Least-Squares Reverse-Time Migration of Water-Bottom-Related Multiples
Abstract
:1. Introduction
2. Methodologies
2.1. Crosstalks Analysis for the Reverse-Time Migration of Multiples
2.2. Multiples Decomposition Strategies
2.3. Least-Squares Reverse-Time Migration of Water-Bottom-Related Multiples
2.4. LSRTM-WM Scheme
- (1)
- Separate primaries from original data using Equation (8) and predict water-column primaries using Equation (10);
- (2)
- Auto-convolve the water-column primaries n times to generate the nth-order water-column multiples using Equation (11), followed by convolutions between the nth-order water-column multiples and the separated primaries to obtain the (n+1)th-order water-bottom-related multiples;
- (3)
- Set the initial reflectivity model to zero;
- (4)
- Establish the objective function using Equation (17);
- (5)
- Calculate the gradients for the objective function and update the reflectivity model using Equation (18);
- (6)
- Repeat steps 4 to 5 and stop the iterative inversion when the objective function decreases to a given threshold;
- (7)
- Stack different-order (from first to N-th) images to retrieve the final image of water-bottom-related multiples.
3. Numerical Examples
3.1. A Layered Model
3.2. The Pluto 1.5 Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, M.; Guitton, A. Least-squares joint imaging of multiples and primaries. Geophysics 2005, 70, S79–S89. [Google Scholar] [CrossRef] [Green Version]
- Muijs, R.; Robertsson, J.; Holliger, K. Prestack depth migration of primary and surface-related multiple reflections: Part I-Imaging. Geophysics 2007, 72, S59–S69. [Google Scholar] [CrossRef]
- Zuberi, A.; Alkhalifah, T. Imaging by forward propagating the data: Theory and application. Geophys. Prospect. 2013, 61, 248–267. [Google Scholar] [CrossRef]
- Wapenaar, K.; Thorbecke, J.; van ver Neut, J.; Broggini, F.; Slob, E.; Snieder, R. Marchenko imaging. Geophysics 2014, 79, WA39–WA57. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.K.; Zhu, W.L.; Mi, L.J.; Zhou, J.X.; Hu, H. Migration of multiples from the South China Sea. Sci. China Earth Sci. 2015, 58, 482–490. [Google Scholar] [CrossRef]
- Lu, S.P.; Whitmore, D.; Valenciano, A.; Chemingui, N. Separated-wavefield imaging using primary and multiple energy. Lead Edge 2015, 34, 770–778. [Google Scholar] [CrossRef]
- Zheng, Y.K.; Wang, Y.B.; Xu, J.L.; Chang, X.; Yao, Z.X. Imaging multiples by data to data migration. Chin. J. Geophys. 2015, 58, 993–1001. [Google Scholar] [CrossRef]
- Liu, X.J.; Liu, Y.K.; Hu, H.; Li, P.; Khan, M. Imaging of first-order surface-related multiples by reverse-time migration. Geophys. J. Int. 2017, 208, 1077–1087. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.K.; He, B.; Zheng, Y.C. Controlled-order multiple waveform inversion. Geophysics 2020, 85, R243–R250. [Google Scholar] [CrossRef]
- Mäkinen, A.; Rickett, J.; Kostov, C. Free-surface multiples least-squares RTM with unrecorded data compensation applied to marine 3D field data. In EAGE Annual Conference & Exhibition; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Liu, Y.K.; Yi, J.; Liu, X.J. First-order multiples imaging aided by water bottom. Pet. Sci. 2021, 18, 1650–1661. [Google Scholar] [CrossRef]
- Liu, Y.K.; Zhang, Y.B.; Zheng, Y.C. Reverse time migration of phase-encoded all-order multiples. Geophysics 2022, 87, S45–S52. [Google Scholar] [CrossRef]
- Guitton, A. Shot-profile migration of multiple reflections. In 72nd SEG Technical Program Expanded; Society of Exploration Geophysicists: Houston, TX, USA, 2002; pp. 1296–1299. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Sheng, J.M.; Yu, J.H.; Schuster, G.T.; Hornby, B.E. Migration methods for imaging different-order multiples. Geophys. Prospect. 2007, 55, 1–19. [Google Scholar] [CrossRef]
- Verschuur, D.; Berkhout, A. Transforming multiples into primaries: Experience with field data. In 75th SEG Technical Program Expanded; Society of Exploration Geophysicists: Houston, TX, USA, 2005; pp. 2103–2106. [Google Scholar] [CrossRef]
- Verschuur, D.; Berkhout, A.; Wapenaar, C. Adaptive surface-related multiple elimination. Geophysics 1992, 57, 1166–1177. [Google Scholar] [CrossRef]
- Liu, Y.K.; Chang, X.; Jin, D.G.; He, R.Q.; Sun, H.C.; Zheng, Y.C. Reverse time migration of multiples for subsalt imaging. Geophysics 2011, 76, WB209–WB216. [Google Scholar] [CrossRef]
