Evaluation and Analysis of the Accuracy of Open-Source Software and Online Services for PPP Processing in Static Mode
Abstract
:1. Introduction
2. Summary of Open-Source PPP Software and Online Free PPP Services
2.1. Open-Source PPP Software
2.2. Online PPP Services
3. Methodology
Processing Strategies
4. Results
4.1. Results of Open-Source Software
4.2. Results of Online Free PPP Services
5. Discussion
6. Conclusions
- PRIDE-PPPAR software represents the most precise option for positioning via static PPP of all open-source software and online PPP services evaluated in this research, achieving RMSEs in the E, N, and U components of 5.52, 5.4, and 6.79 mm, respectively.
- gLAB, PPPH, Net_Diff, MG-APP goGPS, PPPLib, and GAMP obtained similar RMSE values with respect to GIPSY X, with small differences of up to 5 mm.
- The authors classify the open-source software evaluated based on their RMSE values into three groups: the first group contains the software with RMSE estimates less than 12 mm in its three components, that is, PRIDE-PPPAR, gLAB, and GIPSY X; the second group contains Net_Diff, MG-APP, goGPS, GAMP, PPPLib, and PPPH, which have RMSE rates between 12 and 30 mm. Finally, Group 3 comprises only RTKLIB, which has the lowest performance, with RMSE amounts between 37 and 48 mm.
- CSRS-PPP was the best-performing online free PPP service, with RMSEs below 9 mm for all three components. The difference in RMSE of TRIMBLE, MagicGNSS, APPS, and GAPS compared with CSRS-PPP was only 4 mm, concluding that online free PPP services generally perform similarly.
- The difference between the RMSE obtained by the online free PPP services and GIPSY X demonstrated that they are viable options for scientific work due to the high precision achieved.
- Ambiguity resolution in open-source software and online free PPP services plays an important role in achieving precisions in the order of millimeters through the static mode PPP positioning technique.
- Results from open-source software and free online PPP services reflect the potential of static PPP as an alternative to relative positioning due to the high precision achieved.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderle, R.J. Point positioning concept using precise ephemeris. Satell. Doppler Position. 1976, 1, 47–75. [Google Scholar]
- Zumbergue, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise Point Positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Kouba, J.; Heroux, P. Precise point positioning using IGS orbit and clock products. GPS Solut. 2001, 5, 12–28. [Google Scholar] [CrossRef]
- Xi, R.; Chen, Q.; Meng, X.; Psimoulis, P.; Jiang, W.; Xu, C. Pass-by-Pass Ambiguity Resolution in Single GPS Receiver PPP Using Observations for Two Sequential Days: An Exploratory Study. Remote Sens. 2021, 13, 3728. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Yu, H.; Cao, X.; Ge, Y. A new weighting approach with application to ionospheric delay constraint for GPS/GALILEO real-time precise point positioning. Appl. Sci. 2018, 8, 2537. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Wang, Q.; Zhang, Y.; Ke, F.; Gao, W.; Yang, Y. Analysis of GNSS clock prediction performance with different interrupt intervals and application to real-time kinematic precise point positioning. Adv. Space Res. 2020, 65, 978–996. [Google Scholar] [CrossRef]
- Yigit, C.O.; Gurlek, E. Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomat. Nat. Hazards Risk 2017, 8, 893–904. [Google Scholar] [CrossRef] [Green Version]
