Parallel Processing Method for Microseismic Signal Based on Deep Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Bases
2.2. Network Architecture and Training
3. Results
3.1. Test Results
3.2. Application in Real Projects
4. Discussion
5. Conclusions
- This model exhibits excellent denoising abilities, which can improve the SNR of microseismic signals containing different types of noise. Compared with the high-pass filter, the SNR is improved by 10.49 dB on average after denoising using PDTN. Compared with DnCNN, the SNR is improved by 12.97 dB on average after denoising using PDTN. The correlation coefficient between the signal denoised using PDTN and the original microseismic signal is higher in all SNR conditions, indicating that the denoised waveform distortion by PDTN is smaller.
- The model exhibits good detection ability: it accurately detects noisy microseismic signals with different SNRs. Compared with STA/LTA, the initial time error of this method is reduced by 3.24 ms, and its error remains below 3.2 ms at the low SNR.
- Denoising and detection efficiency using PDTN is higher than that for separate denoising and detection. When using 99 microseismic signals as input, the results reveal that the simultaneous denoising and detection using PDTN save 9.16 s compared with separate denoising and detection.
- PDTN can denoise and detect various noisy microseismic signals without requiring parameter adjustment for different signals. PDTN meets the demand for automatically processing massive microseismic data, and this method has great potential in data processing for exploration seismology, and earthquake and disaster assessment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, G.L.; Feng, X.T.; Chen, B.R.; Xiao, Y.X.; Zhao, Z.N. Effects of structural planes on the microseismicity associated with rockburst development processes in deep tunnels of the Jinping-II Hydropower Station, China. Tunn. Undergr. Space Technol. 2019, 84, 273–280. [Google Scholar] [CrossRef]
- Feng, G.L.; Feng, X.T.; Chen, B.R.; Xiao, Y.X.; Liu, G.F.; Zhang, W.; Hu, L. Characteristics of Microseismicity during Breakthrough in Deep Tunnels: Case Study of Jinping-II Hydropower Station in China. Int. J. Geomech. 2020, 20, 04019163. [Google Scholar] [CrossRef]
- Ma, K.; Liu, G.Y. Three-Dimensional Discontinuous Deformation Analysis of Failure Mechanisms and Movement Characteristics of Slope Rockfalls. Rock Mech. Rock Eng. 2022, 55, 275–296. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, J.; Ma, J.J.; Fang, Y.; Ma, C.C.; Yao, Z.G.; Chen, Z.Q. Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning. Rock Mech. Rock Eng. 2021, 54, 6299–6321. [Google Scholar] [CrossRef]
- Ma, C.C.; Li, T.B.; Zhang, H. Microseismic and precursor analysis of high-stress hazards in tunnels: A case comparison of rockburst and fall of ground. Eng. Geol. 2020, 265, 105435. [Google Scholar] [CrossRef]
- Wamriew, D.; Dorhjie, D.B.; Bogoedov, D.; Pevzner, R.; Maltsev, E.; Charara, M.; Pissarenko, D.; Koroteev, D. Microseismic Monitoring and Analysis Using Cutting-Edge Technology: A Key Enabler for Reservoir Characterization. Remote Sens. 2022, 14, 3417. [Google Scholar] [CrossRef]
- Hu, R.; Wang, Y. A first arrival detection method for low SNR microseismic signal. Acta Geophys. 2018, 66, 945–957. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Li, Y.; Qian, Z.H. Downhole Microseismic Signal Denoising via Empirical Wavelet Transform and Adaptive Thresholding. J. Geophys. Eng. 2018, 15, 2469–2480. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S.; Hwang, W.L. Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 1992, 38, 617–643. [Google Scholar] [CrossRef]
