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Abstract: Convolutional neural networks (CNNs) have made significant advances in remote sensing
scene classification (RSSC) in recent years. Nevertheless, the limitations of the receptive field cause
CNNs to suffer from a disadvantage in capturing contextual information. To address this issue, vision
transformer (ViT), a novel model that has piqued the interest of academics, is used to extract latent
contextual information in remote sensing scene classification. However, when confronted with the
challenges of large-scale variations and high interclass similarity in scene classification images, the
original ViT has the drawback of ignoring important local features, thereby causing the model’s
performance to degrade. Consequently, we propose the hierarchical contextual feature-preserved
network (HCFPN) by combining the advantages of CNNs and ViT. First, a hierarchical feature
extraction module based on ResNet-34 is utilized to acquire the multilevel convolutional features
and high-level semantic features. Second, a contextual feature-preserved module takes advantage
of the first two multilevel features to capture abundant long-term contextual features. Then, the
captured long-term contextual features are utilized for multiheaded cross-level attention computing
to aggregate and explore the correlation of multilevel features. Finally, the multiheaded cross-level
attention score and high-level semantic features are classified. Then, a category score average module
is proposed to fuse the classification results, whereas a label smoothing approach is utilized prior to
calculating the loss to produce discriminative scene representation. In addition, we conduct extensive
experiments on two publicly available RSSC datasets. Our proposed HCPFN outperforms most
state-of-the-art approaches.

Keywords: RSSC; hierarchical multiheaded attention; label smoothing

1. Introduction

Remote sensing scene classification (RSSC), which is highly significant in Earth ob-
servation applications, such as urban planning, land cover classification, and geographic
object detection [1–5], is generally based on high-resolution remote sensing (HRRS) images.
As Earth observation technology advances, the amount of HRRS images is continuously
rising. Thus, taking full advantage of the growing number of HRRS images for intelligent
Earth exploration is important [6,7]. As a result, comprehending massive and complicated
HRRS images has become a critical and challenging task. Based on its content, the RSSC
seeks to categorize the given remote sensing imagery into predefined semantic categories.
Many comprehensive academic studies [8–13] on RSSC have been conducted in the last
few decades. Initially, most RSSC techniques focused primarily on human-engineering
features, including scale-invariant feature transformation (SIFT) [14], histogram of oriented
gradients (HOG) [15], and color histogram (CH) [16]. Nevertheless, the handcrafted fea-
tures have limited representational capacities because they are unable to fully capture the
semantic content of HRRS scenes.

As a result of the development of convolutional neural networks (CNNs), Numerous
CNN-based approaches for RSSC have been developed [17–22]. CNNs have a strong capac-
ity to extract high-level abstract characteristics given that they are designed to resemble the
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visual system of the human brain. As a consequence, the CNN-based algorithms achieve
excellent results in RSSC. There have been several general-purpose CNNs proposed, in-
cluding VGG-Net [23] and residual network (ResNet) [24]. Furthermore, numerous graph
neural networks or CNNs oriented to remote sensing have been proposed [25–29], which
perform excellently in RSSC. Despite the fact that the performance of CNN-based meth-
ods in scene classification has significantly improved, long-term contextual information
concealed in remote sensing scenes cannot be effectively explored. CNN features mainly
reflect information from local regions while ignoring long-term contextual dependencies
between local regions. As demonstrated in Figure 1, this condition is vital for defining
semantic categories of different remote sensing scenes. The nonlocal method [30] and the
conformer strategy [30] are two common approaches by scholars to solve these issues.
Transformer [31] stands out among the alternatives because of its capacity to learn long-
term contextual information. Thus, various RSSC models based on vision transformers
have been presented [32–35].
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Figure 1. (a) Local visual feature and (b) long-term contextual feature are selected from the “School”
category. The long-range contextual information is not considered by CNNs, which specialize
at extracting local characteristics. (a,b) show many distinct land covers, such as “Playground,”
“Building,” “Road,” and “Basketball Court.” If the model only concentrates on those local regions,
the “School” scene could be mistaken for other scenes with comparable ground objects. Thus, to
accurately classify this scene as “School,” local regions and their long-term contextual dependencies,
as indicated by the yellow arrows, should be taken into account by the expected model.

