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Abstract: High accuracy and a high spatiotemporal resolution of precipitation are essential for the
hydrological, ecological, and environmental fields. However, the existing daily gridded precipitation
datasets, such as remote sensing products, are limited both by the coarse resolution and the low
accuracy. Despite considerable efforts having been invested in downscaling or merging, a method
of coupled and simultaneously downscaling and merging multiple datasets is currently lacking,
which limits the wide application of individual popular satellite precipitation products. For the
first time, in this study, we propose a simple coupled merging and downscaling (CMD) method for
simultaneously obtaining multiple high-resolution and high-accuracy daily precipitation datasets. A
pixel-repeated decomposition method was first proposed, and the random forest (RF) method was
then applied to merge multiple daily precipitation datasets. The individual downscaled dataset was
obtained by multiplying the result of merging by an explanatory rate obtained by RF. The results
showed that the CMD method exhibited significantly better performance compared with the original
datasets, with the mean absolute error (MAE) improving by up to 50%, the majority of the values of
bias ranging between −1 mm and 1 mm, and the majority of the Kling–Gupta efficiency (KGE) values
being greater than 0.7. CMD was more accurate than the widely used dataset, Multi-Source Weighted-
Ensemble Precipitation (MSWEP), with a 43% reduction in the MAE and a 245% improvement in the
KGE. In addition, the long-term estimation suggested that the proposed method exhibits stable good
performance over time.

Keywords: precipitation; downscaling and merging; daily; China

1. Introduction

Accurate precipitation information with a high spatial resolution is critical for under-
standing climate change and various impact studies in the ecological, hydrological, and
agricultural fields [1–4]. However, due to its strong spatial and temporal heterogeneity,
precipitation is one of the most difficult climatic variables to estimate, and it is challenging
to derive highly accurate and high-resolution daily precipitation fields. Remote sensing
and numerical models can provide continuous precipitation fields with varying spatial
scales. These different types of precipitation products have proven to be useful in various
research fields, including the study of changes in climatic means and extremes, as well as
the monitoring of droughts and floods [5–7]. However, they remain limited to rather coarse
spatial resolutions such as 0.5◦–0.25◦, which is coarser than the scale of many environmen-
tal and ecological processes and the associated data requirements for multiple scientific
and operational applications.

Spatial interpolation methods are the traditional way to generate uniformly gridded
precipitation products by using irregular point observations, such as inverse distance
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weighting, kriging, regression analysis, and the high-accuracy surface modeling method
(HASM), which have been widely used in hydrological and meteorological studies [8–10].
However, the existing techniques face significant uncertainties in many areas characterized
by the inadequate and uneven distribution of instruments measuring rainfall, particularly
in regions without rain gauges [11]. Until now, we have not been able to acquire accurate
spatial estimates of precipitation through the current networks of weather radars and
rainfall-measuring instruments [12].

Currently, the mainstream approach for obtaining high-resolution precipitation data
involves downscaling or fusion of the data of multi-source coarse-resolution remote sensing
precipitation products and climate model outputs. There are various downscaling meth-
ods available, such as the geographically weighted regression method, machine learning,
and regional climate models [13–16], each with its own advantages and disadvantages.
Despite a growing number of studies focusing on downscaling techniques, previous stud-
ies have not simultaneously downscaled multiple popular remote sensing precipitation
products. As different remote sensing or reanalysis data have their own strengths, in-
cluding but not limited to their spatial coverage, time spans, varied performance, and
scopes of application [17], it would be beneficial to downscale multiple popular datasets
simultaneously, thereby increasing the selection and adaptability of data for researchers.
In addition, downscaling and fusion are conceptually compatible with each other. In the
downscaling process, multiple data sources are fused to obtain more accurate precipitation
data. In data fusion, it is necessary to perform scale conversion on the data to fuse multiple
data sources. However, the existing data fusion methods usually ignore the issue of scale
transformation, and most of the previous merging approaches have tended to apply simple
resampling techniques first before merging [18,19]. Additionally, previous studies usually
combined station observations and only a single satellite precipitation dataset during data
fusion, and have not fully and effectively utilized multiple data sources [13,20]. Although
there are weighting methods available to combine multiple precipitation datasets [18],
the significant challenge posed by the different weights when obtaining an appropriate
weight is crucial for the accuracy of merged precipitation estimates, but such a weight
is difficult to acquire. In light of the advantages and wide applications of the different
currently available satellite precipitation products and the reanalysis datasets [5,19,21], it is
imperative to simultaneously enhance the resolution and accuracy of the existing satellite
precipitation products as well as to generate high-quality precipitation fields by developing
a new method of data fusion and downscaling.