- Tang, S.; Tong, M.; He, X. The Optimum Wavelet Base of Wavelet Analysis in Coal Rock Microseismic Signals. Adv. Mech. Eng. 2014, 6, 967952. [Google Scholar] [CrossRef]
- Han, J.; Mirko, V.D.B. Microseismic and seismic denoising via ensemble empirical mode decomposition and adaptive thresholding. Geophysics 2015, 80, KS69–KS80. [Google Scholar] [CrossRef] [Green Version]
- Li, X.B.; Zhang, Y.P.; Zuo, Y.J.; Wang, W.H. Filtering and denoising of rock blasting vibration signal with EMD. J. Cent. South Univ. Sci. Technol. 2006, 37, 150–154. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Dong, L.L.; Li, B.; Lei, Y.F.; Xu, N.W. Microseismic Signal Denoising via Empirical Mode Decomposition, Compressed Sensing, and Soft-thresholding. Appl. Sci. 2020, 10, 2191. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I.; Lu, J.; Wu, H.T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011, 30, 243–261. [Google Scholar] [CrossRef] [Green Version]
- Ruan, W.Y.; Ma, Z.Q.; Chen, M.Y.; Zhang, A. A Method to Improve Noise Robustness of Synchrosqueezing Transform. J. Univ. Jinan Sci. Technol. 2019, 33, 42–49. (In Chinese) [Google Scholar] [CrossRef]
- Wang, C.; Wang, W.H. Optimal method of SVD for microseismic data based on background noise and eigenvalue ratio of reduction. J. Northeast Pet. Univ. 2020, 44, 13. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.B.; Shang, X.Y.; Wang, Z.W.; Dong, L.J.; Weng, L. Identifying P-phase arrivals with noise: An improved Kurtosis method based on DWT and STA/LTA. J. Appl. Geophys. 2016, 133, 50–61. [Google Scholar] [CrossRef]
- Li, S.C.; Cheng, S.; Li, L.P.; Shi, S.S.; Zhang, M.G. Identification and Location Method of Microseismic Event Based on Improved STA/LTA Algorithm and Four-Cell-Square-Array in Plane Algorithm. Int. J. Geomech. 2019, 19, 04019067.1–04019067.8. [Google Scholar] [CrossRef]
- Stevenson, R. Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing. Bull. Seismol. Soc. Am. 1976, 66, 61–79. [Google Scholar] [CrossRef]
- Li, X.L.; Liu, X.Q.; Dong, X.N.; Xu, D. Application and Expectation of Higher-order Statistics in Geophysics. Northwest. Seismol. J. 2010, 32, 201–205. (In Chinese) [Google Scholar] [CrossRef]
- Liu, J.S.; Wang, Y.; Yao, Z.X. On micro-seismic first arrival identification A case study. Chin. J. Geophys. 2013, 56, 1660–1666. (In Chinese) [Google Scholar] [CrossRef]
- Saragiotis, C.D.; Hadjileontiadis, L.J.; Panas, S.M. PAI-S/K: A Robust Automatic Seismic P Phase Arrival Identification Scheme. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1395–1404. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Z. Arrival Picking of Acoustic Emission Signals Using a Hybrid Algorithm Based on AIC and Histogram Distance. IEEE Trans. Instrum. Meas. 2021, 70, 3505808. [Google Scholar] [CrossRef]
- Long, Y.; Lin, J.; Li, B.; Wang, H.C.; Chen, Z.B. Fast-AIC Method for Automatic First Arrivals Picking of Microseismic Event with Multitrace Energy Stacking Envelope Summation. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1832–1836. [Google Scholar] [CrossRef]
- Maeda, N. A method for reading and checking phase times in autoprocessing system of seismic data. Zisin 1985, 38, 365–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, Y.Y.; Apel, D.B.; Liu, V.; Mitri, H. Machine learning methods for rockburst prediction-state-of-the-art review. Int. J. Min. Sci. Technol. 2022, 29, 565–570. [Google Scholar] [CrossRef]