Nevertheless, the transformer model can still be improved in terms of interpreting
HRRS scenes. First, although the original ViT estimates the contextual dependencies be-
tween patches created by image cropping, it has limitations when it comes to investigating
the local structural information of HRRS scenes with intricate geometrical structures and
spatial patterns. Second, most transformer-based approaches ignore multilevel local fea-
tures and are limited to extracting contextual information at a single scale. Following the
discussion above, two questions logically arise: (1) whether it is feasible to explore local
information and long-term contextual information while combining the advantages of
CNNs and ViT; (2) efficiently fusing high-level semantic features of CNN and multilevel
contextual features to generate discriminative feature representations.

Following the preceding analysis, we propose a new method, namely, hierarchical
contextual feature-preserved network (HCFPN) for remote sensing scene classification.
First, we utilize a hierarchical feature extraction module (HFEM) to extract multilevel
convolutional features and high-level semantic features from HRRS scenes. Second, a
contextual feature preserved module (CFPM) with a multiheaded cross-level attention
is proposed to capture multilevel long-term contextual features hidden in HRRS scenes.
The scattered multilevel long-term contextual features can be aggregated to form a more
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discriminative representation and facilitate subsequent classification by calculating the
multiheaded cross-level attention. Third, the classification outcomes of the high-level se-
mantic features and the multilevel long-term contextual features are fused using a category
score average module (CSAM). In addition, we present the label smoothed cross-entropy
loss to strengthen the model’s classification performance while avoiding the overfitting
issue in deep learning.

The following is a summary of this manuscript’s significant contributions:

1. To efficiently integrate the benefits of CNN and ViT to extract both local high-level
semantic features and global contextual features, an RSSC network called HCFPN is
proposed. In addition, HRRS scenes can be comprehensively exploited and aggregated
for the local high-level semantic features and global contextual features.

2. To describe the correlations of multilevel convolutional features and merge them
to generate a more discriminative representation, the global long-term contextual
features of the multilevel convolutional features are captured through a multiheaded
self-attention, and then the correlations between them are further explored through
multiheaded cross-level attention.

3. Extensive experiments are carried out on two public benchmark datasets, and the
superior outcomes illustrate that our proposed HCFPN works effectively in RSSC.

The remaining manuscript is structured as follows. Section 2 provides an overview of
the relevant academic research. Section 3 provides detailed information about the proposed
HCFPN. Section 4 presents the experimental results of the HCFPN, utilizing two well-
known HRRS scene classification datasets. Section 5 analyzes the rationale for the viability
of our proposed method. Finally, Section 6 describes the conclusions.

2. Related Works
2.1. CNN-Based Methods for RSSC

A variety of scene classification approaches based on CNNs have evolved to learn
good feature representations by applying various strategies of exploiting CNNs. Existing
CNN-based approaches may be categorized into three groups depending on the architecture
of the models: single-branch, multi-branch, and generative adversarial framework.

The scene classification networks in the first group are single-branch structures, indicat-
ing that they have only one sample input entrance. Li et al. [36] applied the transfer learning
paradigm to the training process of CNNs, learning robust visual feature representations
and enhancing the scene classification performance in the case of limited labeled samples.
Meanwhile, an attribute-cooperated CNN [37], which attributes learning to distinguish
visually fine-grained categories, was proposed. In addition, aggregating multilayer features
is a commonly used strategy for RSSC. A convolutional feature encoding module as well
as a progressive aggregation strategy were included in an end-to-end feature aggregation
CNN (FACNN) [38] that was developed to learn discriminative scene representation. This
allows the intermediate features to be aggregated while fully leveraging the semantic label
information. To obtain a global discriminative feature representation for HRRS scenes, the
low-level and middle-level convolutional features were encoded by a vector of a locally
aggregated descriptor (VLAD) in [39]. Then, an encoded mixed-resolution representation
strategy was proposed to concatenate all the global features.