- Romero-Andrade, R.; Trejo-Soto, M.E.; Vázquez-Ontiveros, J.R.; Hernández-Andrade, D.; Cabanillas-Zavala, J.L. Sampling rate impact on Precise Point Positioning with a Low-Cost GNSS receiver. Appl. Sci. 2021, 11, 7669. [Google Scholar] [CrossRef]
- Du, S.; Shu, B.; Xie, W.; Huang, G.; Ge, Y.; Li, P. Evaluation of Real-time Precise Point Positioning with Ambiguity Resolution Based on Multi-GNSS OSB Products from CNES. Remote Sens. 2022, 14, 4970. [Google Scholar] [CrossRef]
- Ge, M.; Gendt, G.; Rothacher, M.A.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J. Geod. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Collins, P.; Lahaye, F.; Heroux, P.; Bisnath, S. Precise point positioning with ambiguity resolution using the decoupled clock model. In Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation, Savannah, GA, USA, 16–19 September 2008; pp. 1315–1322. [Google Scholar]
- Laurichesse, D.; Mercier, F.; Berthias, J.P.; Broca, P.; Cerri, L. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 2009, 56, 135–149. [Google Scholar] [CrossRef]
- Chen, C.; Xiao, G.; Chang, G.; Xu, T.; Yang, L. Assessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution Using Products from Different Analysis Centers. Remote Sens. 2021, 13, 3266. [Google Scholar] [CrossRef]
- Bahadur, B. An improved weighting strategy for tropospheric delay estimation with real-time single-frequency precise positioning. Earth Sci. Inform. 2022, 15, 1267–1284. [Google Scholar] [CrossRef]
- Vazquez-Ontiveros, J.R.; Vazquez-Becerra, G.E.; Quintana, J.A.; Carrion, F.J.; Guzman-Acevedo, G.M.; Gaxiola-Camacho, J.R. Implementation of PPP-GNSS measurement technology in the probabilistic SHM of bridge structures. Measurement 2021, 173, 108677. [Google Scholar] [CrossRef]
- Lu, C.; Feng, G.; Zheng, Y.; Zhang, K.; Tan, H.; Dick, G.; Wickert, J. Real-time retrieval of precipitable water vapor from Galileo observations by using the MGEX network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4743–4753. [Google Scholar] [CrossRef]
- Ocalan, T.; Turk, T.; Tunalioglu, N.; Gurturk, M. Investigation of accuracy of PPP and PPP-AR methods for direct georeferencing in UAV photogrammetry. Earth Sci. Inform. 2020, 15, 2231–2238. [Google Scholar] [CrossRef]
- Ghoddousi-Fard, R.; Dare, P. Online GPS processing services: An initial study. GPS Solut. 2006, 10, 12–20. [Google Scholar] [CrossRef]
- Guo, Q. Precision comparison and analysis of four online free PPP services in static positioning and tropospheric delay estimation. GPS Solut. 2015, 19, 537–544. [Google Scholar] [CrossRef]
- El Shouny, A.; Miky, Y. Accuracy assessment of relative and precise point positioning online GPS processing services. J. Appl. Geod. 2019, 13, 215–227. [Google Scholar] [CrossRef]
- Leandro, R.F.; Santos, M.C.; Langley, R.B. Analyzing GNSS data in precise point positioning software. GPS Solut. 2010, 15, 1–13. [Google Scholar] [CrossRef]
- Wanas, S.K.; Alhamadani, O.Y.M.Z. Evaluation of the Performance of Online GPS/GNSS Data Processing Services for Monitoring the Land Deformations and Movements. J. Eng. 2019, 25, 108–119. [Google Scholar] [CrossRef] [Green Version]
- El-Mowafy, A. Analysis of web-based GNSS post-processing services for static and kinematic positioning using short data spans. Surv. Rev. 2011, 43, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Alkan, R.M.; Erol, S.; Ozulu, I.M.; Ilci, V. Accuracy comparison of post-processed PPP and real-time absolute positioning techniques. Geomat. Nat. Hazards Risk 2020, 11, 178–190. [Google Scholar] [CrossRef]