Motivated by these concerns, this study proposes a novel and simple method of cou-
pled merging and downscaling for multi-source daily precipitation datasets that integrates
several precipitation products in a unified framework. Our approach involves the following
steps. First, to avoid the errors introduced by traditional interpolation-based resampling,
we used a pixel-repeated decomposition method to unify different remote sensing precipi-
tation data to a spatial resolution of 1 km. Secondly, we constructed regression models for
multiple remote sensing data by combining meteorological observations using the random
forest (RF) method and obtained the weights of the contribution of the satellite precipitation
data to the true precipitation. Third, we used the co-kriging method to correct the residuals
combined with the local geographic environmental variables. Finally, we added the results
of random forest to those of co-kriging to obtain the final fusion data. In addition, to obtain
the downscaled results of multiple remote sensing precipitation sources simultaneously, we
used the weight contribution coefficients obtained above to decompose the fusion results to
yield the downscaled result for each set of remote sensing precipitation data. The accuracy
of our results was assessed using observation data and a widely used precipitation dataset:
Multi-Source Weighted-Ensemble Precipitation (MSWEP) [22].

The rest of the article is organized as follows. Section 2 lists the materials, including the
study area, the datasets, the proposed methodology, and the evaluation metrics. Section 3
focuses on the results. Discussions and the conclusions are given in Sections 4 and 5,
respectively.
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2. Materials
2.1. Study Area

Our research focused primarily on Mainland China (3◦51′–53◦33′N, 73◦40′–135◦05′E)
(Figure 1). Due to the impact of monsoons and topographical features, precipitation
in China experiences significant spatial and temporal heterogeneity, as well as obvious
seasonality, making it an area that is sensitive to climate change. The climate is generally
affected by the eastern monsoon, resulting in higher precipitation in the southeast and
lower precipitation in the northwest. Research has shown that every 1 ◦C increase in
surface temperature in China corresponds to approximately increases of 10% and 23% in
precipitation and extreme precipitation, respectively [23]. Under continued global warming,
simulation of the fine spatial distribution of precipitation has always been a hot and difficult
research topic [24,25].
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Figure 1. Study area and the distribution of meteorological stations across China.

2.2. Datasets

In this study, we proposed a novel coupled data merging and downscaling approach,
which considers the explanatory power of each data source for actual precipitation using
the RF method, and considers the relationship with local geographic environmental fac-
tors using the co-kriging method. Four prominent precipitation products, including the
Climate Prediction Center morphing technique (CMORPH), the Global Satellite Mapping
of Precipitation (GSMAP), the Integrated Multi-satellitE Retrievals for Global Precipita-
tion Measurement Mission (IMERG), the new fifth-generation atmospheric reanalysis of
the European Centre for Medium Range Weather Forecasts (ERA5), and high-density
station observations during the last five years, were utilized as the input data sources
to train and validate proposed algorithm. These datasets, particularly in China and the



Remote Sens. 2023, 15, 4377 4 of 18

northwest region, have been validated to have a relatively high level of accuracy and
performance [17,26,27], and have been widely applied in multiple fields [28–31].

Daily precipitation observations from more than 2400 meteorological stations were
obtained from the China Meteorological Administration (CMA) (Figure 1). Although
these observation sites provide a more comprehensive and detailed understanding of
China’s climatic characteristics compared with the 800+ publicly available national standard
meteorological stations, in some regions, especially in western areas, observations are still
sparse. This dataset has been subject to ongoing quality control, including extreme value
checks, regional limit value checks, and spatiotemporal consistency checks using RHtests
software V2 [32,33]. The spatial consistency check compares the time series of precipitation
at the target station with those from nearby stations, while the internal consistency check
is designed to identify erroneous reports caused by incorrect units, readings, or coding.
Finally, considering the availability of the station observations, 2417 stations in total from
2017 to 2021 were used in this study.

This study utilized the global CMORPH V1.0 precipitation estimate that was devel-
oped by the Climate Prediction Center of the National Oceanic and Atmospheric Admin-
istration (NOAA) [34]. This estimate combines highly detailed cloud information from
the infrared (IR) spectrum with relatively accurate precipitation data retrieved from the
passive microwave (PMW) range, allowing it to cover the area between 60◦S and 60◦N
with a 30 min temporal resolution and on an 0.25◦ × 0.25◦ grid. Since January 1998, the
estimation has undergone reprocessing and bias correction. The validation, conducted
using gauge-based precipitation analysis, demonstrated that the CMORPH product effec-
tively captures the precipitation distribution compared with six alternative satellite-derived
precipitation estimates in China [35]. We used the suggested pixel repetition technique to
obtain the 250 × 250 0.01◦ grid boxes for the designated 0.25◦ × 0.25◦ grid cells.