In the second group, the scene classification networks contain a multibranch structure
that allows them to deeply explore the inter-class and intra-class interactions between
HRRS scenes. The Siamese network [40], which combines two weight-sharing CNNs, is a
common example of a multibranch CNN. In addition, some particular objective functions
were created in the Siamese network to achieve content interpretation of HRRS scenes.
In [41], deep structural metric learning and the Siamese network were integrated to extract
features and construct a diversity-promoting prior, which improved the classification per-
formance of the model. Liu et al. [42] proposed a Siamese network for RSSC that integrates
identification and verification models to learn discriminative feature representations. Com-
pensating for the shortcomings of the verification model, the identification model evaluated
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the correlation of all the images in a dataset. The intra-class distance was decreased by the
verification model, while the inter-class distance was increased.

In the third group, the scene classification networks are based on a generative adver-
sarial framework that generates real-like data and is based on a minmax two-player game.
To produce high-resolution annotated samples, [43] developed a generative adversarial
network (GAN)-based remote sensing image generation (GAN-RSIGM) approach. The
Wasserstein distance was used by GAN-RSIGM to promote the distribution of the generator
near the distribution of real data. A supervised progressive growing GAN (SPG-GAN) [44]
was proposed to generate HRRS scenes with labeled categories. In addition, SPG-GAN
adopted a progressive growing sample generation strategy to enhance the spatial details
of the generated samples. A perturbation-seeking GAN (PSGAN) [20] was presented for
RSSC to boost the defense against unknown threats. PSGAN initially trained the model,
utilizing the adversarial samples with perturbations rather than clean samples. Moreover,
a scale factor was proposed to make a trade-off between PSGAN optimization and the
diversity of the rebuilt samples.

2.2. Attention-Based Methods for RSSC

In complicated HRRS scenes, highlighting critical information and capturing con-
textual dependence information remain two pressing difficulties. To alleviate them, vi-
sual attention mechanisms have become interesting to scholars. As a result, several
attention-based approaches for RSSC have been proposed; they can be classified as ei-
ther conventional-attention-based or transformer-based methods.

The models based on conventional attention are intended to extract saliency areas from
HRRS scenes for classification tasks. In [45], an end-to-end attention recurrent convolutional
network (ARCNet) was proposed to focus selectively on particular crucial regions or
locations, consequently eliminating the redundant information and improving the model’s
classification performance. Zhao et al. [46] proposed an enhanced attention module (EAM)
for RSSC to extract more discriminative representations. The EAM was constructed with
simple and effective enhanced spatial attention and enhanced spectral attention modules.
In the attention consistent network (ACNet) [47], a parallel attention mechanism was
designed to focus on the local features from spatial and spectral dimensions. In addition,
an attention consistent module was developed to unify various types of attention maps to
increase intra-class distance while decreasing inter-class distance.

The second group of models is mainly constructed by the transformer. The transformer
initially reigned supreme in the natural image processing field owing to its ability to
capture contextual information concealed in images [48–50]. The first attempt of vision
transformer [48] was in the field of computer vision. Prior to performing the classification
task, it transforms natural pictures into sequences of image patches and inserts their
absolute location information into these image patches. In the field of RSSC, several
transformer-based methods have been proposed. A spatial-channel feature preserving
ViT (SCViT) was proposed in [51], which takes into account the abundance of geometric
information in high-resolution images as well as the contribution of the various channels
included in the classification token. A transformer-driven semantic relation inference
network with semantic sensitive and semantic relation-building module was proposed
in [52]. The semantic sensitive module detected the pivotal semantic attentional regions in
the feature map, whereas the semantic relation-building module predicted final outcomes
using label relation inference from the semantic sensitive module outputs.

3. Proposed Method

The general structure of the proposed HCFPN is illustrated in Figure 2, which com-
prises a hierarchical feature extraction module, a contextual feature preserved module, and
a category score average module. HFEM is designed to extract hierarchical convolutional
features as well as local advanced semantic features from HRRS scenes. The purpose of
CFPM is to acquire long-term contextual information from HRRS scenes at a different scale
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by capturing the long-term contextual relationships between local convolutional areas.
In addition, CSAM is intended to combine advanced semantic features and long-term
contextual features to provide discriminative feature representation for RSSC. Then, we
provide a thorough description of each module.
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level semantic representations. Qmcla, Kmcla, and Vmcla are the queries, keys, and values involved in
the multihead cross-level attention calculation, respectively.