- Bahadur, B.; Nohutcu, M. Comparative analysis of MGEX products for post-processing multi-GNSS PPP. Measurement 2019, 145, 361–369. [Google Scholar] [CrossRef]
- Grinter, T.; Roberts, C.; Janssen, V. Ambiguity-resolved real-time precise point positioning as a potential fill-in service for sparse CORS networks. J. Surv. Eng. 2020, 146, 04020007. [Google Scholar] [CrossRef]
- Malik, J.S. Performance analysis of static precise point positioning using open-source GAMP. Artif. Satell. 2020, 55, 5–19. [Google Scholar] [CrossRef]
- Yigit, C.O.; Gikas, V.; Alcay, S.; Ceylan, A. Performance evaluation of short to long term GPS, GLONASS and GPS/GLONASS post-processed PPP. Surv. Rev. 2014, 46, 155–166. [Google Scholar] [CrossRef]
- Alkan, R.M.; IIci, V.; Ozulu, I.M.; Saka, M.H. A comparative study for accuracy assessment of PPP technique using GPS and GLONASS in urban areas. Measurement 2015, 69, 1–8. [Google Scholar] [CrossRef]
- Mohammed, I.H.; Ataiwe, T.N.; Al Sharaa, H. Accuracy Assessment of a Variety of GPS Data Processing, Online Services and Software. Geomat. Environ. Eng. 2021, 15, 5–19. [Google Scholar] [CrossRef]
- Dawidowicz, K.; Bakula, M. Impact of BeiDou Observations on the Accuracy of Multi-GNSS PPP in a Function of Observing Session Duration within Europe-Analysis Based on Open-Source Software GAMP. Remote Sens. 2023, 15, 158. [Google Scholar] [CrossRef]
- Bahadur, B.; Nohutcu, M. PPPH: A MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solut. 2018, 22, 1–10. [Google Scholar] [CrossRef]
- Ibáñez, D.; Rovira-Garcia, A.; Sanz, J.; Juan, J.M.; González-Casado, G.; Jimenez-Baños, D.; Lapin, I. The GNSS laboratory tool suite (gLAB) updates: SBAS, DGNSS and global monitoring system. In Proceedings of the 2018 9th ESA Workshop on Satellite NavigationTechnologies and European Workshop on GNSS Signals and Signal Processing, Noordwijk, The Netherlands, 5–7 December 2018. [Google Scholar] [CrossRef]
- Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Ramos-Bosch, P.; Rovira-Garcia, A.; Salazar, D.; Hein, G. The ESA/UPC GNSS-Lab tool (gLAB): An advanced multipurpose package for GNSS data processing. In Proceedings of the 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, The Netherlands, 8–10 December 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Kubo, N.; Chen, J.; Wang, J.; Wang, H. Initial positioning assessment of BDS new satellites and new signals. Remote Sens. 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, J.; Gong, X.; Chen, Q. The update of BDS-2 TGD and its impact on positioning. Adv. Space Res. 2020, 65, 2645–2661. [Google Scholar] [CrossRef]
- Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open-source program package RTKLIB. In Proceedings of the International Symposium on GPS/GNSS, Jeju, Republic of Korea, 4–6 November 2009. [Google Scholar]
- Angrisano, A.; Dardanelli, G.; Innac, A.; Pisciotta, A.; Pipitone, C.; Gaglione, S. Performance Assessment of PPP Surveys with Open-Source Software Using the GNSS GPS–GLONASS–Galileo Constellations. Appl. Sci. 2020, 10, 5420. [Google Scholar] [CrossRef]
- Geng, J.; Chen, X.; Pan, Y.; Mao, S.; Li, C.; Zhou, J.; Zhang, K. PRIDE PPP-AR: An open-source software for GPS PPP ambiguity resolution. GPS Solut. 2019, 23, 1–10. [Google Scholar] [CrossRef]
