High-Resolution Resistivity Imaging of a Transversely Uneven Gas Hydrate Reservoir: A Case in the Qiongdongnan Basin, South China Sea
Abstract
:1. Introduction
2. Geological and Geophysical Background
3. Data collection, Processing, and Inversion
3.1. Data Collection and Processing
3.2. Two-Dimensional Inversion
4. Electrical Structure and Interpretation
5. Gas Hydrate Saturation
6. Discussion
6.1. Genesis of the Transversely Uneven Gas Hydrate Reservoir
6.2. Gas Migration and Accumulation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kvenvolden, K.A. Gas hydrates—Geological perspective and global change. Rev. Geophys. 1993, 21, 173–187. [Google Scholar] [CrossRef]
- He, J.; Su, P.; Lu, Z.; Zhang, W.; Liu, Z.; Li, X. Prediction of gas sources of natural gas hydrate in the Qiongdongnan Basin, northern South China Sea, and its migration, accumulation and reservoir formation pattern. Nat. Gas Ind. 2015, 35, 19–29. [Google Scholar] [CrossRef]
- Wei, J.; Liang, J.; Lu, J.; Zhang, W.; He, Y. Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea—Results of the fifth gas hydrate drilling expedition. Mar. Pet. Geol. 2019, 110, 287–298. [Google Scholar] [CrossRef]
- Lai, H.; Fang, Y.; Kuang, Z.; Ren, J.; Liang, J.; Lu, J.; Wang, G.; Xing, C. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: Implications from site GMGS5-W08. Mar. Pet. Geol. 2021, 123, 104774. [Google Scholar] [CrossRef]
- Chen, D.; Li, X.-X.; Xia, B. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea. Chin. J. Geophys. 2004, 47, 548–555. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Qiu, H.; Deng, W.; Meng, M.; He, Y.; Huang, W.; Liang, J.; Lin, L.; Wang, L.; et al. Double bottom simulating reflectors and tentative interpretation with implications for the dynamic accumulation of gas hydrates in the northern slope of the Qiongdongnan Basin, South China Sea. J. Asian Earth Sci. 2022, 229, 105151. [Google Scholar] [CrossRef]
- Wang, X.; Wu, S.; Yuan, S.; Wang, D.; Ma, Y.; Yao, G.; Gong, Y.; Zhang, G. Geophysical signatures associated with fluid flow and gas hydrate occurrence in a tectonically quiescent sequence, Qiongdongnan Basin, South China Sea. Geofluids 2010, 10, 351–368. [Google Scholar] [CrossRef]
- Ye, J.; Wei, J.; Liang, J.; Lu, J.; Lu, H.; Zhang, W. Complex gas hydrate system in a gas chimney, South China Sea. Mar. Pet. Geol. 2019, 104, 29–39. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Yang, X.; Su, P.; Wan, Z. The formation mechanism of mud diapirs and gas chimneys and their relationship with natural gas hydrates: Insights from the deep-water area of Qiongdongnan Basin, northern South China Sea. Int. Geol. Rev. 2018, 62, 789–810. [Google Scholar] [CrossRef]
- Fang, Y.; Wei, J.; Lu, H.; Liang, J.; Lu, J.a.; Fu, J.; Cao, J. Chemical and structural characteristics of gas hydrates from the Haima cold seeps in the Qiongdongnan Basin of the South China Sea. J. Asian Earth Sci. 2019, 182, 103924. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Liang, Q.; Wei, J.; Wan, Z.; Feng, J.; Huang, W.; Zhao, J.; Meng, M.; Deng, W.; et al. Gas Hydrate Accumulation and Occurrence Associated with Cold Seep Systems in the Northern South China Sea: An Overview. Geofluids 2021, 2021, 1–24. [Google Scholar] [CrossRef]
- Meng, M.; Liang, J.; Lu, J.a.; Zhang, W.; Kuang, Z.; Fang, Y.; He, Y.; Deng, W.; Huang, W. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan Basin, Northwest South China Sea. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2021, 177, 103628. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, W.; Lu, J.; Wei, J.; Kuang, Z.; He, Y. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: Insights from site GMGS5-W9-2018. Mar. Geol. 2019, 418, 106042. [Google Scholar] [CrossRef]