3.1. Hierarchical Feature Extraction Module

The hierarchical feature extractor is based on ResNet34, a widely used CNN consisting
of four residual blocks, a global average pooling layer, and a fully connected (FC) layer.
The residual blocks focus on extracting local spatial information, and the significance
of global average pooling is that it helps to regularize the entire network structure to
avoid overfitting. Furthermore, the classification score is generated using a global feature
vector from the final FC layer [53]. The residual blocks of different depths focus on
extracting different hierarchical information. Shallow residual blocks usually extract the
low-level features, such as color, texture, and shape. Deeper residual blocks focus on
extracting high-level semantic representations with abundant combinatorial information,
which are important in solving classification problems. Considering the complex contextual
information of HRRS scenes, the features at various levels contribute to the RSSC task.
As shown in Figure 2, to prevent the information loss of shallow features, we select the
output of the first two residual blocks to construct low-level and mid-level convolutional
features that will help in the generation of more discriminative features. For clarity, they are
designated as B1 ∈ RC1×H1×W1 and B2 ∈ RC2×H2×W2 , where C1 and C2 are the number of
channels and (H1 ×W1) and (H2 ×W2) are the resolutions of the low-level and mid-level
features, respectively. Moreover, G ∈ RC3 represents the aggregated high-level semantic
representations generated by the global average pooling layer.

3.2. Contextual Feature Preserved Module

Some detailed information may be lost when shallow features (e.g., B1 and B2) are
passed forward to deep residual blocks. At the same time, the receptive field of the
convolution process is limited by the size of the convolution kernel, which might cause
CNNs to focus primarily on local information and ignore the global dependence of image
blocks. To completely comprehend the contents of HRRS scenes, we propose CFPM, which
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is based on the HTB, to extract contextual information. To describe the HTB in detail, we
consider B1.

A 1D sequence of token embeddings is sent into the HTB as input. To deal with 2D
shallow feature B1, we reshape it into a sequence of flattened 2D patches, Bp

1 ∈ RN×(P2·C1),
where N = (H1 ×W1)/P2 represents the total number of patches and (P× P) represents
the size of each feature patch. Given that the latent features utilized in all HTB’s layers
are constant to D dimensions, a linear projection, E ∈ R(P2·C1)×D (Equation (1)), which
can be trained, is used to flatten and map the patches to D dimensions. The output
of this linear projection is referred as the patch embeddings. A learnable embedding,
Bclass_token, is prepended for the patch embeddings, similar to BERT’s class token, and the
image representation, B′1 ∈ R(N+1)×D, is made from its state at the output of the HTB.
Furthermore, learnable 1D positional embeddings, Epos ∈ R(N+1)×D, are introduced to
the embedded patches to retrain global positional information, which are vital for seeking
long-term contextual dependence between image patches.

As shown in Figure 3, an HTB is made up of layers of MSA and MLP blocks [31] that
alternate. Layer norm (LN) [54] is used in front of every block, and in the rear, residual
connection is utilized. Two FC layers that are activated by a Gaussian error linear unit
(GELU) form the MLP blocks. As a result, the HTB output can be calculated as follows:

z = Concat
(

Bclass_token;
(

Bp
1

)1
E;
(

Bp
1

)2
E; · · · ;

(
Bp

1

)N
E
)
+ Epos, (1)

zMSA= MSA(LN(z)) + z, (2)

B′1 = LN(MLP(LN(zMSA)) + zMSA). (3)
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attention (MSA) and Multilayer Perceptron (MLP) Blocks in alternating layers. Each block has a layer
norm (LN) in the front, and a residual connection in the back.