- Xiao, G.; Liu, G.; Ou, J.; Liu, G.; Wang, S.; Guo, A. MG-APP: An open-source software for multi-GNSS precise point positioning and application analysis. GPS Solut. 2020, 24, 1–13. [Google Scholar] [CrossRef]
- Herrera, A.M.; Suhandri, H.F.; Realini, E.; Reguzzoni, M.; de Lacy, M.C. goGPS: Open-source MATLAB software. GPS Solut. 2016, 20, 595–603. [Google Scholar] [CrossRef]
- Zhou, F.; Dong, D.; Li, W.; Jiang, X.; Wickert, J.; Schuh, H. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solut. 2018, 22, 1–10. [Google Scholar] [CrossRef]
- Chen, C.; Chang, G. PPPLib: An open-source software for precise point positioning using GPS, BeiDou, Galileo, GLONASS, and QZSS with multi-frequency observations. GPS Solut. 2021, 25, 1–7. [Google Scholar] [CrossRef]
- Bertiger, W.; Bar-Sever, Y.; Dorsey, A.; Haines, B.; Harvey, N.; Hemberger, D.; Willis, P. GipsyX/RTGx, a new tool set for space geodetic operations and research. Adv. Space Res. 2020, 66, 469–489. [Google Scholar] [CrossRef]
- Héroux, P.; Kouba, J.; Beck, N.; Lahaye, F.; Mireault, Y.; Tétreault, P.; Caissy, M. Space geodetic techniques and the Canadian spatial reference system evolution, status and possibilities. Geomatica 2006, 60, 137–150. [Google Scholar] [CrossRef]
- Tétreault, P.; Kouba, J.; Héroux, P.; Legree, P. CSRS-PPP: An internet service for GPS user access to the Canadian Spatial Reference Frame. Geomatica 2005, 59, 17–28. [Google Scholar] [CrossRef]
- Leandro, R.F. Precise Point Positioning with GPS: A New Approach for Positioning, Atmospheric Studies, and Signal Analysis. Ph.D. Dissertation, University of New Brunswick, Frederiction, NB, Canada, 2009. [Google Scholar]
- Doucet, K.; Herwing, M.; Kipka, A.; Kreikenbohm, P.; Landau, H.; Leandro, R.; Pagels, C. Introducing ambiguity resolution in web-hosted global multi-GNSS Precise Point Positioning with trimble RTK-PP. In Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, USA, 17–21 September 2012; pp. 1115–1125. [Google Scholar]
- Nardo, A.; Drescher, R.; Brandl, M.; Chen, X.; Landau, H.; Rodriguez-Solano, C.; Weinbach, U. Experiences with trimble center point RTX with fast convergence. In Proceedings of the ESA European Navigation Conference (ENC2015), Bordeaux, France, 7–10 April 2015. [Google Scholar]
- García, A.M.; Píriz, R.; Samper, M.D.L.; Merino, M.M.R. Multisystem Real Time Precise-Point-Positioning, today with GPS+ GLONASS in the near future also with QZSS, Galileo, Compass, IRNSS. In Proceedings of the International Symposium on GPS/GNSS, Taipei, Taiwan, 26–28 October 2010. [Google Scholar]
- CSRS-PPP. Canadian Spatial Reference System Precise Point Positioning, Natural Resources Canada. Available online: https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp-info.php?locale=en (accessed on 20 November 2022).
- Nischan, T. GFZRNX-RINEX GNSS Data Conversion and Manipulation Toolbox, version 1.05; GFZ Data Services: Potsdam, Germany, 2016. [Google Scholar]
- Dadras Eslamlou, A.; Huang, S. Artificial-Neural-Network-Based Surrogate Models for Structural Health Monitoring of Civil Structures: A Literature Review. Buildings 2022, 12, 2067. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Fang, J.; Chai, H.; Zheng, H. Simulation research on a minimum root-mean-square error rotation-fitting algorithm for gravity matching navigation. Sci. China Earth Sci. 2012, 55, 90–97. [Google Scholar] [CrossRef]