- Ren, J.; Cheng, C.; Xiong, P.; Kuang, Z.; Liang, J.; Lai, H.; Chen, Z.; Chen, Y.; Li, T.; Jiang, T. Sand-rich gas hydrate and shallow gas systems in the Qiongdongnan Basin, northern South China Sea. J. Pet. Sci. Eng. 2022, 215, 110630. [Google Scholar] [CrossRef]
- Yang, W.; Kuang, Z.; Ren, J.; Liang, J.; Lu, H.; Ning, Z.; Xu, C.; Lai, H.; Chen, R.; Zhao, B.; et al. The Controlling Factors of the Natural Gas Hydrate Accumulation in the Songnan Low Uplift, Qiongdongnan Basin, China. Front. Earth Sci. 2022, 10, 882080. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Zhang, R.; Deng, W.; Gu, Y.; He, Y.; Gong, Y.; Meng, M.; Feng, J.; Liang, J. Gas hydrate accumulation in shelf break setting: Example from the Qiongdongnan Basin in the northern slope of the South China Sea. Geol. J. 2021, 57, 1153–1171. [Google Scholar] [CrossRef]
- Huang, B.; Tian, H.; Li, X.; Wang, Z.; Xiao, X. Geochemistry, origin and accumulation of natural gases in the deepwater area of the Qiongdongnan Basin, South China Sea. Mar. Pet. Geol. 2016, 72, 254–267. [Google Scholar] [CrossRef]
- Yang, R.; Wu, N.; Bai, J.; Su, Z.; Liang, J.; Sha, Z. Gas hydrate identification in non-BSR region, northern South China Sea. Prog. Geophys. 2013, 28, 1033–1040. [Google Scholar] [CrossRef]
- Weitemeyer, K.; Constable, S.; Shelander, D.; Haines, S. Mapping the resistivity structure of Walker Ridge 313 in the Gulf of Mexico using the marine CSEM method. Mar. Pet. Geol. 2017, 88, 1013–1031. [Google Scholar] [CrossRef]
- Collett, T.S.; Ladd, J. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data. In Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX, USA, 19 May 2000. [Google Scholar]
- Edwards, N. Marine Controlled Source Electromagnetics: Principles, Methodologies, Future Commercial Applications. Surv. Geophys. 2005, 26, 675–700. [Google Scholar] [CrossRef]
- Schwalenberg, K.; Jegen, M. Electromagnetic Applications in Methane Hydrate Reservoirs. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer: Cham, Switzerland; Baar, Switzerland, 2022; pp. 73–85. [Google Scholar]
- Schwalenberg, K.; Rippe, D.; Koch, S.; Scholl, C. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. J. Geophys. Res. Solid Earth 2017, 122, 3334–3350. [Google Scholar] [CrossRef] [Green Version]
- Weitemeyer, K.A.; Constable, S.C.; Key, K.W.; Behrens, J.P. First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon. Geophys. Res. Lett. 2006, 33, L03304. [Google Scholar] [CrossRef] [Green Version]
- Weitemeyer, K.A.; Constable, S.; Tréhu, A.M. A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon. Geophys. J. Int. 2011, 187, 45–62. [Google Scholar] [CrossRef] [Green Version]
- Constable, S.; Kannberg, P.K.; Weitemeyer, K. Vulcan: A deep-towed CSEM receiver. Geochem. Geophys. Geosyst. 2016, 17, 1042–1064. [Google Scholar] [CrossRef] [Green Version]
- Goto, T.-n.; Kasaya, T.; Takagi, R.; Sakurai, N.; Harada, M.; Sayanagi, K.; Kinoshita, M. Methane Hydrate Detection with Marine Electromagnetic Surveys: Case Studies off Japan Coast. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009. [Google Scholar]
- Hsu, S.-K.; Chiang, C.-W.; Evans, R.L.; Chen, C.-S.; Chiu, S.-D.; Ma, Y.-F.; Chen, S.-C.; Tsai, C.-H.; Lin, S.-S.; Wang, Y. Marine controlled source electromagnetic method used for the gas hydrate investigation in the offshore area of SW Taiwan. J. Asian Earth Sci. 2014, 92, 224–232. [Google Scholar] [CrossRef]