The core component of HTB is MSA, which may provide the attention layer output,
including information on the encoded representations in multiple subspaces, thereby
increasing the model’s representational strength. MSA simultaneously uses h self-attention
head functions to establish the long-term contextual dependency among token embeddings
from different positions while taking the input token embeddings, z ∈ R(N+1)×D, into
account. Then, the outputs of the individual heads are concatenated and projected to the
ultimate attention values. For input z, the formula for calculating MSA is as follows:

MSA(z) = Concat(head1, · · · , headh)W
O, (4)

where headi represents the ith self-attention head function, and WO is the parameter matrix
of projections. The headi is defined as follows:

headi = Attention(Qi, Ki, Vi), (5)

Qi = zWQ
i , Ki = zWK

i , Vi = zWV
i , (6)
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Attention(Qi, Ki, Vi) = softamx
(

QiKi
T

√
dk

)
Vi. (7)

where the learned parameter matrices of various linear projections are denoted by WQ
i ,WK

i ,
and WV

i , and dk represents the dimension of Ki. The linearly projected queries, keys, and
values are denoted as Qi, Ki, and Vi, respectively; they perform the scaled dot-product
attention, Attention(·, ·, ·), in parallel to yield the ith self-attention head’s attention score.
Finally, the final values are obtained by concatenating these attention scores and linearly
projecting them again.

Thus far, the obtained B′1 ∈ R(N+1)×D and B′2 ∈ R(N+1)×D contain abundant global
contextual knowledge inside HRRS scenes. Although the MSA in HTB may extract global
contextual information successfully, it is constrained by single-level convolutional feature.
Furthermore, the acquired global contextual knowledge is dispersed and is unfavorable
to subsequent classification. To combine the global contextual information from low-
level and mid-level convolutional features, multiheaded cross-level attention (MCLA) is
proposed to capture the long-term correlation between the low-level and mid-level global
contextual features. The long-term correlation between different hierarchical features can
be viewed as latent dependence, which can be used to construct a more complete feature
representation [19]. Specifically, we construct MCLA directly using the MSA mechanism,
which varies from MSA in that MCLA utilizes B′1 to generate queries and B′2 to generate
keys and values.

Qmcla = B′1WQmcla , Kmcla = B′2WKmcla , Vmcla = B′2WVmcla , (8)

Bmcla = softmax


(

B′1WQmcla
)(

B′2WKmcla
)T√

dkmcla

(B′2WVmcla
)

(9)

where WQmcla , WKmcla , and WVmcla are the learned parameter matrices of different linear
projections in MCLA, and dkmcla

is the dimension of
(

B′2WKmcla
)

.

3.3. Category Score Average Module

The purpose of CSAM is to average the classification scores computed from high-level
semantic features G and Bmcla. Moreover, CSAM utilizes label smoothing to reduce model
overfitting and improve the model’s generalization capacity. Concretely, we initially take
out the class token dimension Bct

mcla ∈ RD in Bmcla and enhance the representational ability
of the model with a ReLU activation layer. Then, the Bct

mcla and G are converted to category
scores Sct and SG via an FC layer, respectively. Lastly, Sct and SG are averaged to yield the
average contribution with two branches, resulting in a fused category score, S.

S =
Sct + SG

2
. (10)

In this case, the local high-level semantic and global contextual information are merged
at the feature level. Thereafter, to classify HRRS scenes, a softmax function is utilized.

Instead of using the standard cross-entropy loss, we utilize the label smoothed cross-
entropy loss as the loss function. The label smoothing approach, which creates soft labels
by applying a weighted average between uniform distribution and hard label, is a useful
regularization technique to lessen the overfitting issue in deep learning. Assuming that the
label obtained by softmax function is yS, the smoothed label, yLS

S , equals the following:

yLS
S = yS(1− α) + α/M, (11)
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where α is the smoothing parameter and M is the number of categories. At this point, the
formula of the label smoothed cross entropy is as follows:

H
(

yLS
S , y

)
=

M

∑
m=1
−yLS

S log(y), (12)

where y is the one-hot encoded form of real label.

4. Experiment

In this section, experiments are carried out to demonstrate the efficacy of the proposed
HCFPN. Initially, the datasets and evaluation metrics that are used to validate the proposed
HCFPN are described in detail. Then, the comprehensive parameter configuration is
presented. Finally, the results of comparative experiments utilizing various state-of-the-art
approaches, as well as an ablation study, are shown to demonstrate the performance of the
proposed approach and the reasons for its improvement.