- Rizos, C. Principles and Practice of GPS Surveying, 1st ed.; School of Geomatic Engineering, University of New South Wales: Kensington, NSW, Australia, 1997. [Google Scholar]
- Ghilani, C.D. Adjustment Computations: Spatial Data Analysis, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
General Information | GAPS | CSRS-PPP | APPS | MagicGNSS | Trimble Center Point RTX |
---|---|---|---|---|---|
Web site | http://gaps.gge.unb.ca/ (accessed on 20 November 2022) | https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php?locale=en (accessed on 20 November 2022) | https://pppx.gdgps.net// (accessed on 20 November 2022) | https://magicgnss.gmv.com/user/ppp (accessed on 20 November 2022) | https://trimblertx.com/ (accessed on 20 November 2022) |
Developer | University of New Brunswick (UNB) | Natural Resources Canada (NRCan) | NASA-Jet Propulsion Laboratory (JPL) | Spain GMV Company | Trimble Navigation |
Latest version | GAPS v6.0.0 r587 (2016) | SPARK v3.54.2 (2022) | GIPSY-OASIS v5 | Magic PPP (2016) | 8.5.1.20196 |
Supported process mode | Static, kinematic | Static, kinematic | Static, kinematic | Static, kinematic | Static |
Observation data | Dual-frequency | Single- or Dual-frequency | Dual-frequency | Dual-frequency | Dual-frequency |
Constellation | GPS + Galileo + BeiDou | GPS + GLONASS | GPS | GNSS | GNSS |
Orbit and of satellite | IGS and NRCan | IGS and NRCan | JPL final | IGS final | Trimble |
Limitations of uploaded file | ≤10 Mb | ≤300 Mb | Unregistered: ≤5 Mb Registered: ≤100 Mb | ≤10 Mb | ≤10 Mb |
Coordinate frame | ITRF2014 | IGb2014/NAD83/IGS20 | ITRF2014 | ITRF2014 | ITRF2014 |
Tropospheric delay model and mapping function | UNB-VMF1; UNB3 MF: VMF1-gridded | Dry delay: Davis Wet delay: Hopf MF: GMF | GMF: troposphere mapping function | MF: GPT2 | - |
Angle of cut-off horizon | 10° | 7.5° | 7.5° | 8° | N/A |
Ambiguity resolution | No | Yes | Yes | No | No |
General Information | gLAB | PPPH | RTKLIB | NET_DIFF | PRIDE-PPPAR | MG-APP | goGPS | GAMP | PPPLib | GIPSY X |
---|---|---|---|---|---|---|---|---|---|---|
Developer | European Space Agency | Bahadur and Nohutcu [32] | Takasu and Yasuda [37] | GNSS Analysis Center at Shanghai Astronomical Observatory (SHA) | Geng et al. [39] | Xiao et al. [40] | Herrera et al. [41] | Zhou et al. [42] | Chen et al. [43] | Jet Propulsion Laboratory (JPL) |
Latest version | V5.5.1 (2020) | PPPH (2018) | 2.4.2 b34b (2020) | V1.16 (2020) | V2.2 (2023) | V1.0 (2019) | V1.0 (2021) | GAMP (2018) | PPPLib (2020) | GIPSY X-1.7 (2021) |
Supported process mode | Static, kinematic | Static, kinematic | Static, kinematic | Static, kinematic | Static, kinematic | Static, kinematic | Static | Static, kinematic | Static, kinematic | Static, kinematic |
Observation data | Dual-frequency | Dual-frequency | Multi-frequency | Multi-frequency | Dual-frequency | Dual-frequency | Multi-frequency | Dual-frequency | Dual-frequency | Multi-frequency |
Constellation | GPS | GNSS | GNSS | GNSS | GNSS | GNSS | GNSS | GNSS | GNSS | GNSS |
Tropospheric delay model and mapping function | Niell mapping UNB3-3 | Saastamoinen (GPT2) GMF | Saastamoinen | Saastamoinen (GPT2-5W), UNB3, VMF1 | GPT3 VMF3 | Saastamoinen (GPT2), Hopfield (GPT2) | VMF | VMF | Saastamoinen Rando walk | GPT2 VMF |
Coordinate frame | ITRF2014 | ITRF2014 | ITRF2014 | INTRF2014 | ITRF2014 | ITRF2014 | ITRF2014 | ITRF2014 | ITRF2014 | ITRF2014 |
Ambiguity resolution | No | No | No | Yes | Yes | No | No | No | No | Yes |