A popular high-resolution global precipitation dataset, GSMAP, was used in this
study. It includes three distinct products: the near-real-time product (GSMAP_NRT),
the microwave-IR combined product (GSMAP_MVK), and the gauge-calibrated rainfall
product (GSMAP_Gauge). Of these products, GSMAP_Gauge V7, with a spatial resolution
of 0.1◦, was used and was calibrated using global daily gauge data [36]. The 10 × 10 0.01◦

grid boxes at the target 0.1◦ × 0.1◦ grid cells from 2017 to 2021 were obtained by using the
pixel repetition method.

The global precipitation measurement project’s produce IMERG is a frequently used
multi-satellite merged precipitation retrieval product [37]. It contains IMERG-E, IMERG-L,
and IMERG-F, each of which is obtained using distinct algorithms. IMERG-F has been
found to be the most effective in most cases. This study used the daily calibrated products
of IMERG-F at a spatial resolution of 0.1◦ from the latest IMERG V06B product. The
10 × 10 0.01◦ grid boxes at the target 0.1◦ × 0.1◦ grid cells were obtained by using the pixel
repetition approach.

ERA5 is the latest atmospheric reanalysis created by the European Centre for Medium
Weather Forecasts. It replaced the production of ERA-Interim reanalysis, which concluded
on 31 August 2019 [38]. ERA5 became publicly accessible in early February 2019, featuring a
spatial resolution of 0.25◦. Like ERA-Interim, ERA5 spans from 1979 onwards and has been
extensively utilized in various applications and evaluations [39,40]. The 250 × 250 0.01◦

grid boxes at the target 0.25◦ × 0.25◦ grid cells during 2017–2021 were obtained before
merging and downscaling.

MSWEP is a recently launched precipitation dataset that offers global coverage from
1979 to the present, providing precipitation estimates every 3 h [41]. This dataset combines
information from gauge observations, satellite data, and reanalysis datasets, incorporating
two gauge observation datasets, two reanalysis datasets, and three satellite products. With
its integrated data sources, MSWEP aims to deliver reliable precipitation estimates on a
global scale. Despite its wide utilization for various purposes in both global and regional
applications [42–44], it is essential to consider its limitations and potential uncertainties
when using it for research or applications. The MSWEP dataset, similar to any other
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precipitation dataset, is subject to uncertainties and potential biases, and has a coarse
spatial resolution, typically ranging from 0.1 to 0.25 degrees. This level of resolution may
not capture small-scale variations in precipitation accurately, especially in regions with a
complex topography or strong spatial heterogeneity [41,45].

2.3. Methods
2.3.1. A Simple Coupled Merging and Downscaling (CMD) Method

The four-step flowchart displayed in Figure 2 presents the processes used to merge
the gauge observations, three satellite precipitation products, and one reanalysis dataset, as
well as simultaneously downscaling the four coarse satellite and reanalysis precipitation
datasets. The first step involves time-matching the gauge observations and the satellite
and reanalysis products, and pixel decomposition using the pixel repetition method. It
should be noted that the daily precipitation of the remote sensing precipitation products is
usually the sum of precipitation from 00:00 to 24:00 in the Central Time Zone. Considering
that the statistical period for daily data of precipitation stations in China is from 20:00 the
previous day to 20:00 on the current day in the Eastern Eight Time Zone, we recalculated
the daily satellite and reanalysis precipitation corresponding to the statistical period of
the precipitation stations using data with temporal resolutions higher than the daily scale
for each precipitation product. The second step is to initially merge the satellite and
reanalysis precipitation datasets and the gauge observations at a spatial resolution of
0.01◦ × 0.01◦ using the RF method, which is an ensemble learning algorithm used for
regression, classification, and selection ranking [46,47]. In addition, the explanatory rate
of each data source was calculated in this step using the variance analysis method. Third,
the final data fusion result was obtained by summing the result of the RF method and the
residuals corrected using co-kriging together with the local explanatory variables, including
altitude, latitude, longitude, slope, and some atmospheric environmental variables selected
from the ERA5 datasets using the RF method. The individual downscaled precipitation
dataset with a spatial resolution of 0.01◦ × 0.01◦ was obtained by multiplying the merged
results by the explanatory power of the corresponding data.
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Random forest is a popular machine learning algorithm that combines the concepts
of ensemble learning and decision trees [47]. It is widely used for both regression-based
prediction and variable selection tasks in various domains, including the socioeconomic
and eco-environmental fields [48–51]. In RF, multiple decision trees are created using
random subsets of the training data and random subsets of the input features. Each tree
independently learns from the data and makes predictions. The final prediction in the
regression tasks is obtained by averaging the predictions of all the individual trees. In
regression-based prediction, random forests are effective because they can handle a large
number of input features and automatically capture the complex nonlinear relationships
between the features and the target variable. The algorithm is relatively robust against
overfitting and can handle missing values and outliers in the data. Additionally, by
measuring how much the performance of the model decreases when a particular feature is
excluded, the algorithm determines the relative importance of each feature, allowing for
more interpretable and efficient models. In summary, its ability to handle complex data,
handle missing values, and provide the importance of the features makes it a valuable tool
for regression-based prediction and variable selection tasks.