4.1. Experiment Datasets

After screening, two well-known datasets with imbalanced category samples, which
are extensively used to assess RSSC tasks, are selected for our experiments. These datasets
are AID [55] and WH-MAVS [56]. Detailed descriptions are as follows:

• AID is an aerial scene classification dataset released by Wuhan University, consisting
of a total of 10,000 images. It contains 30 categories of scene images, of which each
category has approximately 220–420 images. Furthermore, the pixel size of each image
is approximately 600× 600, with spatial resolution varying from approximately 0.5
m to 8 m. Figure 4 presents a sample of each class in this dataset. Figure 4 displays
several samples from this dataset.

• WH-MAVS is a multi-task and multi-temporal dataset with dual phase, 2014 and 2016.
It is based on Google Earth’s large-scale mosaic RGB images with the spatial size
of 47, 537× 38, 100 pixels. The dataset spans 2608 km2 of the major city of Wuhan,
Hubei Province, China. It comprises 23,567 labeled patch pairings with one-to-one
geographical correlation between 2014 and 2016. Each patch pairing is 200× 200 pixels
in size and has a spatial resolution of 1.2 m. The WH-MAVS comprises 14 categories,
as follows: commercial, water, administration, agricultural, transportation, industrial,
green space, residential 1, residential 2, residential 3, road, bare land, parking lot, and
playground. The total number of samples in each category ranged from 126 to 5850,
showing that the dataset has a substantial sample unbalanced issue. For RSSC, the
data from the 2016 time phase are used to conduct the experiment. Figure 5 displays
several samples from this dataset.

4.2. Dataset Settings and Evaluation Metrics

We repeat the experiments three times to acquire reliable experimental results by
randomly picking the training/testing samples. Subsequently, more convincing average
results and standard deviations are provided. The training–test sample ratio of AID and
WH-MAVS is divided into 5–95%, 10–90%, 20–80%, and 50–50%. To assess the classification
performance, two frequently used assessment metrics, namely, overall accuracy (OA) and
confusion matrix (CM), are selected. The OA is computed by dividing the overall quantity
of correctly categorized images by the overall quantity of test images, allowing the RSSC
model’s performance to be accurately evaluated. CM is a tabular summary of the number
of accurate and inaccurate predictions made by the classifier, and it is also the most basic
and intuitive metric of the RSSC model’s accuracy.
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4.3. Experimental Settings

Training Parameter: all the experiments are implemented using PyTorch on the GPU
server with 4 Nvidia Tesla V100 and 16 GB memory. We utilize the pretrained parameters
(using the ImageNet-1K dataset [57]) to initialize the ResNet34 of the HCFPN. Moreover,
the remaining part of the HCFPN is initialized randomly. The SGD optimizer is selected
to optimize our model for 120 epochs, with setting learning rate, momentum, and weight
decay of 0.02, 0.9, and 0.0001, respectively. We also adopt a cosine decay learning rate sched-
ule with a linear warm-up and a warm-up epoch of 5. The batch size for the distributed
data parallel training framework is set to 64, and the size of the input scenes is adjusted
to 224× 224. In addition, we select two data augmentation methods, namely the random
horizontal flipping and random erase. The size of the embedded patches of the ResNet34
layer1 and layer2 output features is 4× 4 and 2× 2, respectively. Finally, the smoothing
parameter of the model is set to 0.1.

4.4. Experimental Results

In this section, the experimental results of our proposed method and some other
advanced comparative methods are presented. In all these experiments, OA and CM are
the evaluation metrics. Every comparison result is discussed and analyzed in accordance
with various datasets.

• Results on AID dataset: Comparative experiments using different advanced ap-
proaches in RSSC are conducted. The results of the comparative experiments using
four proportions of training samples are displayed in Tables 1 and 3. The proportions
of the training set for comparative experiments are set to 5%, 10%, 20%, and 50%.
ACNet [47], ARCNet [45], FACNN [38], and EAM [46] are utilized to compare with
the proposed HCFPN. Among all the advanced approaches, the proposed HCFPN
performs best in all the proportions of the training set. ACNet and ARCNet perform
incredibly poorly with a few training examples. Moreover, our proposed algorithm
outperforms the ACNet and ARCNet by 50.95% and 11.54%, respectively, in the case of
5% training sample ratio. Furthermore, Figure 6 shows the CM of our HCFPN on the
AID dataset using 50% training samples. The classification accuracy of 21 out of the
30 categories is over 98%. These encouraging outcomes are yet another demonstration
of the potency of our proposed approach.