Operating system | Windows, Linux, Mac | Windows, Linux, Mac | Windows, Linux | Windows | Windows, Linux | Windows, Linux | Windows, Linux | Windows, Linux | Windows, Linux | Linux |
Mode | Static |
---|---|
Sampling rate | 30 s |
GNSS type | GPS |
Elevation mask | 8° |
Observation processed | Code and phase |
Frequency observed | L1, L2 |
Troposphere correction | Saastamoinen |
Ionosphere correction | Ionosphere-free linear combination |
Satellite orbits | Precise (IGS Final) |
Differential code biases | P1C1.DCB (CODE) |
Clock products | IGS final (clk_30) |
Earth Rotation Parameter | IGS final (ERP) |
Ocean loading | FES2014b * |
Phase center offsets/variations | Igs14.atx |
Software | E | N | U | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Standard Deviation | Mean | Max | Min | Standard Deviation | Mean | Max | Min | Standard Deviation | Mean | |
gLAB | 30 | 0 | 5.9 | 6 | 18 | 0 | 3.8 | 4.7 | 33 | 0 | 8 | 8.6 |
PPPH | 45 | 0 | 11.6 | 10.9 | 44 | 0 | 8.8 | 8 | 64 | 1 | 17.4 | 23 |
RTKLIB | 94 | 1 | 25 | 28 | 96 | 0 | 24 | 29.14 | 121 | 3 | 26.9 | 39.6 |
NET_DIFF | 21.7 | 0 | 5.4 | 6.3 | 32.7 | 0 | 6.9 | 8.4 | 50.56 | 0.3 | 15.7 | 21.8 |
PRIDE-PPPAR | 19.27 | 0 | 4.2 | 3.6 | 22 | 0 | 4 | 3.6 | 16 | 0 | 4 | 5.4 |
MG-APP | 32 | 0 | 6.3 | 6.7 | 27.4 | 0 | 7.3 | 10.9 | 48.3 | 0 | 13.1 | 20.7 |
goGPS | 22 | 0 | 5 | 5.9 | 19 | 0 | 4.9 | 5.7 | 30 | 1.6 | 8.2 | 13.74 |
GAMP | 27.8 | 0 | 6 | 7.24 | 18.24 | 0 | 4 | 6 | 28 | 0 | 8 | 10.5 |
PPPLib | 22.35 | 0 | 4.4 | 4.6 | 18 | 0 | 3.7 | 4.28 | 29 | 0 | 8 | 10.65 |
GIPSY X | 12.2 | 0 | 2.9 | 3.18 | 20 | 0 | 4.15 | 4.92 | 18 | 0 | 4.8 | 5.52 |
Online PPP Service | E | N | U | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Standard Deviation | Mean | Max | Min | Standard Deviation | Mean | Max | Min | Standard Deviation | Mean | |
CSRS-PPP | 23 | 0 | 4.66 | 3.5 | 20.8 | 0 | 4.37 | 4.9 | 31.7 | 0 | 5.87 | 5.9 |
APPS | 19 | 0 | 4.21 | 5.8 | 23.22 | 0.33 | 4.22 | 4.7 | 33.79 | 0.58 | 6.89 | 9.14 |
TRIMBLE | 20.13 | 0 | 4.32 | 4.5 | 21.8 | 0 | 4 | 5.4 | 27.7 | 0 | 7.1 | 10.13 |
MAGICGNSS | 29.28 | 0 | 5.48 | 4.9 | 18.52 | 0 | 4.26 | 4.7 | 30.24 | 0.46 | 7.7 | 8.8 |
GAPS | 23.9 | 0 | 5.06 | 5 | 18.48 | 0.12 | 3.7 | 5.7 | 31.6 | 0.48 | 8.23 | 9.9 |
Software/Online PPP Service | Total Uncertainty/mm |
---|---|
PRIDE-PPPAR | 10.29 |
GIPSY X | 10.63 |
CSRS-PPP | 12.07 |
APPS | 14.87 |
MagicGNSS | 15.18 |
TRIMBLE | 15.41 |
gLAB | 15.69 |
PPPLib | 15.87 |
GAPS | 16.19 |
GAMP | 17.75 |
goGPS | 19.31 |
MG-APP | 29.29 |
Net_Diff | 30.07 |
PPPH | 34.98 |
RTKLIB | 71.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Ontiveros, J.R.; Padilla-Velazco, J.; Gaxiola-Camacho, J.R.; Vázquez-Becerra, G.E. Evaluation and Analysis of the Accuracy of Open-Source Software and Online Services for PPP Processing in Static Mode. Remote Sens. 2023, 15, 2034. https://doi.org/10.3390/rs15082034
Vázquez-Ontiveros JR, Padilla-Velazco J, Gaxiola-Camacho JR, Vázquez-Becerra GE. Evaluation and Analysis of the Accuracy of Open-Source Software and Online Services for PPP Processing in Static Mode. Remote Sensing. 2023; 15(8):2034. https://doi.org/10.3390/rs15082034
Chicago/Turabian StyleVázquez-Ontiveros, Jesus René, Jorge Padilla-Velazco, J. Ramon Gaxiola-Camacho, and Guadalupe Esteban Vázquez-Becerra. 2023. "Evaluation and Analysis of the Accuracy of Open-Source Software and Online Services for PPP Processing in Static Mode" Remote Sensing 15, no. 8: 2034. https://doi.org/10.3390/rs15082034