In this research, by considering gauge precipitation as the ground truth and disre-
garding the potential scaling discrepancies between the gauge precipitation and satellite
precipitation, the fusion process was conducted using a functional relationship between
gauge precipitation and multiple satellite precipitation datasets established through the RF
method. Specifically, to achieve the best performance of RF in this study (i.e., the highest
R2), the model was built with 100 trees, and the ‘random_state’ parameter was set to 42.
The constructed RF model for fusion can be expressed as the following equation:

PGauge
i,d = fRF(Xi,d,βi,d) + εi,d (1)

where PGauge
i,d is the gauge precipitation at station i on day d, fRF denotes the relationships

between the features Xi,d and the target variable PGauge
i,d , Xi,d = (P0.01o ,CMORPH

i,d , P0.01o ,GSMaP
i,d ,

P0.01o ,IMERG
i,d , P0.01o ,ERA5

i,d ) is a vector of the precipitation datasets,βi,d = (β0
i,d,β1

i,d,β2
i,d,β3

i,d,β4
i,d)

is the regression coefficient obtained using RF at location i for day d, and εi,d is the residual.
The regression coefficients in Equation (1) at the 0.01◦ grid cells can be obtained from observa-
tions and the four daily precipitation products: P0.01o,CMORPH

i,d , P0.01o,GSMaP
i,d , P0.01o,IMERG

i,d , and

P0.01o,ERA5
i,d .

Co-kriging is a well-known geostatistical interpolation method that combines the
information from two or more correlated variables to estimate the values at unsampled
locations, and has been widely applied in various fields, such as hydrology and water
resources, environmental monitoring, and agriculture, and predictions f crop yield [52,53].
It is an extension of the traditional kriging method, which is used for spatial interpolation
and prediction. The main advantage of co-kriging is that it leverages the relationship
between the primary and secondary variables to improve the accuracy of the interpolation.
By incorporating additional information from the secondary variable, co-kriging can re-
duce the estimation error and provide more reliable predictions. This makes co-kriging
particularly useful in situations where only sparse data for the primary variable are avail-
able [53]. Combined with the local explanatory variables of the residual εi,d selected using
RF, co-kriging was used to interpolate the residual εi,d and yield the modified residual
fields in this study.

Through application of the established RF function, the obtained regression coefficient
βi,d, and the co-kriging method, the merged results P f usion

i,d at location i on day d can be
given as:

P f usion
i,d = fRF(Xi,d,βi,d) + fco−kriging(εi,d) (2)
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Furthermore, by using RF, we obtained the explanatory rate rj of the j th precipitation
dataset in Equation (1) (i.e., CMORPH, GSMAP, IMERG, and ERA5;j = 1, . . . , 4), and finally
obtained the individual downscaled result of the j th precipitation dataset Pdownscaling

i,d,j :

Pdownscaling
i,d,j = P f usion

i,d ∗ rj (3)

2.3.2. Validation Method

To evaluate the performance of the proposed CMD approach, we used the 10-fold
cross-validation method [54,55]. The dataset was randomly divided into 10 equal subsets
using the Subset Features tool in ArcGIS software V10.6. We divided the dataset into
10 spatially random subsets, each containing an equal number of observations. We used
nine of these subsets for training the CMD model and reserved the remaining one for testing.
This method ensured a comprehensive and robust evaluation of the CMD approach, taking
the spatial distribution of the data into account while maintaining an even distribution
of the observations across all subsets. The weights applied to each precipitation dataset
during CMD training were determined using the RF model. Specifically, the weights were
0.89, 0.91, 0.91, and 0.92 for GSMAP, ERA5, CMORPH, and IMERG, respectively. The
performance of the RF model was evaluated using the coefficient of determination (R2).
The R2 of the testing set was found to be 0.69 in this study.

We conducted a comparison of our estimates, the station observations, and a commonly
used merged dataset, MSWEP V2. To align our results with the spatial resolution of the
original MSWEP dataset (0.1◦), we resampled our data from 0.01◦ using a straightforward
bilinear interpolator. The performance of CMD was evaluated by the calculating mean
errors across the 10 cross-validation procedures and quantified using common statistical
metrics that include the correlation coefficient (CC), the mean absolute error (MAE), the
root mean square error (RMSE), bias, and Kling–Gupta efficiency (KGE) [56]. The equations
for these metrics are given in Equations (4)–(8), respectively.