- Zhong, T.; Cheng, M.; Dong, X.T.; Li, Y.; Wu, N. Seismic random noise suppression by using deep residual U-Net. J. Pet. Sci. Eng. 2021, 209, 109901. [Google Scholar] [CrossRef]
- Zhu, W.; Mousavi, S.M.; Beroza, G.C. Seismic Signal Denoising and Decomposition Using Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2018, 57, 9476–9488. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.M.; Ellsworth, W.L.; Zhu, W.; Chuang, L.Y.; Beroza, G.C. Earthquake transformer—An attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun. 2020, 11, 3952. [Google Scholar] [CrossRef]
- Zhang, J.L.; Sheng, G.Q. First arrival picking of microseismic signals based on nested U-Net and Wasserstein Generative Adversarial Network. J. Pet. Sci. Eng. 2020, 195, 107527. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.M.; Zhu, W.Q.; Sheng, Y.X.; Beroza, G.C. Cred: A deep residual network of convolutional and recurrent units for earthquake signal detection. Sci. Rep. 2019, 9, 10267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Ma, C.; Jiang, Y.; Casagli, N. Integrated Processing Method for Microseismic Signal Based on Deep Neural Network. Geophys. J. Int. 2021, 226, 2145–2157. [Google Scholar] [CrossRef]
- Mantovani, E.; Albarello, D.; Mucciarelli, M. Seismic activity in North Aegean region as middle-term precursor of Calabrian earthquakes. Phys. Earth Planet. Inter. 1986, 44, 264–273. [Google Scholar] [CrossRef]
Type | Kernel Size/Stride | Output Shape |
---|---|---|
Lambda | 32,768 × 1 | |
Convolution | 1 × 3/2 | 16,384 × 64 |
Batch Normalization | 16,384 × 64 | |
ReLU | 16,384 × 64 | |
Convolution | 1 × 3/1 | 16,384 × 64 |
Batch Normalization | 16,384 × 64 | |
ReLU | 16,384 × 64 | |
Convolution | 1 × 3/2 | 8192 × 128 |
Batch Normalization | 8192 × 128 | |
ReLU | 8192 × 128 | |
Convolution | 1 × 3/1 | 8192 × 128 |
Batch Normalization | 8192 × 128 | |
ReLU | 8192 × 128 |
Number | Val_Loss | Val_Accuracy | |||
---|---|---|---|---|---|
Denoising | Detection | Total | Denoising | Detection | |
9 | 0.0547 | 0.0338 | 0.0885 | 0.9606 | 0.9576 |
10 | 0.0540 | 0.0466 | 0.1006 | 0.9639 | 0.9319 |
11 | 0.0484 | 0.0397 | 0.0881 | 0.9626 | 0.9448 |
12 | 0.0504 | 0.0387 | 0.0892 | 0.9619 | 0.9467 |
13 | 0.0469 | 0.0419 | 0.0887 | 0.9667 | 0.9429 |
Actual | Positive | Negative | |
---|---|---|---|
Predict | |||
Positive | 94 | 5 | |
Negative | 0 | 0 |
Actual | Positive | Negative | |
---|---|---|---|
Predict | |||
Positive | 19 | 80 | |
Negative | 0 | 0 |
Methods | Precision | Recall | F1-Score |
---|---|---|---|
PDTN | 0.949 | 1 | 0.974 |
STA/LTA | 0.192 | 1 | 0.322 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Yan, W.; Xu, W.; Li, T.; Ran, X.; Wan, J.; Tong, K.; Lin, Y. Parallel Processing Method for Microseismic Signal Based on Deep Neural Network. Remote Sens. 2023, 15, 1215. https://doi.org/10.3390/rs15051215
Ma C, Yan W, Xu W, Li T, Ran X, Wan J, Tong K, Lin Y. Parallel Processing Method for Microseismic Signal Based on Deep Neural Network. Remote Sensing. 2023; 15(5):1215. https://doi.org/10.3390/rs15051215
Chicago/Turabian StyleMa, Chunchi, Wenjin Yan, Weihao Xu, Tianbin Li, Xuefeng Ran, Jiangjun Wan, Ke Tong, and Yu Lin. 2023. "Parallel Processing Method for Microseismic Signal Based on Deep Neural Network" Remote Sensing 15, no. 5: 1215. https://doi.org/10.3390/rs15051215