) RV (dB)

Thin Ice—Rough
Ice

Thin
Ice—Deformed

Ice

Rough
Ice—Deformed

Ice

Thin Ice—Rough
Ice

Thin
Ice—Deformed

Ice

Rough
Ice—Deformed

Ice

1.96 3.34 1.38 2.07 3.40 1.33

HH (dB) HV (dB)

Thin Ice—Rough
Ice

Thin
Ice—Deformed

Ice

Rough
Ice—Deformed

Ice

Thin Ice—Rough
Ice

Thin
Ice—Deformed

Ice

Rough
Ice—Deformed

Ice

0.09 2.04 1.95 0.56 1.92 1.36

Table 5 shows that thin and deformed ice are the two ice types exhibiting the highest
contrast in both RH and RV. This is also the case in HH and HV polarization. The lowest
ice contrast in RH and RV is found between rough and deformed ice. Remarkably, this is
not the case in HH and HV polarization, since the lowest contrast is shown between thin
and rough ice. This could be an indication of the role of radar polarization (linear versus
circular) in the discrimination between sea ice types.

3.3. Wetland Monitoring

Although the capability of simulated RCM data has been previously investigated in
several research studies for wetland mapping [12,13,24,25], the performance of real RCM
data for this important natural resources is still lacking. This is of particular concern, as
ecosystem monitoring in general, and wetland mapping in particular, is one of the RCM
core applications. The province of Newfoundland and Labrador is a home to a great flora
and fauna. Extensive research has been carried out for wetland mapping using various
satellite imagery, including RADARSAT-2 [26] and simulated CP data [24], in this area.
Figure 4 show the location of the study area for wetland classification in this study.
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Figure 4. The location of the study area with an overlay of RCM data.

A wide variety of wetland classes categorized by the Canadian wetland classification
system (CWCS), namely bog, fen, swamp, and marsh are available in the study area. This
is an ideal case to investigate the capability of RCM data in combination with Sentinel-2
for wetland classification. For each class, reference polygons were sorted by size and
alternatingly assigned to training and validation groups. This alternative assignment
ensures that both the training and validation groups have comparable pixel counts for each
class (i.e., 50% for training and 50% for validation). A description of the ground truth data
used in this study for wetland classification can be found in [26]. Figure 5 demonstrates
ground photo examples of these wetland classes.
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Figure 5. Ground reference photos showing wetland classes in the study area: (a) Bog; (b) fen; (c)
marsh; and (d) swamp.

The analysis over our wetland pilot site (Figure 4) was performed using RCM SC30M
dual-polarized VV-VH data acquired on 25 July 2021. Given the insufficient polarimet-
ric information within dual-polarized data for discriminating spectrally similar wetland
classes [27], Sentinel-2 data was also acquired over the study area to aid in discriminating
wetland classes. This imagery was acquired on 15 July 2021, relatively within a same time
frame as of the RCM VV-VH data. SAR backscattering coefficient features and the ratio
feature were extracted from SAR data. Five spectral bands—red, blue, green, near-infrared
(NIR), and normalized difference vegetation index (NDVI) bands were also used as optical
imagery features.

An object-based RF classification was performed using multi-source satellite imagery.
In particular, multi-resolution segmentation was applied for object-based image analysis
with the optimum parameters adopted from our previous research within the same study
area [28]. The RF classification was performed with 500 for the number of trees (Ntree
parameter) and the square root of the total number of features for the number of variables
available for splitting at each tree node (Mtry parameter). It should be noted that Sentinel-
2 and RCM data used in this study for wetland classification collect information about
the bio-chemical and physical characteristics of wetland vegetation, respectively. Thus,
the inclusion of both types of observations enhances the discrimination of backscatter-
ing/spectrally similar wetland classes. Figure 6 demonstrates the classification results from
inclusion of RCM and Sentinel-2 imagery.

As demonstrated in Figure 6, this classification map distinguishes five wetland classes,
namely bog, fen, marsh, swamp, and water, as well as three non-wetland classes, namely
pasture, forest, and urban, within the study area. This map shows a clear separation
of wetland classes, with sufficient details when it is compared with optical imagery. To
better appreciate the classification details, Figure 7 illustrates a selected zoom-in area from
the classification map (Figure 7c) along with RCM (Figure 7a) and Sentinel-2 (Figure 7b)
imagery.
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classes. Red frame indicates a selected zoom-in area in Figure 7.
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Figure 7. The selected zoom-in area (red frame in Figure 6) from (a) RCM (R: VV, G: VH, B: VH/VV),
(b) Sentinel-2, and (c) classification map.

A comparison between Figure 7b,c illustrates an accurate separation of wetland and
non-wetland classes. For example, all small water bodies and spectrally similar wetland
classes (for example, bog and fen), which even represent no clear-cut border in the field,
are well distinguished. The dominance of urban land cover in the zoomed area is also well
represented. We supported our analysis of the classification results by the calculation of the
classification confusion matrix, which we present in Table 6.
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Table 6. Classification confusion matrix of integrating Sentinel-2 and RCM data. An overall accuracy
of 91.1% and kappa coefficient of 0.87 were obtained. UA refers to user’s accuracy, while PA refers to
producer’s accuracy.