CC =

m
∑

i=1
(yi − y)(y∗i − y∗)√

m
∑

i=1
(yi − y)2

√
m
∑

i=1
(y∗i − y∗i )

2
(4)

MAE =

m
∑

i=1

∣∣yi − y∗i
∣∣

m
(5)

RMSE =

√√√√√ m
∑

i=1
(yi − y∗i )

2

m
(6)

Bias =

m
∑

i=1

∣∣yi − y∗i
∣∣

m
∑

i=1
y∗i

(7)

KGE = 1−
√
(CC− 1)2 + (

y
y∗
− 1) 2 +(

σyy∗

σy∗y
− 1) 2 (8)

where m denotes the amount of data; yi and y∗i are the estimated and observed precipitation
at the ith site, respectively; y and y∗ are the average of yi and y∗i ; and σy and σy∗ are the
standard deviation of yi and y∗i , respectively. CC measures the strength and direction of
the linear relationship between two variables. It ranges from −1 to 1, where −1 indicates a
perfect negative correlation, 1 indicates a perfect positive correlation, and 0 indicates no
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correlation. MAE calculates the average magnitude of the errors between the predicted and
actual values. It provides a measure of how accurate the predictions are and is less sensitive
to outliers. MAE ranges from 0 to infinity, with lower values indicating better accuracy.
RMSE is similar to MAE but gives more weight to larger errors due to the differences being
squared. It provides a measure of the spread of errors. RMSE ranges from 0 to infinity,
with lower values indicating better accuracy. Bias quantifies the consistency or systematic
deviation between the predicted and actual values. It represents the difference between
the average predicted and actual values, and can be positive or negative. A bias of zero
indicates no systematic deviation. KGE evaluates the overall performance of the model by
assessing three aspects: correlation, variability, and distribution. It ranges from negative
infinity to 1, with 1 indicating a perfect match, 0 indicating the same pattern with a different
magnitude, and negative values indicating a poor match.

3. Results

Figure 3 displays the spatial pattern of the average error (MAE) of the four original
satellite and reanalysis products (Figure 3a–d); the five results for 2017–2021, including
the merged result (Figure 3e); and the four downscaled satellite and reanalysis daily
precipitation datasets (Figure 3f–i). The value of MAE was obtained by averaging the
MAE value of daily precipitation over the past five years. All the datasets exhibited higher
accuracy in northern China and showed large values of MAE in southern China. The
accuracy of the four original coarse precipitation datasets varied spatially across China,
with higher MAE values observed in southeastern China (>4 mm). GSMAP performed
better than the other three precipitation products, with most MAE values ranging from 0 to
3.8 mm. The error of the merged and downscaled results showed consistently similar spatial
patterns, and most MAE values ranged between 0–3 mm for the five outputs of the proposed
CMD method (Figure 3e–i), which are lower than those of the source datasets. In summary,
according to the mean error indices during 2017–2021 (Figure 3, and Figures S1–S4 in the
Supplementary Materials), CMD not only shows a good ability to merge the four satellite
and reanalysis precipitation datasets but also shows high performance in simultaneously
downscaling the four coarse datasets.
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Figure 4 shows the regionally averaged error of different daily precipitation datasets,
randomly selected from four seasons in 2021 (Day 1: January 16; Day 2: April 20; Day 3: July
20; Day 4: October 16) as examples. According to the MAE, RMSE, and KGE, the merged
results and the downscaled results are more accurate than the individual original satellite
and reanalysis datasets. On January 16, the MAE and RMSE of the merged result of the
proposed CMD method improved by 37.2% and 36.7%, respectively. Earlier research indi-
cated that while the downscaled outcomes consistently demonstrated enhanced precision
compared with the initial satellite-based precipitation products, no notable advancements
were observed before and after downscaling [57]. In this study, the downscaled results
of GSMAP, ERA5, CMORPH, and IMERG using CMD showed significant improvements,
with the MAE improving by 21.1%, 37.85%, 49.6%, and 50%, respectively, compared with
the original datasets. CMD performed well in terms of merging together with downscaling,
with a KGE value greater than 0.8. On April 20, compared with the original satellite and
reanalysis datasets, the merged result of CMD improved by 42.3% and 42.2% on average,
in the MAE and RMSE, while the individual downscaled results improved by 41.8% and
37%, 46.1% and 40.5%, 50.7% and 50.9%, 42.7% and 49%, respectively, when compared
with the original dataset. The KGE values (>0.8) of the merged and downscaled results
of CMD are significantly larger than those of the original datasets (<0.5). On July 20, the
MAE of the merged result of CMD improved by 24.4%, 33.7%, 41.3%, and 47.8% compared
with GSMAP, ERA5, CMORPH, and IMERG, respectively, and the MAE of the downscaled
results of these coarse datasets improved by 23.4%, 33.1%, 40.8%, and 47.3%, respectively.
CMD performed well in terms of merging and downscaling, with lower RMSE and larger
KGE values compared with the original precipitation datasets. On October 16, the MAE
(RMSE) value of the merged results of CMD improved by 26.5–63.1% (24.4–63.1%) com-
pared with the four original precipitation datasets, and the downscaled results of these
coarse datasets using CMD improved by 27.5–63.7% (26.5–64.2% for RMSE). In terms of
the KGE, all five CMD results showed higher accuracy than the four original datasets,
with the KGE approaching 0.9. In addition, we found that by using CMD, the CMORPH
precipitation products improved the most in almost all cases, followed by IMERG. The five
outputs of CMD, including one merged result and four downscaled results, generally had
comparable levels of accuracy.