- Jing, J.; Chen, K.; Deng, M.; Zhao, Q.; Luo, X.; Tu, G.; Wang, M. A marine controlled-source electromagnetic survey to detect gas hydrates in the Qiongdongnan Basin, South China Sea. J. Asian Earth Sci. 2019, 171, 201–212. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, S.; Li, Y.; Jing, J. Evaluation of gas hydrate structures: Results from an experiment in the South China Sea using the marine controlled-source electromagnetic method. Boll. Di Geofis. Teor. Ed. Appl. 2019, 60, 645–656. [Google Scholar] [CrossRef]
- Goswami, B.K.; Weitemeyer, K.A.; Bünz, S.; Minshull, T.A.; Westbrook, G.K.; Ker, S.; Sinha, M.C. Variations in pockmark composition at the Vestnesa Ridge: Insights from marine controlled source electromagnetic and seismic data. Geochem. Geophys. Geosyst. 2017, 18, 1111–1125. [Google Scholar] [CrossRef]
- Goswami, B.K.; Weitemeyer, K.A.; Minshull, T.A.; Sinha, M.C.; Westbrook, G.K.; Chabert, A.; Henstock, T.J.; Ker, S. A joint electromagnetic and seismic study of an active pockmark within the hydrate stability field at the Vestnesa Ridge, West Svalbard margin. J. Geophys. Res. Solid Earth 2015, 120, 6797–6822. [Google Scholar] [CrossRef] [Green Version]
- Goswami, B.K.; Weitemeyer, K.A.; Minshull, T.A.; Sinha, M.C.; Westbrook, G.K.; Marín-Moreno, H. Resistivity image beneath an area of active methane seeps in the west Svalbard continental slope. Geophys. J. Int. 2016, 207, 1286–1302. [Google Scholar] [CrossRef] [Green Version]
- Attias, E.; Weitemeyer, K.; Hölz, S.; Naif, S.; Minshull, T.A.; Best, A.I.; Haroon, A.; Jegen-Kulcsar, M.; Berndt, C. High-resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean-bottom receiver data. Geophys. J. Int. 2018, 214, 1701–1714. [Google Scholar] [CrossRef] [Green Version]
- Attias, E.; Weitemeyer, K.; Minshull, T.A.; Best, A.I.; Sinha, M.; Jegen-Kulcsar, M.; Hölz, S.; Berndt, C. Controlled-source electromagnetic and seismic delineation of subseafloor fluid flow structures in a gas hydrate province, offshore Norway. Geophys. J. Int. 2016, 206, 1093–1110. [Google Scholar] [CrossRef] [Green Version]
- Schwalenberg, K.; Gehrmann, R.A.S.; Bialas, J.; Rippe, D. Analysis of marine controlled source electromagnetic data for the assessment of gas hydrates in the Danube deep-sea fan, Black Sea. Mar. Pet. Geol. 2020, 122, 104650. [Google Scholar] [CrossRef]
- Tharimela, R.; Augustin, A.; Ketzer, M.; Cupertino, J.; Miller, D.; Viana, A.; Senger, K. 3D controlled-source electromagnetic imaging of gas hydrates: Insights from the Pelotas Basin offshore Brazil. Interpretation 2019, 7, SH111–SH131. [Google Scholar] [CrossRef]
- Kannberg, P.K.; Constable, S. Characterization and Quantification of Gas Hydrates in the California Borderlands. Geophys. Res. Lett. 2020, 47, e2019GL084703. [Google Scholar] [CrossRef]
- Gehrmann, R.A.S.; Provenzano, G.; Böttner, C.; Marín-Moreno, H.; Bayrakci, G.; Tan, Y.Y.; Yilo, N.K.; Djanni, A.T.; Weitemeyer, K.A.; Minshull, T.A.; et al. Porosity and free gas estimates from controlled source electromagnetic data at the Scanner Pockmark in the North Sea. Int. J. Greenh. Gas Control 2021, 109, 103343. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Z.; Wang, Z.; Sun, Z.; Liu, J.; Zhang, C. The high resolution sedimentary filling in Qiongdongnan Basin, Northern South China Sea. Mar. Geol. 2015, 361, 11–24. [Google Scholar] [CrossRef]