Bog Fen Marsh Swamp Forest Urban Pasture Water UA (%)

Bog 15,917 5811 213 19 974 3 31 0 69.30

Fen 3271 18,191 27 1005 27 8 54 0 80.55

Marsh 134 101 7599 211 94 14 112 393 87.77

Swamp 125 66 118 4987 779 6 0 0 82.01

Forest 212 381 1301 73 8644 0 0 0 81.46

Urban 0 17 0 0 27 10,309 0 0 99.58

Pasture 0 0 0 0 0 0 5461 0 100.00

Water 0 0 0 0 0 0 0 88,966 100.00

PA (%) 80.97 74.50 82.08 79.22 81.97 99.70 96.52 99.56

As seen in Table 6, the urban, pasture, and water classes obtained producer’s (PA) and
user’s accuracies (UA) of more than 95%, which represented the smallest omission and
commission errors. Among wetland classes, bog and marsh had PAs better than 80%, with
the marsh presenting the highest PA of 82.08%. However, for the fen and swamp, the PA
was 74.50% and 79.22%, respectively. As such, fen had the highest omission error among all
wetland classes. On the other hand, bog had the lowest UA of up to 69.30% and, as results,
the highest commission error among all wetland classes. This was due to a large portion of
the bog class being misclassified as fen class. Other wetland classes achieved UAs better
than 80%, with the marsh exhibiting the highest UA, which reached 87.77%.

Notably, an overall accuracy of 91.10% and kappa coefficient of 0.87 are obtained for
this object-based image analysis. This demonstrates promising results from dual-polarized
VV-VH data when combined with other type of EO data for mapping wetland complexes.

4. Discussion

The RCM, with its advanced SAR technology (for example, CP architecture, the
various imaging beam modes, the rapid revisit time, etc.) presents unique opportunities
for Earth observation applications. It offers improved capabilities, which are expected
to advance the operational SAR applications within not only Canada, but also globally.
Furthermore, new emerging applications are anticipated, given the rapid revisit of the
satellites and the adoption of CP with its wide swath in operational mode. This is supported
by the availability of the CP option in all RCM imaging beam modes, except for the quad-
polarization mode.

Initial results for a number of environmental applications showed promising per-
formance using linear or compact polarization options. Disaster management, including
among others, flood mapping, is one of the core RCM applications. The high level of
agreement between the flood mapping results using RCM and RADARSAT-2 indicates a
smooth transition of the operational flood mapping tools of EGS, but for linear polariza-
tion. However, the RCM flood mapping capabilities using real RCM CP data are yet to be
investigated. Such investigation might require the modification of EGS operational flood
mapping tools to adopt this new polarization.

Maritime surveillance applications, such as sea ice mapping, are also among the core
applications of RCM. Sea ice mapping is the first operational SAR application within
the Government of Canada since the time of RADARSAT-1, and has high potential for
application of RCM data. It is expected the CP option to replace linear polarization in the
process of ice chart generation at CIS. The visually enhanced discrimination capabilities
between sea ice types compared to conventional linear polarization, shown in our initial
analysis, could be a motivation for CIS towards the adoption of the CP option for the visual
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analysis of SAR imagery for sea ice monitoring. Enhanced ice information by RCM leads to
safer marine navigation and commercial maritime transportation.

Another core application of RCM is ecosystem monitoring, which includes wetland
classification. Given that wetlands are complex ecosystems with various types, detailed
information about their spatial distributions and classes would require advanced remote
sensing tools and data. The capabilities of RCM CP SAR data for wetland monitoring are
yet to be investigated. However, first assessment of RCM linear dual-polarized imagery
indicated a promising potential for the discrimination of wetland classes when fused with
optical remote sensing imagery. The optical remote sensing support comes to complement
the partial radar target information in RCM linear dual-polarized SAR imagery. This might
not be the case for CP SAR imagery, since studies using simulated RCM CP SAR data
indicate that the enhanced radar target information provided by this polarization option is
efficient for monitoring complex dynamic ecosystems such as wetlands. This claim remains
to be confirmed using real CP SAR imagery from RCM.

5. Conclusions

The purpose of this study was to report on initial results of RCM for selected SAR
applications. The RCM was designed to address three core applications—disaster man-
agement, maritime surveillance, and ecosystem monitoring. Herein, we selected one case
study application from each of the three themes to demonstrate an overview of the potential
RCM performance for priority applications of interest for Canada.

Results indicated that operational flood tools designed for dual-polarized RADARSAT-
2 data can be adopted for the case of RCM without major modifications. This indicates a
smooth transmission from RADARSAT-2 to RCM within the operational flood mapping
system at the EGS. This might not be the case once EGS adopts the CP SAR imagery
option instead of the conventional linear dual-polarized SAR imagery. In this case, the EGS
operational flood tools might need more than just a minor modification for optimized use
of the enhanced radar target information provided by the CP SAR configuration.

Visual analysis of RCM CP SAR imagery over different sea ice types in dry ice winter
conditions indicated improved contrast between thin ice and both rough and deformed
ice when compared to coincident conventional linear dual-polarized SAR imagery from
RADARSAT-2. These findings were confirmed statistically by calculating the absolute
difference between the mean sea ice backscattering in linear and circular polarization. Sta-
tistical analysis indicated slightly higher contrast between rough and deformed ice in linear
polarization. Further assessment of the performance of the RCM CP SAR configuration for
sea ice monitoring and mapping is still necessary under various environmental conditions
and radar incidence angles.

In the context of wetland monitoring, initial results reveal promising potential of
RCM SAR data with partial polarimetric information for wetland classification. However,
complementary remote sensing information, such as optical imagery, might be necessary
for high classification accuracy. This could not be the case for wetland classification using
RCM CP SAR imagery, given the increased radar target information.

Future work should focus on the evaluation of RCM for flood mapping, sea ice
monitoring, and wetland classification in dedicated studies using data from different RCM
imaging modes and under various environmental conditions.
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