We presented and compared the spatial distribution of different precipitation datasets
in Figure 5, taking two days (January 6 and July 20) in the dry and wet seasons of 2021 as
examples due to space limitations. The spatial patterns of daily precipitation varied among
the input data sources. On January 6 (Figure 5a–j), GSMAP and ERA5 exhibited similar
spatial patterns, while CMORPH and IMERG exhibited significantly different patterns
compared with the others. The merged and downscaled results of CMD showed consistent
spatial patterns and had a similar spatial distribution to GSMAP and ERA5 but with
significant differences in specific regions. In a comparison of some local observations,
IMERG and CMORPH performed the worst, and GSMAP performed the best. The five
outputs of the proposed CMD method performed better than the individual satellite
and reanalysis datasets. On July 20 (Figure 5k–t), the original input precipitation data,
including GSMAP, ERA5, CMORPH, and IMERG, still showed different spatial patterns,
with CMROPH and IMERG exhibiting the largest differences. The five results of the
proposed CMD method exhibited spatial patterns similar to GSMAP and ERA5 but with
local differences. Compared with the station observations, IMERG performed the worst,
followed by CMORPH, and ERA5 performed better than GSMAP. The downscaled results
showed large improvements, especially for CMORPH and IMERG, indicating CMD’s
good ability to retrieve local details. The results of the CMD method showed the best
performance in terms of both the spatial patterns and local accuracy. In addition, combined
with the results of error shown in Figures 3 and 4, the difference in accuracy between the
merged results and the four downscaled results did not exceed 0.1 mm according to the
MAE, meaning that, to a large extent, these five outputs of the proposed CMD method are
close to the true precipitation.
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Figure 6 shows the time series of the errors for different precipitation datasets for
the years 2020 and 2021. The results showed that, overall, the five results (the result
of CMD fusion and the four individual downscaled results of the CMORPH, GSMAP,
IMERG, and ERA5 datasets) of the proposed CMD method performed better than the
original satellite and reanalysis precipitation datasets, with lower MAE and BIAS values
and larger KGE values. The time evolution of MAE indicated that IMERG, CMORPH,
and GSMAP performed relatively worse than the others. By using the proposed CMD
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method (Figure 6c,d), the result of merged and the individual downscaled results showed
comparable performance, and the downscaled results performed relatively better over
time, with 80% of days within the two years having a MAE less than 3 mm and 45% of
the days in 2020–2021 having an MAE less than 1 mm. Overvaluation and undervaluation
were observed in the nine datasets (Figure 6e,f): 95% of the days in 2020 and 2021 were
underestimated by IMERG, and most cases were overestimated by the other datasets.
Compared with the original precipitation datasets, the outputs of the CMD method showed
good performance in terms of bias, with more than 97% of cases having a bias of less than
1 mm, while the probability of a bias less than 1 ranged between 43% and 82% for the
original coarse precipitation datasets. For the five outputs of CMD, the downscaled result
of IMERG performed better than the others, with 98% of the days in the two years having
a bias of less than 1, and the downscaled result of GSMAP performed the worst, with
96% of the days within the two years having a bias of less than 1, followed by the merged
result (Figure 6g,h). Before downscaling, 41% of cases in 2020 and 2021 had a bias of less
than −2 mm. However, the probability of a bias of less than 1 was 98% after downscaling
using the CMD method. The likelihood of having a KGE greater than 0.5 ranged from 0
to 57% for the four coarse precipitation datasets, and from 0 to 2% for when the KGE was
greater than 0.8. By using the proposed CMD method, the probability of a KGE greater
than 0.5 reached 80% (Figure 6i–l). In addition, a comparison of the five output results
based on KGE, which evaluates the overall performance of the model by assessing three
aspects including correlation, variability, and distribution [56], revealed that the fused
result performed best, followed by the downscaled IMERG data, while the downscaled
GSMAP data performed worst.
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In addition to comparing these results with on-site observations, we also compared
them with a widely used fusion dataset, Multi-Source Weighted-Ensemble Precipitation
(MSWEP). This dataset, generated by merging gauge, satellite, and reanalysis data, has been
widely used in several scientific and practical applications [22,43,58]. The results of CMD
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were resampled to 0.1◦ to match the spatial resolution of MSWEP. Figure 7 shows the spatial
patterns of the average errors of different datasets during 2020–2021 (Figure 7a–f) and the
time series of the errors for the two exemplary years (Figure 7g–l). The results showed
that, compared with the merged and downscaled results of CMD, MSWEP had higher
MAE values regarding site observations, and most of the MAE values ranged from 1.5 mm
to 6.7 mm, with the majority being above 3 mm. By using CMD, the merged result was
greatly improved, with 91% of the MAE values being less than 3 mm. The accuracy of the
downscaled results was slightly higher than that of the results of fusion, with 93.5% of the
MAE values being below 3 mm. With respect to the station observations, it can be seen that
the results of CMD, including the merged and downscaled results, performed better than
MSWEP in terms of the MAE, bias, and KGE. Both overestimations and underestimations
were observed for the comparison datasets, and the magnitudes of both the overestimations
and underestimations of MSWEP were significantly larger than those of all outputs of the
CMD method. Moreover, 77% of the CMD’s KGE values were greater than 0.5, and 20% of
the KGE values were larger than 0.8, yet the majority of the KGE values for MSWEP were
below 0.5.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 7. Comparison with the widely used data fusion dataset, MSWEP ((a–f) denote the mean 