- Hu, B.; Wang, L.; Yan, W.; Liu, S.; Cai, D.; Zhang, G.; Zhong, K.; Pei, J.; Sun, B. The tectonic evolution of the Qiongdongnan Basin in the northern margin of the South China Sea. J. Asian Earth Sci. 2013, 77, 163–182. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, B.; Mi, L.; Wilkins, R.W.T.; Fu, N.; Xiao, X. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea. AAPG Bull. 2009, 93, 741–761. [Google Scholar] [CrossRef]
- Shi, X.; Jiang, H.; Yang, J.; Yang, X.; Xu, H. Models of the rapid post-rift subsidence in the eastern Qiongdongnan Basin, South China Sea: Implications for the development of the deep thermal anomaly. Basin Res. 2017, 29, 340–362. [Google Scholar] [CrossRef]
- Wang, X.; Qian, J.; Collett, T.S.; Shi, H.; Yang, S.; Yan, C.; Li, Y.; Wang, Z.; Chen, D. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea. Interpretation 2016, 4, SA25–SA37. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, L.; Sun, Z.; Bi, D. Chronostratigraphic framework based on micro-paleontological data from drilling LS33a in deep water area of northern South China Sea. Acta Sedimentol. Sin. 2018, 36, 890–902. [Google Scholar] [CrossRef]
- Zuo, T.; Wang, R.; He, Y.; Shi, W.; Liang, J.; Xu, L.; Du, H.; Deng, Y.; Xu, X. Natural Gas Migration Pathways and Their Influence on Gas Hydrate Enrichment in the Qiongdongnan Basin, South China Sea. Geofluids 2022, 2022, 1954931. [Google Scholar] [CrossRef]
- Li, S.; Hu, L.; Gan, J.; Wu, Q.; Li, X.; Li, M.; Chen, K.; Li, F.; Zheng, F. Accumulation conditions of buried-hill hydrocarbon reservoirs on the Lingnan Low Uplift in the deep water areas of Qiongdongnan Basin. Mar. Geol. Front. 2021, 37, 68–75. [Google Scholar] [CrossRef]
- Constable, S. Marine electromagnetic methods—A new tool for offshore exploration. Lead. Edge 2006, 25, 438–444. [Google Scholar] [CrossRef]
- Constable, S.; Srnka, L.J. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 2007, 72, WA3–WA12. [Google Scholar] [CrossRef]
- Chen, K.; Wei, W.; Deng, M.; Wu, Z.; Yu, G. A new marine controlled-source electromagnetic receiver with an acoustic telemetry modem and arm-folding mechanism. Geophys. Prospect. 2015, 63, 1420–1429. [Google Scholar] [CrossRef]
- Wang, M.; Deng, M.; Zhao, Q.; Luo, X.; Jing, J. Two types of marine controlled source electromagnetic transmitters. Geophys. Prospect. 2015, 63, 1403–1419. [Google Scholar] [CrossRef]
- Myer, D.; Constable, S.; Key, K.; Glinsky, M.E.; Liu, G. Marine CSEM of the Scarborough gas field, Part 1: Experimental design and data uncertainty. Geophysics 2012, 77, E281–E299. [Google Scholar] [CrossRef] [Green Version]
- Weitemeyer, K.; Gao, G.; Constable, S.; Alumbaugh, D. The practical application of 2D inversion to marine controlled-source electromagnetic data. Geophysics 2010, 75, 13. [Google Scholar] [CrossRef] [Green Version]
- Constable, S.C.; Parker, R.L.; Constable, C.G. Occam’s inversion; a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 1987, 52, 289–300. [Google Scholar] [CrossRef]
- Key, K. MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophys. J. Int. 2016, 207, 571–588. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; He, Y.; Shi, W.; Liang, J.; Wang, R.; Du, H.; Zhang, W.; Li, G. Main controlling factors and patterns of gas hydrate accumulation in the deep water area of Qiongdongnan Basin. Acta Pet. Sin. 2021, 42, 1619–1634. [Google Scholar] [CrossRef]
- Tinivella, U.; Carcione, J.M. Estimation of gas-hydrate concentration and free-gas saturation from log and seismic data. Lead. Edge 2001, 20, 200–203. [Google Scholar] [CrossRef]
- Lu, S.; McMechan, G.A. Estimation of gas hydrate and free gas saturation, concentration, and distribution from seismic data. Geophysics 2002, 67, 582–593. [Google Scholar] [CrossRef]