- Berkhout, A.; Verschuur, D. Multiple technology: Part 2, Migration of multiple reflections. In 64th SEG Technical Program Expanded; Society of Exploration Geophysicists: Houston, TX, USA, 1994; pp. 1497–1500. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Liu, Y.K.; Liu, X.J.; Zhou, X.P. Reverse time migration using water-bottom-related multiples. Geophys. Prospect. 2020, 68, 446–465. [Google Scholar] [CrossRef]
- Liu, Y.K.; Liu, X.J.; Osen, A.; Shao, Y.; Hu, H.; Zheng, Y.C. Least-squares reverse time migration using controlled-order multiple reflections. Geophysics 2016, 81, S347–S357. [Google Scholar] [CrossRef]
- Berkhout, A. Multiple removal based on the feedback model. Lead Edge 1999, 18, 127–131. [Google Scholar] [CrossRef]
- Nemeth, T.; Wu, C.J.; Schuster, G. Least-squares migration of incomplete reflection data. Geophysics 1999, 64, 208–221. [Google Scholar] [CrossRef]
- Dai, W.; Fowler, P.; Schuster, G. Multi-source least-squares reverse time migration. Geophys. Prospect. 2012, 60, 681–695. [Google Scholar] [CrossRef]
- Luo, S.; Hale, D. Least-squares migration in the presence of velocity errors. Geophysics 2014, 79, S153–S161. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, L.; Xie, Y. A stable and practical implementation of least-squares reverse time migration. Geophysics 2015, 80, V23–V31. [Google Scholar] [CrossRef]
- Liu, X.J.; Liu, Y.K.; Lu, H.Y.; Hu, H.; Khan, M. Prestack correlative least-squares reverse time migration. Geophysics 2017, 82, S159–S172. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, J.F. Least-squares reverse time migration with an angle-dependent weighting factor. Geophysics 2018, 83, S299–S310. [Google Scholar] [CrossRef]
- He, B.; Liu, Y.K.; Zhang, Y.B. Improving the least-squares image by using angle information to avoid cycle skipping. Geophysics 2019, 84, S581–S598. [Google Scholar] [CrossRef]
- Fang, J.W.; Zhou, H.; Chen, H.M.; Wang, N.; Wang, Y.F.; Sun, P.Y.; Zhang, J.L. Source-independent elastic least-squares reverse time migration. Geophysics 2019, 84, S1–S16. [Google Scholar] [CrossRef]
- Li, C.; Gao, J.H.; Gao, Z.Q.; Wang, R.R.; Yang, T. Periodic plane-wave least-squares reverse time migration for diffractions. Geophysics 2020, 85, S185–S198. [Google Scholar] [CrossRef]
- Mao, W.J.; Duan, W.G.; Sun, C.X.; Shi, X.C. Elastic least-squares gaussian beam imaging with point spread functions. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Wong, M.; Biondi, B.; Ronen, S. Imaging with primaries and free-surface multiples by joint least-squares reverse time migration. Geophysics 2015, 80, S223–S235. [Google Scholar] [CrossRef]
- Liu, X.J.; Liu, Y.K. Plane-wave domain least-squares reverse time migration with free-surface multiples. Geophysics 2018, 83, S477–S487. [Google Scholar] [CrossRef]
- Liu, X.J.; Liu, Y.K.; Khan, M. Fast least-squares reverse time migration of VSP free-surface multiples with dynamic phase-encoding schemes. Geophysics 2018, 83, S321–S332. [Google Scholar] [CrossRef]
- Zheng, Y.K.; Wang, Y.B.; Chang, X. Least-squares data-to-data migration: An approach for migrating free-surface-related multiples. Geophysics 2019, 84, S83–S94. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer Science and Business Media: Berlin, Germany, 2006. [Google Scholar]
- Alford, R.; Kelly, K.; Boore, D. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics 1974, 39, 834–842. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.J.; Song, H.J.; Zhang, J.H.; Yao, Z.X. Comparison of artificial absorbing boundaries for acoustic wave equation modelling. Explor. Geophys. 2017, 48, 76–93. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Xing, G.; Zhu, T.Y.; Zhou, H.; Shi, Y. Propagating seismic waves in VTI attenuating media using fractional viscoelastic wave equation. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023280. [Google Scholar] [CrossRef]
- Tu, N.; Herrmann, F. Fast least-squares imaging with surface-related multiples: Application to a North Sea data set. Lead Edge 2015, 34, 788–794. [Google Scholar] [CrossRef]
- Li, Z.N.; Li, Z.C.; Li, Q.; Li, Q.; Sun, M.; Hu, P.; Li, L. Least-squares reverse time migration of multiples in viscoacoustic media. Geophysics 2020, 85, S285–S297. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, Y.; Yi, J. Least-Squares Reverse-Time Migration of Water-Bottom-Related Multiples. Remote Sens. 2022, 14, 5979. https://doi.org/10.3390/rs14235979
Zhang Y, Liu Y, Yi J. Least-Squares Reverse-Time Migration of Water-Bottom-Related Multiples. Remote Sensing. 2022; 14(23):5979. https://doi.org/10.3390/rs14235979
Chicago/Turabian StyleZhang, Yanbao, Yike Liu, and Jia Yi. 2022. "Least-Squares Reverse-Time Migration of Water-Bottom-Related Multiples" Remote Sensing 14, no. 23: 5979. https://doi.org/10.3390/rs14235979