MAE values of different products; (g–l) give the time series of errors in the years 2020 and 2021; 01 

means a 0.1° spatial resolution; * indicates downscaling). 

4. Discussion 

Precipitation is one of the most difficult climate variables to estimate, and the high 

accuracy and high resolution of precipitation plays a vital role in the natural ecosystem 

and human society. Remote sensing precipitation data and reanalysis data are often used 

in agricultural, ecological, hydrological, and other research fields due to their ability to 

provide spatially continuous information on precipitation. However, their coarse resolu-

tion and relatively low accuracy have limited their further widespread use. Moreover, 

different data products, such as GSMAP, IMERG, and CMORPH, have different spatial 

coverage and time spans and exhibit significant regional differences in accuracy, which 

has led to their different scientific and practical applications [6,17]. To provide multiple 

high-quality precipitation datasets with potential for different applications, a new method 

is therefore necessary to simultaneously downscale multiple popular remote sensing and 

reanalysis precipitation products. 

For the first time, this study proposed a new simple coupled merging and downscal-

ing method to simultaneously acquire multiple high-quality fine-scaled daily precipita-

tion datasets. First, unlike traditional approaches, we proposed a pixel replication method 

Figure 7. Comparison with the widely used data fusion dataset, MSWEP ((a–f) denote the mean
MAE values of different products; (g–l) give the time series of errors in the years 2020 and 2021; 01
means a 0.1◦ spatial resolution; * indicates downscaling).



Remote Sens. 2023, 15, 4377 14 of 18

4. Discussion

Precipitation is one of the most difficult climate variables to estimate, and the high
accuracy and high resolution of precipitation plays a vital role in the natural ecosystem
and human society. Remote sensing precipitation data and reanalysis data are often used
in agricultural, ecological, hydrological, and other research fields due to their ability to
provide spatially continuous information on precipitation. However, their coarse resolution
and relatively low accuracy have limited their further widespread use. Moreover, different
data products, such as GSMAP, IMERG, and CMORPH, have different spatial coverage
and time spans and exhibit significant regional differences in accuracy, which has led to
their different scientific and practical applications [6,17]. To provide multiple high-quality
precipitation datasets with potential for different applications, a new method is therefore
necessary to simultaneously downscale multiple popular remote sensing and reanalysis
precipitation products.

For the first time, this study proposed a new simple coupled merging and downscaling
method to simultaneously acquire multiple high-quality fine-scaled daily precipitation
datasets. First, unlike traditional approaches, we proposed a pixel replication method to
decompose data with a coarse resolution, avoiding additional errors introduced at the
pixels’ boundaries by resampling. Secondly, we made full use of the advantages of random
forest to fuse multiple precipitation data sources while providing the rates of contribution
of different precipitation datasets to true precipitation. Based on these contribution rates,
we further decomposed the results of fusion to obtain downscaled results for individual
precipitation sources. It should be noted that having more data sources enabled greater
accuracy in the results of fusion using the random forest method, which led to improved
accuracy in the downscaled results for individual precipitation datasets. However, as
the focus of this study was to propose a new methodological framework, we selected
some commonly used precipitation products for this purpose, including three prominent
daily satellite precipitation datasets and a popular reanalysis dataset. The cross-validation
results showed that CMD’s five output results were more accurate than the input datasets
(Figures 3, 4 and 6). In terms of the spatial distribution, the proposed method combined
the advantages of having multiple sources of input data while also accurately reflecting the
local details better than the individual data sources (Figure 5). In addition, a comparison
of the results of CMD with the widely used third-party data of MSWEP based on station
observations during 2020–2021 demonstrated that the proposed method outperformed
MSWEP in both accuracy and long-term time series simulation (Figure 7).