- Wang, X.; Wu, S.; Guo, Y.; Yang, S.; Gong, Y. Geophysical Indicators of Gas Hydrate in the Northern Continental Margin, South China Sea. J. Geol. Res. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Kang, D.; Lu, J.a.; Zhang, Z.; Liang, J.; Kuang, Z.; Lu, C.; Kou, B.; Lu, Q.; Wang, J. Fine-grained gas hydrate reservoir properties estimated from well logs and lab measurements at the Shenhu gas hydrate production test site, the northern slope of the South China sea. Mar. Pet. Geol. 2020, 122, 104676. [Google Scholar] [CrossRef]
- Liu, T.; Liu, X.; Zhu, T. Joint analysis of P-wave velocity and resistivity for morphology identification and quantification of gas hydrate. Mar. Pet. Geol. 2020, 112, 104036. [Google Scholar] [CrossRef]
- Deng, W.; Liang, J.; Kuang, Z.; Zhong, T.; Zhang, Y.; He, Y. The variation of free gas distribution within the seeping seafloor hydrate stability zone and its link to hydrate formations in the Qiongdongnan Basin. Acta Geophys. 2022, 70, 1115–1136. [Google Scholar] [CrossRef]
- Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 3, 32–57. [Google Scholar] [CrossRef]
- Su, M.; Sha, Z.; Qiao, S.; Yang, R.; Wu, N.; Cong, X.; Liu, J. Sedimentary evolution since Quaternary in the Shenhu hydrate drilling area, northern South China Sea. Chin. J. Geophys. 2015, 58, 2975–2985. [Google Scholar] [CrossRef]
- Deng, W.; Liang, J.; Zhang, W.; Kuang, Z.; Zhong, T.; He, Y. Typical characteristics of fracture-filling hydrate-charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan Basin, northern south China sea. Mar. Pet. Geol. 2021, 124, 104810. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Tang, S.; Li, W.; Tong, C. The occurrence of the gas hydrates in the southern uplift zone of the Qiongdongnan Basin. Sediment. Geol. Tethyan Geol. 2017, 37, 73–78. [Google Scholar]
- Plaza-Faverola, A.; Bünz, S.; Mienert, J. The free gas zone beneath gas hydrate bearing sediments and its link to fluid flow: 3-D seismic imaging offshore mid-Norway. Mar. Geol. 2012, 291–294, 211–226. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Wang, Z.; Sun, Z.; Wang, B.; Liu, P.; Chen, Y.; Cao, S. Distribution characteristics of abnormal pressure in central depression belt, deepwater area, Qiongdongnan (Southeast Hainan) Basin. Acta Geosci. Sin. 2014, 35, 355–364. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Jing, J.; Zhao, Q.; Luo, X.; Chen, K.; Wang, M.; Deng, M. High-Resolution Resistivity Imaging of a Transversely Uneven Gas Hydrate Reservoir: A Case in the Qiongdongnan Basin, South China Sea. Remote Sens. 2023, 15, 2000. https://doi.org/10.3390/rs15082000
Liu C, Jing J, Zhao Q, Luo X, Chen K, Wang M, Deng M. High-Resolution Resistivity Imaging of a Transversely Uneven Gas Hydrate Reservoir: A Case in the Qiongdongnan Basin, South China Sea. Remote Sensing. 2023; 15(8):2000. https://doi.org/10.3390/rs15082000
Chicago/Turabian StyleLiu, Chenggong, Jianen Jing, Qingxian Zhao, Xianhu Luo, Kai Chen, Meng Wang, and Ming Deng. 2023. "High-Resolution Resistivity Imaging of a Transversely Uneven Gas Hydrate Reservoir: A Case in the Qiongdongnan Basin, South China Sea" Remote Sensing 15, no. 8: 2000. https://doi.org/10.3390/rs15082000
APA StyleLiu, C., Jing, J., Zhao, Q., Luo, X., Chen, K., Wang, M., & Deng, M. (2023). High-Resolution Resistivity Imaging of a Transversely Uneven Gas Hydrate Reservoir: A Case in the Qiongdongnan Basin, South China Sea. Remote Sensing, 15(8), 2000. https://doi.org/10.3390/rs15082000