• WH-MAVS dataset: Comparative experiments using different advanced approaches
in RSSC are conducted. The results of the comparative experiments using four pro-
portions of training samples are displayed in Tables 2 and 4. The proportions of the
training set for comparative experiments are set to 5%, 10%, 20%, and 50%. ACNet [47],
ARCNet [45], FACNN [38], and EAM [46] are utilized to compare with the proposed
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HCFPN. Among all the advanced approaches, our HCFPN still outperforms other
comparison methods, but the performance improvement of our proposed HCFPN
is limited relative to the second-best method. When the proportion of the training
samples is less than 5%, the accuracy of our HCFPN is still significantly higher than
that of the ACNet and ARCNet by 6.75% and 3.28%, respectively.

Table 1. Overall accuracy (%) of HCFPN and the comparison methods when trained on the AID
dataset using a proportion of 5% and 10% of the samples.

OA (%)

Methods Training with 5% Samples Training with 10% Samples

ACNet [47] 31.68 ± 6.75 55.80 ± 4.98
ARCNet [45] 71.09 ± 0.70 79.34 ± 1.02
FACNN [38] 82.00 ± 0.16 87.21 ± 0.32

EAM [46] 81.28 ± 1.49 88.17 ± 0.41
HCFPN (Ours) 82.63 ± 0.93 89.16 ± 0.56

Table 2. Overall accuracy (%) of HCFPN and the comparison methods when trained on the WH-
MAVS dataset using a proportion of 5% and 10% of the samples.

OA (%)

Methods Training with 5% Samples Training with 10% Samples

ACNet [47] 83.45 ± 0.75 86.05 ± 0.78
ARCNet [45] 86.92 ± 0.25 90.39 ± 0.29
FACNN [38] 89.90 ± 0.29 91.42 ± 0.40

EAM [46] 90.17 ± 0.30 92.22 ± 0.13
HCFPN (Ours) 90.20 ± 0.07 92.33 ± 0.17

Table 3. Overall accuracy (%) of the HCFPN and the comparison methods when trained on the AID
dataset using a proportion of 20% and 50% of the samples.

OA (%)

Methods Training with 20% Samples Training with 50% Samples

ACNet [47] 79.40 ± 0.56 89.03 ± 0.27
ARCNet [45] 87.31 ± 0.78 91.92 ± 0.84
FACNN [38] 91.56 ± 0.20 94.60 ± 0.33

EAM [46] 92.24 ± 0.32 95.25 ± 0.40
HCFPN (Ours) 93.04 ± 0.20 96.02 ± 0.24

Table 4. Overall accuracy (%) of HCFPN and the comparison methods when trained on the WH-
MAVS dataset using a proportion of 20% and 50% of the samples.

OA (%)

Methods Training with 20% Samples Training with 50% Samples

ACNet [47] 90.40 ± 0.20 91.20 ± 0.74
ARCNet [45] 91.91 ± 1.32 94.28 ± 0.11
FACNN [38] 93.04 ± 0.14 94.24 ± 0.09

EAM [46] 93.50 ± 0.18 94.56 ± 0.42
HCFPN (Ours) 93.57 ± 0.21 94.60 ± 0.03
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Furthermore, Figure 7 displays the CM of our proposed method on the WH-MAVS
dataset utilizing 50% training samples. Ten of the 14 categories were classified with over
90% accuracy. This result proves the relatively good performance of the proposed HCFPN.
Nevertheless, HCFPN performs poorly in some categories, with high inter-class similarity,
such as “commercial” and “administration.”.
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4.5. Ablation Study

In this section, we construct the ablation experiments using the WH-MAVS dataset
with 50% training sets to assess the efficacy of different components within our pro-
posed HCFPN.