The five output results of CMD, including the fused results and the downscaled results,
showed considerable accuracy, with the MAE not exceeding 1 mm. The advantage of this
method lies in its ability to significantly improve the accuracy of the original precipitation
data that had a high level of error, while also substantially enhancing the spatial distribution.
Furthermore, a distinctive feature of the proposed approach in this study is its simultaneous
generation of multiple high-resolution and high-accuracy precipitation datasets to meet
diverse application needs.

Although the CMD method provides enhanced estimates, there are still uncertainties
associated with the final results. These uncertainties arise from factors such as the density
and locations of the observation stations, the inherent uncertainty in the remote sensing
and reanalysis precipitation products, and the relationship between precipitation and
the predictor’s variables. RF models tend to have a higher risk of overfitting, especially
when the number of trees in the forest is large and the model’s complexity is high, and
it is sensitive to noisy or erroneous data. Overfitting occurs when the model captures
noise or irrelevant patterns in the training data, leading to poor performance in terms
of generalization with unseen data. The effectiveness of co-kriging relies on the spatial
correlation between the primary variable of interest and the auxiliary variables. If suitable
auxiliary variables are not available or if there is a low correlation between the primary and
auxiliary variables, co-kriging may not provide better results. In the study, we trained the
method based on the available research datasets to optimize its performance and obtain the
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corresponding parameters. In addition, residual correction is a commonly used approach,
and its effectiveness has been demonstrated by several studies [57,59,60]. However, due to
space limitations, this study mainly focused on the framework of how to simultaneously
obtain multiple high-quality datasets and did not provide a separate explanation for the
effectiveness of residual correction. Local explanatory variables may influence the degree
to which the final results are improved. Future research will investigate the extent of this
impact further.

The limitation of this study is that it uses regionally averaged values to assess the
contribution rates. However, due to the large area of China, precipitation products in
different regions exhibit significant variations in accuracy. It is important to consider
different rates of contribution for precipitation in different regions, and future research
should focus on specific areas. Furthermore, we evaluated the effectiveness of the proposed
method by comparing it with station-based precipitation observations from the past five
years. The results clearly indicate that the method achieved a high level of accuracy and
consistent performance in simulating precipitation. These findings suggest that the method
has the potential to deliver improved results when applied to simulations at different
time scales. However, it is essential to acknowledge the inherent spatial and temporal
heterogeneity of precipitation. Therefore, it is necessary to further validate the simulation
uncertainty for longer periods, such as inter-decadal variations, in future research.

5. Conclusions

In this study, a simple coupled downscaling and merging method was proposed to
simultaneously obtain multiple high-quality precipitation datasets using RF. The proposed
method, named CMD, was applied to daily data from Mainland China. The results showed
that CMD outperformed the original popular satellite and reanalysis datasets of daily
precipitation, and the performance of CMD was stable over time in terms of MAE, bias,
RMSE, and KGE. The results of CMD improved by 27% on average in terms of the MAE.
CMD successfully reduced the magnitude of overestimation and underestimation, with
over 97% of the estimated cases having a bias of less than 1 mm, while the probability of a
bias of less than 1 ranged from 43% to 82% for the original coarse precipitation datasets.
The KGE value changed from less than 0.5 in most cases to more than 0.5 in 80% of cases.
When compared with the MSWEP dataset, the majority of MAE values of the MSWEP were
greater than 3 mm, while more than 94% of CMD’s MAEs were less than 3 mm with respect
to the station observations. In addition, CMD performed better in capturing the time series
of daily precipitation, while the KGE value of MSWEP was below 0.5 in most cases.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs15184377/s1. Figure S1: Spatial patterns of the mean CC
values during 2017–2021 of different precipitation datasets from Mainland China; * denotes the
individual downscaled precipitation products. Figure S2: Spatial patterns of the mean RMSE values
during 2017–2021 for different precipitation datasets from Mainland China; * denotes the individual
downscaled precipitation products. Figure S3: Spatial patterns of the mean bias values during
2017–2021 of the different precipitation datasets from Mainland China; * denotes the individual
downscaled precipitation products. Figure S4: Spatial patterns of the mean KGE values during
2017–2021 of the different precipitation datasets from mainland China; * denotes the individual
downscaled precipitation products.
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