Each line in Table 5 denotes a mixture of several components, and 3 indicates that
the relevant component is used in that model. In the ablation study, model 1 performs
least effectively. From the results of model 2, the label smoothing technique improves
the accuracy of model 1 by 0.35%. By adding the contextual feature preserved module,
the OA increases from 91.37% to 92.04%, confirming the importance of the contextual
preserved module. The primary distinction between models 3 and 4 is the loss function.
The classification accuracy of model 4 surpasses model 3 by 0.29%, showing that label
smoothing can improve the feature representation discrimination even further.

Table 5. Overall accuracy (%) of HCFPN using different components when trained on the WH-MAVS
dataset using a proportion of 10% of the samples.

ResNet34 Contextual Feature
Preserved Module

Label
Smoothing OA (%)

1 3 91.02 ± 0.15
2 3 3 91.37 ± 0.18
3 3 3 92.04 ± 0.19
4 3 3 3 92.33 ± 0.17

4.6. Computational and Time Complexity Analysis

Table 6 shows the number of floating point operations (FLOPs) for all the compared
approaches. It is worth noting that HCFPN has moderate computational complexity.
Compared to EAM, which has the second-best classification performance, the FLOPS of
HCFPN is 6.8% lower. In addition, we also counted the time spent by all algorithms with
90% of the testing samples, as shows in Table 7. From the statistical results, the time
efficiency of HCFPN is reasonable in both cases, and its added contextual feature preserved
module does not have a significant negative impact on the time efficiency of the model.
The additional time spent by HCFPN in extracting global long-term contextual features is
worthwhile in terms of the improvement in classification accuracy.

Table 6. The number of FLOPs for all models when an image of size 3× 224× 224 is input.

ACNet ARCNet FACNN EAM HCFPN

FLOPs 15.37× 109 1.86× 109 15.68× 109 7.69× 109 7.16× 109

Table 7. Time statistics (in seconds) required to test models with HCFPN and other advanced
comparison algorithms under 90% testing samples.

ACNet ARCNet FACNN EAM HCFPN

AID 1.167 0.545 0.554 0.601 1.091
WH-MAVS 0.499 0.207 0.220 0.284 0.385

5. Discussion

In this paper, we have proposed HCFPN, which combines the advantages of CNN
and transformer, considering the global contextual information and local neighborhood
information. Moreover, the HCFPN achieves superior performance compared to other
advanced methods on two public benchmarks.

The above quantitative analysis shows that our method can still achieve better per-
formance with a smaller proportion of training samples, indicating that our proposed
HCFPN has a stable robustness. By displaying the confusion matrix, we discover that,



Remote Sens. 2023, 15, 810 14 of 16

on the AID dataset, HCFPN can accurately classify the majority of the classes. On the
WH-MAVS dataset, our proposed method performs effectively on most of the classes but
poorly on a few. This finding may be related to the very similar sample distribution between
classes. By additional analysis of ablation experiments, the HCFPN can extract multilevel
global long-term contextual information, and it can completely merge with the high-level
semantic information retrieved by CNN, achieving more discriminative features. Moreover,
the label smoothing technique is used to improve the classification performance of our
proposed HCFPN. As well as illustrating the performance and effectiveness of the HCFPN,
we also analyze the computational complexity and time complexity of HCFPN. From the
above analyzed results, our proposed method is comparative with other state-of-the-art ap-
proaches. The small sacrifice in computational complexity and time complexity of HCFPN
is worthwhile compared to the significant improvement in classification accuracy.

This manuscript has demonstrated that combining the advantages of CNNs and ViT
is feasible for RSSC. The multilevel convolutional features and high-level semantic features
can be extracted by CNNs, while the ViT are able to effectively capture global long-term
contextual features.

6. Conclusions

In this manuscript, we propose an HCFPN for HRRS scene classification. Different
from the traditional CNN-based methods, HCFPN utilizes the transformer block to focus
on self-attention and cross-level attention to enhance the model’s capacity to extract long-
term global contextual information. Meanwhile, the local high-level semantic features and
long-term global contextual features may be extremely effectively aggregated using the
category score average module. Moreover, label smoothing further enhances the robustness
of the model and avoids model overfitting. Finally, the proposed HCFPN has obtained
a rather acceptable state-of-the-art performance, as shown by extensive experiments on
several difficult remote sensing scene classification datasets.
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